Method of complete integral

I．PDE for $u(x, y)$ ：

$$
F(x, y, u, p, q)=0
$$

II．Assume a two－parameter $\alpha \operatorname{abd} \beta$ ，we have

$$
u=u(x, y, \alpha, \beta)
$$

satisfy $F=0$ ．Such family of solution is called a complete integral of the solution．
III．Given a relation

$$
\begin{aligned}
\alpha & =\alpha(s) \\
\beta & =\beta(s)
\end{aligned}
$$

$u=u(x, y, \alpha(s), \beta(s))$ given a one－parameter family solution．The group of the solution has a envelope function．This envelope is also a solution（singular solution）．
IV．Example：

$$
u_{x}^{2}+u_{y}^{2}=1
$$

Two parameters solution is

$$
u(x, y)=\cos (\alpha) x+\sin (\alpha) y+\beta
$$

Choose specially

$$
\beta=\cos (\alpha)
$$

Then

$$
u=(x+1) \cos (\alpha)+y \sin (\alpha)
$$

Differentiating with respect to α ，we have

$$
0=-(x+1) \sin (\alpha)+y \cos (\alpha)
$$

Cancelling α ，we have

$$
u^{2}=(x+1)^{2}+y^{2}
$$

V．To match the Cauchy data $(-1+\cos (s), \sin (s), 1)$ ，we have

$$
\begin{align*}
(-1+\cos (s)) \cos (\alpha)+\sin (s) \sin (\alpha)+\beta & =1 \tag{1}\\
-\sin (s) \cos (\alpha)+\cos (s) \sin (\alpha) & =0 \tag{2}
\end{align*}
$$

Therefore，

$$
\begin{align*}
& \alpha=s \tag{3}\\
& \beta=\cos (s) \tag{4}
\end{align*}
$$

The solution is

$$
\begin{align*}
& u=\cos (s) x+\sin (s) y+\cos (s)=\cos (s)(1+x)+\sin (s) y \tag{5}\\
& 0=\sin (s)(x+1)+\cos (s) y \tag{6}
\end{align*}
$$

The singular solution is

$$
u^{2}=(x+1)^{2}+y^{2}
$$

