
Applications of Singular-Value Decomposition (SVD)

Alkiviadis G. Akritas∗ and Gennadi I. Malaschonok†

Summer 2002

Abstract

Let A be an m × n matrix with m ≥ n. Then one form of the singular-value
decomposition of A is

A = UT ΣV,

where U and V are orthogonal and Σ is square diagonal. That is, UUT = Irank(A),

V V T = Irank(A), U is rank(A) × m, V is rank(A) × n and

Σ =

σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · σrank(A)−1 0
0 0 · · · 0 σrank(A)

is a rank(A)× rank(A) diagonal matrix. In addition σ1 ≥ σ2 ≥ · · · ≥ σrank(A) > 0.
The σi’s are called the singular values of A and their number is equal to the rank
of A. The ratio σ1

σrank(A)
can be regarded as a condition number of the matrix A.

It is easily verified that the singular-value decomposition can be also written as

A = UT ΣV =
rank(A)∑

i=1

σiu
T
i vi.

The matrix uT
i vi is the outer product of the i-th row of U with the corresponding

row of V . Note that each of these matrices can be stored using only m+n locations
rather than mn locations.

Using both forms presented above—and following Jerry Uhl’s beautiful approach
in the Calculus and Mathematica book series [1]—we show how SVD can be used
as a tool for teaching Linear Algebra geometrically, and then apply it in solving
least-squares problems and in data compression.

In this paper we used the Computer Algebra system Mathematica to present a
purely numerical problem. In general, the use of Computer Algebra systems has
greatly influenced the teaching of mathematics, allowing students to concentrate on
the main ideas and to visualize them.

∗University of Thessaly, Department of Computer and Communication Engineering, GR-38221 Volos,
Greece

†Tambov University, Department of Mathematics, Tambov, Russia. This material is based on work
supported in part by the Russian Ministry of Education Grant E02-2.0-98.

1

1 Introduction

In this section, we introduce the staple “ingredients” of any matrix, namely the hanger,
stretcher and aligner matrices. As we will see, any matrix can be written as the product
of a hanger, a stretcher and an aligner matrix.

We begin our discussion with the concept of a perpendicular frame in the two-dimensio-
nal space (2D). We restrict our attention to 2D spaces, and hence, to 2 × 2 matrices.
Extensions to higher dimensions are easily made.

A 2D perpendicular frame consists of two perpendicular unit vectors which can be
specified by an angle s. As an example, consider the unit vectors perpframe[1] =
{Cos(s), Sin(s)} and perpframe[2] = {Cos(s + π

2
), Sin(s + π

2
)} for which

perpframe[i] · perpframe[i] = 1,

(i = 1, 2) and
perpframe[1] · perpframe[2] = 0.

Using these two perpendicular vectors as columns or rows we can define, respectively, the
hanger or the aligner matrix.

1.1 Hanger matrices for hanging a curve on a perpendicular
frame

Given the perpendicular frame perpframe[1] = {Cos(s), Sin(s)},
perpframe[2] = {Cos(s + π

2
), Sin(s + π

2
)}, the hanger matrix defined by it is:

hanger(s) =

(
Cos(s) Cos(s + π

2
)

Sin(s) Sin(s + π
2
)

)
,

where perpframe[1] and perpframe[2] are the two columns. To see its action on a curve,
set the angle s for the hanger matrix to s = π

4
and consider the ellipse {x(t), y(t)} =

{1.5Cos(t), 0.9Sin(t)}, in its parametric form (Figure 1).

-1.5 -1 -0.5 0.5 1 1.5
x

-1.5

-1

-0.5

0.5

1

1.5
yBefore

pf_1pf_2

Figure 1: A perpendicular frame, s = π
4
, together with an ellipse “hung” on the x − y

axes.

We mention in passing that this is a right hand perpendicular frame because if we
mentally rotate it, pushing perpframe[1] onto the x-axis, perpframe[2] automatically
aligns with the positive y-axis. If perpframe[2] aligns with the negative y-axis, we are
dealing with a left hand perpendicular frame .

2

Clearly, the ellipse is hung on the x−y axes. The unit vectors {1, 0} and {0, 1} form a
perpendicular frame and the vectors defined by the points on the ellipse are of the form:

{x(t), y(t)} = x(t){1, 0} + y(t){0, 1}.
This means that to get to a point {x(t), y(t)} on the original curve, we advance x(t) units
in the direction of {1, 0} and then y(t) units in the direction of {0, 1}.

To hang the ellipse on the given perpendicular frame, all we have to do to the above
expression is to simply replace {1, 0} by perpframe[1] and {0, 1} by perpframe[2]. To
wit, the vectors defined by the points on the ellipse now become:

hungellipse(t) = x(t)perpframe[1] + y(t)perpframe[2].

This means that to get to a point {x(t), y(t)} on the new, hung ellipse, we advance x(t)
units in the direction of perpframe[1] and then y(t) units in the direction of perpframe[2].

This can be explained in terms of matrix operations. Every point {x(t), y(t)} of the
original ellipse is multiplied by the hanger matrix, hanger(s), resulting in the new hung
ellipse

hungellipse(t) =

(
Cos(s) Cos(s + π

2
)

Sin(s) Sin(s + π
2
)

)(
x(t)
y(t)

)
.

The result is shown in Figure 2.

-1.5 -1 -0.5 0.5 1 1.5
x

-1.5

-1

-0.5

0.5

1

1.5
yHung on plotted frame

pf_1pf_2

Figure 2: The ellipse “hung” on a perpendicular frame.

That is, perpframe[1] is playing the former role of {1,0} and perpframe[2] is playing
the former role of {0,1}. In summary, multiplying the parametric form of a curve by a
hanger matrix results in the curve being hung on the perpendicular frame defining this
matrix.

Some thought also reveals that rotation matrices are hanger matrices coming from
right hand perpendicular frames; by contrast, hanger matrices coming from left hand
perpendicular frames are not rotations—they incorporate a flip.

Moreover, to undo the “hanging” of a curve on a perpendicular frame we have to
multiply the new curve with the inverse of the hanger matrix. Pure algebraic operations
reveal that the inverse of the hanger matrix is its transpose!

1.2 Aligner matrices for aligning a curve on the x-y axes

Given the perpendicular frame perpframe[1] = {Cos(s), Sin(s)} and perpframe[2] =
{Cos(s + π

2
), Sin(s + π

2
)}, the aligner matrix defined by it is:

3

aligner(s) =

(
Cos(s) Sin(s)

Cos(s + π
2
) Sin(s + π

2
)

)
,

where perpframe[1] and perpframe[2] are the two rows. To see its action on a curve,
suppose we are given the same perpendicular frame as above (i.e., s = π

4
) and the ellipse

hung on it as shown in Figure 2. The task is to align the ellipse to the x − y axes.
We know that the parametric equation of the hung ellipse is

hungellipse(t) = x(t)perpframe[1] + y(t)perpframe[2].

Resolve now {x(t), y(t)} into components in the directions of perpframe[1] and perp −
frame[2] using the fact that the projection of any vector x on another vector y is x.y

y.y
y.

Then, the parametric equation of the hung ellipse becomes:

hungellipse(t) = ({x(t), y(t)} · perpframe[1])perpframe[1]

+({x(t), y(t)} · perpframe[2])perpframe[2].

Replacing now the last perpframe[1] by {1, 0} and the last perpframe[2] by {0, 1},
we obtain the ellipse alligned to the x − y axes:

alignedellipse(t) = ({x(t), y(t)}·perpframe[1]){1, 0}+({x(t), y(t)}·perpframe[2]){0, 1}

= {{x(t), y(t)} · perpframe[1], {x(t), y(t)} · perpframe[2]}.
The last expression is equivalent to :

alignedellipse(t) =

(
Cos(s) Sin(s)

Cos(s + π
2
) Sin(s + π

2
)

)(
x(t)
y(t)

)
.

In summary, multiplying the parametric form of a curve hung on a perpendicular
frame by an aligner matrix defined by this frame results in the curve being aligned with
the x − y axes (Figure 1).

Provided we are dealing with the same perpendicular frame, note that the aligner
matrix (which is the transpose of the hanger matrix) undoes what the hanger matrix
does. That is, one is the inverse of the other:(

Cos(s) Cos(s + π
2
)

Sin(s) Sin(s + π
2
)

)
︸ ︷︷ ︸

hanger(s)

·
(

Cos(s) Sin(s)
Cos(s + π

2
) Sin(s + π

2
)

)
︸ ︷︷ ︸

aligner(s)

=

(
1 0
0 1

)
.

1.3 Diagonal matrices—the x − y stretcher

Another name for the 2D diagonal matrix is xy-stretcher. The reason for this other name
is that when we multiply a curve by a diagonal matrix all measurements along the x and
y axes are stretched out. As an example consider the diagonal matrix

d =

(
4 0
0 2

)
,

4

-4 -3 -2 -1 1 2 3 4
x

-4

-3

-2

-1

1

2

3

4

yAfter the hit

Figure 3: The unit circle after it has been multiplied by the diagonal matrix d above.

which multiplies every point of the unit circle given in parametric form. The result is
shown in Figure 3, where it can be seen that all measurements along the x-axis have been
stretched by a factor of 4 (the xstretch factor) and all measurements along the y-axis by a
factor of 2 (the ystretch factor).

To invert the stretcher matrix d, we have to undo what multiplication by d did; that is,
we have to shrink all measurements along the x-axis by a factor of 4 and all measurements
along the y-axis by a factor of 2. So, the inverse of d is the easily computable matrix

d−1 =

(
1
4

0
0 1

2

)
.

1.4 SVD analysis of 2D matrices

SVD analysis tells us that every matrix can be duplicated with the staple ingredients:
hanger, stretcher and aligner. To show how this is done, consider a 2D matrix

m =

(−0.155468 0.427949
1.61437 1.03518

)
.

Denote by {alignerframe[1], alignerframe[2]} the aligner frame, by xstretch, and
ystretch the stretch factors and by {hangerframe[1], hangerframe[2]}T the hanger frame.
Note that by simple matrix operations it is easily verified that if

m = hanger(s1) · stretcher · aligner(s2)

then

m · alignerframe[1] = xstretchhangerframe[1]

and

m · alignerframe[2] = ystretchhangerframe[2].

The above formulae subsume the eigenvectors/eigenvalues formulae, where for example
we have

m · alignerframe[1] = xstretchalignerframe[1].

5

To duplicate this matrix m means coming up with an aligner frame, stretch factors
and a hanger frame so that

m = hanger(s1) · stretcher · aligner(s2).

First set

{alignerframe[1], alignerframe[2]} = {{Cos(s), Sin(s)}, {Cos(s +
π

2
), Sin(s +

π

2
)}}

for the two vectors of the aligner frame and then compute an s that makes

(m · alignerframe[1]) · (m · alignerframe[2]) = 0.

The latter simply states that the aligner frame is a perpendicular frame. In our case
s = 0.582922 radians, and the aligner frame becomes

{alignerframe[1], alignerframe[2]} = {{0.834858, 0.550466}, {−0.550466, 0.834858}}.
In matrix form we have

aligner(s2) =

(
0.834858 0.550466
−0.550466 0.834858

)
.

Using the fact that the vectors of the aligner frame are of length 1 and perpendicular,
we next compute

xstretch = ‖m · alignerframe[1]‖ = 1.92052

and
ystretch = ‖m · alignerframe[2]‖ = 0.44353,

from which we see that the diagonal matrix is

stretcher =

(
1.92052 0

0 0.44353

)
.

Finally, the vectors of the hanger frame are computed from the equations

hangerframe[1] =
1

xstretch

m · alignerframe[1] = {0.0550775, 0.998482}
and

hangerframe[2] =
1

ystretch

m · alignerframe[2] = {0.998482,−0.0550775}.

In matrix form the hanger matrix is

hanger(s1) =

(
0.0550775 0.998482
0.998482 −0.0550775

)
,

and we need to note that there is a new angle corresponding to the hanger frame, namely
s1 = 1.51569 radians!

It is easily verified that

m = hanger(s1) · stretcher · aligner(s2)

6

as was expected. We also mention in passing that s1 = s2 only for symmetrical matrices,
in which case

alignerframe[1] = hangerframe[1] = eigenvector[1],

alignerframe[2] = hangerframe[2] = eigenvector[2]

and
xstretch = eigenvalue[1],

ystretch = eigenvalue[2].

2 SVD Applications in Education

As we mentioned in the abstract, the teaching of linear algebra concepts is greatly en-
hanced and facilitated with the use of SVD analysis and Computer Algebra systems.
Below we see how to explain the action of a matrix on a curve, when the inverse of a
matrix does not exist—and what this means geometrically, and the relation between the
inverse and the transform of a matrix.

2.1 Action of a matrix on a curve

Consider the same matrix m analyzed in section 1.4, that is

m =

(−0.155468 0.427949
1.61437 1.03518

)
,

and let us see the result of multiplying a curve times this matrix. For a curve, consider
the unit circle shown in Figure 4:

{x(t), y(t)} = {Cos(t), Sin(t)}, (0 ≤ t ≤ 2π).

-2 -1.5 -1 -0.5 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0.5

1

1.5

2

yBefore

Figure 4: The unit circle before it has been multiplied times the matrix m above.

The curve we obtain after we multiply the unit circle in Figure 4 times the matrix m
is an ellipse(!) and is shown in Figure 5.

7

-2 -1.5 -1 -0.5 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0.5

1

1.5

2

yAfter

Figure 5: The unit circle became an ellipse after it was multiplied times the matrix m
above.

An explanation for this phenomenon is given by the SVD analysis of m, which has
been done in section 1.4. In that section we expressed

m = hanger(s1) · stretcher · aligner(s2).

We conclude that when we form the product m ·{x(t), y(t)}, it is the product aligner(s2) ·
{x(t), y(t)} that is being performed first. The result of this multiplication is shown in
Figure 6.

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1

yAfter the hit with aligner

Figure 6: The unit circle after it was multiplied times the aligner matrix of m above.

Note how the aligner frame has been aligned with the x − y axes and the dot—that
was at the point {0, 0}—moved clockwise.

Next, it is the product stretcher · (aligner(s2) · {x(t), y(t)}) that is being formed. The
result is in Figure 7.

8

-2 -1.5 -1 -0.5 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0.5

1

1.5

2

yAfter the hit with aligner and stretcher

Figure 7: The unit circle after it was multiplied times the aligner and the stretcher
matrices of m above.

Note how the measurements along the x-axis have grown by a factor of 1.92052 whereas
the measurements along the y axis have shrunk, multiplied by 0.44353.

Finally, the product hanger · (stretcher · (aligner(s2) · {x(t), y(t)})) is being formed.
The result is shown in Figure 8.

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
yAfter the hit with hanger, stretcher and aligner

Figure 8: The unit circle after it was multiplied times the aligner, the stretcher and the
hanger matrices of m above.

It is the end result, and the ellipse is hung on the hanger frame of matrix m. The final
flip of the point is due to the hanger frame being a left hand perpendicular frame.

2.2 Matrices that cannot be inverted

In the matrix m we used before, let us change the stretcher matrix somewhat; namely,
let us form the matrix

mnew = hanger(s1) ·
(

1.92052 0
0 0

)
· aligner(s2),

where the y-stretch factor is 0. As can be easily checked, the matrix mnew has no inverse,
which means its determinant is 0. This leads to the alternative definition of the determi-
nant of a matrix, as the product of the stretch factors. Multiplying now the unit circle
times mnew, we obtain the straight line shown in Figure 9.

What happened here is that two points of the ellipse have been deposited on the same
point on the line. Since we cannot tell which part of the ellipse they came from, it is
impossible to undo the multiplication times the matrix mnew.

9

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3

y

Figure 9: The unit circle after it was multiplied times the non invertible matrix mnew

above.

It should be added that the inverse of the hanger and aligner matrices always exists
since it is the transpose of the corresponding matrix. (If these matrices are orthogonal,
then their pseudoinverse is the transpose of the corresponding matrix. Recall that for any
matrix A we have PseudoInverse(A) = (AT A)−1AT [4].) It is only when the inverse of
the stretcher matrix does not exist that the inverse of a matrix m does not exist as well.

3 SVD for solving linear least-squares problems

The least-squares problem arises when we try to fit the polynomial

f(x) = c1 + c2x + c3x
2 + · · · + cnxn−1

to some data points {(xi, yi)}, i = 1, . . . ,m, where n < m. Compare this with interpola-
tion where we choose the degree n− 1 of the polynomial high enough to pass through all
the points; to wit, n = m.

A further generalization of the linear least-squares problem is to take a linear combi-
nation of basis functions {f1(x), f2(x), . . . , fn(x)} :

f(x) = c1f1(x) + c2f2(x) + · · · + cnfn(x),

but we will think of the basis functions {f1(x), f2(x), . . . , fn(x)} as being the powers of
x: 1, x, . . . , xn−1.

Note that in our case (n < m) we have an overdetermined system of equations, i.e.,
there are more equations than there are unknowns. By forcing n of the equations to be
exactly satisfied we may cause the others to exhibit large errors. Therefore, we would like
to choose values that allow all of the equations to be approximately satisfied instead of
forcing n of them to be exactly satisfied.

The best approximation fapprox to the given data by a linear combination of basis
functions is the one for which the residuals yi − fapprox(xi) are “smallest”. Among the
various possibilities for measuring the size of the residuals we take the quantity√√√√ m∑

i=1

|yi − f(xi)|2.

The problem of fitting a polynomial of degree n − 1 can be written as

10

c1 + c2x1 + · · · + cnx
n−1
1 ≈ y1,

c1 + c2x2 + · · · + cnx
n−1
2 ≈ y2,

...
...

. . .
...

...
c1 + c2xm + · · · + cnx

n−1
m ≈ ym,

which denotes an overdetermined system of linear equations because m > n. Also recall
that the xi and yi are given and that the cj are the unknowns.

In matrix form we have Ac ≈ y, where A is a nonsquare “tall” matrix, the unknown
c is a “short” vector, and y is a “tall” vector:

A =

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

. . .
...

...
...

. . .
...

1 xm · · · xn−1
m

, c =

c1

c2
...
cn

 , y =

y1

y2
...
...

ym

.

The residual vector is

r = y − Ac.

Using the Euclidean norm,

‖ u ‖2=

√√√√ m∑
i=1

u2
i ,

the least-squares problem becomes

min
c

‖ y − Ac ‖2 .

A known solution to the least-squares problem is the solution c to the linear system

AT Ac = ATy,

which are known as the normal equations. A less known solution to the least-squares
problem is obtained using SVD analysis of A as shown below.

We have A = UT ΣV and

‖ y − Ac ‖2=‖ y − UT ΣV c ‖2=‖ U(y − UT ΣV c) ‖2=‖ Uy − ΣV c ‖2,

since UUT = Irank(A).
Denoting Uy by d, V c by z, and rank(A) by r, we have

‖ y − Ac ‖2
2=‖ d − Σz ‖2

2=

∥∥∥∥∥∥∥∥∥∥

d1 − σ1z1

d2 − σ2z2
...

dr − σrzr

∥∥∥∥∥∥∥∥∥∥

2

2

= (d1 − σ1z1)
2 + · · · + (dr − σrzr)

2.

11

We can now uniquely select the zi = di

σi
, for i = 1, . . . , rank(A) to reduce this expression

to its minimum value. The solution to the least-squares problem is then obtained from
V c = z :

c = PseudoInverse(V)z = V Tz.

Example: The following data depicts the growth of the population (in millions) in
the United States for the years 1900 through 1970(

1900 1910 1920 1930 1940 1950 19960 1970
75.99 91.97 105.71 122.75 131.67 150.69 179.32 203.21

)
.

We want to fit a polynomial of degree 2 to these points. To wit, the polynomial
f(x) = c1 + c2x + c3x

2 should be such that f(xi) should be as close as possible to yi,
where the points {xi, yi}, i = 1, 2, . . . , 8 represent, respectively, the year (xi) and the
population (yi).

Our system of equations Ac = y is

1 1900 3610000
1 1910 3648100
1 1920 3686400
1 1930 3724900
1 1940 3763600
1 1950 3802500
1 1960 3841600
1 1970 3880900

 c1

c2

c3

 =

75.99
91.97
105.71
122.75
131.67
150.69
179.32
203.21

.

The SVD analysis of the matrix A = UT ΣV is obtained with the help of Mathematica
and is shown below:

U =

 −0.341 −0.344 −0.348 −0.352 −0.355 −0.359 −0.363 −0.366

−0.543 −0.393 −0.24 −0.089 0.065 0.221 0.378 0.537
0.546 0.081 −0.229 −0.385 −0.386 −0.234 0.073 0.534

 ,

Σ =

 1.05947 · 107 0 0

0 64.7746 0
0 0 0.000346202

 ,

V =

 −2.66890 · 10−7 −0.000516579 −1.

−0.00103368 −0.999999 0.000516579
0.999999 −0.00103368 2.67087 · 10−7

 .

We set Uy = d = {−377.813, 104.728, 13.098}T and compute

z = {−0.0000356605, 1.61681, 37833.1}T

by dividing di

σi
, i = 1, 2, 3. (We will not concern ourselves with analyzing the condition

number of this matrix—and there something to be said about it here.)
The solution to the least-squares problem is then obtained from V c = z:

c = V Tz = {37833.1,−40.7242, 0.0109756}T ,

and is the same obtained using the function Fit in Mathematica. (See [5] for a discussion
on the problems of this function and on robust regression.)

12

4 SVD and data compression

In this section, we will use the second form of the singular-value decomposition, namely:

A = UT ΣV =
rank(A)∑

i=1

σiu
T
i vi,

where the matrix uT
i vi is the outer product of the i-th row of U with the corresponding

row of V . Since each of these matrices can be stored using only m + n locations rather
than mn locations, this form is suitable for applications in data compression.

Data compression will be used on the following problem from [3], eloquently solved in
[1]. “Suppose that a satellite in space is taking photographs of Jupiter to be sent back to
earth. The satellite digitizes the picture by subdividing it into tiny squares called pixels
or picture elements. Each pixel is represented by a single number that records the average
light intensity in that square. If each photograph were divided into 500 × 500 pixels, it
would have to send 250, 000 numbers to earth for each picture. (This amounts to a 500D
matrix.) This would take a great deal of time and would limit the number of photographs
that could be transmitted. It is (sometimes) possible to approximate this matrix with a
‘simpler’ matrix which requires less storage.”

Let us start by looking at a “picture” of only 4 pixels in Figure 10. The gray level
specification for each square is determined by the corresponding entry in the matrix A(

0.748611 0.407564
0.263696 0.469433

)
.

0.748611

0.263696

0.407564

0.469433

Figure 10: Picture based on a 2D matrix whose entries are numbers between 0.0 and 1.0.

Figure 11 depicts the graphic generated by a 16D matrix A whose entries are numbers
between 0.0 and 1.0 (A itself is too large to be displayed!)

13

Original Image

Figure 11: Picture based on a 16D matrix whose entries are numbers between 0.0 and
1.0.

To reproduce this picture exactly, we need to keep track of all of the 256 (= 16 × 16)
entries of A. However, using SVD analysis of A, we can approximately reproduce this
image keeping track of much less data. To compress the data, we set the smaller singular
values to zero. The singular values of the 16D matrix A are

7.63116 3.64554 3.62529 0.089207
0.081537 0.0660488 0.0553387 0.0487359

0.0466094 0.0340483 0.0314476 0.0261613
0.0187258 0.0133512 0.00755902 0.00556133

.

Using only the first 3 singular values of A (the ones > 1), we have

A =
16∑
i=1

σiu
T
i vi ≈

3∑
i=1

σiu
T
i vi,

and the compressed image is shown in Figure 12.

Compressed Image

Figure 12: Picture generated using only 3 singular values (and their corresponding rows
of U and V) of the 16D matrix above.

The satellite transmits the following data for the compressed image: the first 3 rows
of U , the first 3 singular values and the first 3 rows of V . And then the recipient on earth
forms the 16D matrix

3∑
i=1

σiu
T
i vi.

14

To wit, the satellite transmits 3 × 16 + 3 + 3 × 16 = 99 elements. This is a lot less
data than the 256 elements that would have to be transmitted otherwise in our case.

5 Conclusions

The singular value decomposition is over a hundred years old. For the case of square
matrices, it was discovered independently by Beltrami in 1873 and Jordan in 1874. The
technique was extended to rectangular matrices by Eckart and Young in the 1930’s and
its use as a computational tool dates back to the 1960’s. Golub and van Loan [2] demon-
strated its usefulness and feasibility in a wide variety of applications.

Despite its history, singular value decomposition of matrices is still not widely used in
education. The book by Davis and Uhl [1] is the only one known to the authors that—
together with the Computer Algebra system Mathematica—bases an entire linear algebra
course on this concept. Hopefully, our presentation has contributed something to the
effort to acquaint university teachers with the beauty of this subject.

6 Acknowledgements

We would like to sincerely thank one referee for the detailed comments which greatly
improved the presentation of this paper.

References

[1] Bill Davis and Jerry Uhl, Matrices, Geometry & Mathematica, Math Everywhere,
Inc., 1999 (Part of the ”Calculus & Mathematica” series of books).

[2] Gene H. Golub and Charles F. van Loan, Matrix Computations, The John Hopkins
University Press, Baltimore, MD, 1983.

[3] David Kahaner, Cleve Moler and Stephen Nash, Numerical Methods and Software,
Prentice-Hall, Englewood Cliffs, N.J., 1989.

[4] Robert D. Skeel and Jerry B. Keiper, Elementary Numerical Computing with Math-
ematica, McGraw-Hill, New York, N.Y., 1993.

[5] William T. Shaw and Jason Tigg, Applied Mathematica: Getting Started, Getting it
Done, Addison-Wesley, Reading MA., 1994

15

