Generalized Inverses: Theory and Applications Bibliography for the 2nd Edition (June 21, 2001)

Adi Ben-Israel Thomas N.E. Greville ${ }^{\dagger}$

Bibliography

1. K. Abdel-Malek and Harn-Jou Yeh, On the determination of starting points for parametric surface intersections, Computer-aided Design 29 (1997), no. 1, 21-35.
2. N. N. Abdelmalek, On the solutions of the linear least squares problems and pseudo-inverses, Computing 13 (1974), no. 3-4, 215-228.
3. V. M. Adukov, Generalized inversion of block Toeplitz matrices, Linear Algebra and its Applications 274 (1998), 85-124.
4. \qquad , Generalized inversion of finite rank Hankel and Toeplitz operators with rational matrix symbols, Linear Algebra and its Applications 290 (1999), no. 1-3, 119-134.
5. S. N. Afriat, On the latent vectors and characteristic values of products of pairs of symmetric idempotents, Quart. J. Math. Oxford Ser. (2) 7 (1956), 76-78.
6. , Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc. 53 (1957), 800-816.
7. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their applications, Academic Press, New York, 1967.
8. A. C. Aitken, On least squares and linear combinations of observations, Proceedings of the Royal Society of Edinburgh, Sec A 55 (1934), 42-47.
9. Y. Akatsuka and T. Matsuo, Optimal control of linear discrete systems using the generalized inverse of a matrix, Techn Rept. 13, Institute of Automatic Control, Nagoya Univ., Nagoya, Japan, 1965.
10. I. S. Alalouf and G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Statist. 7 (1979), no. 1, 194-200.
11. \qquad , Estimability and testability in restricted linear models, Math. Operationsforsch. Statist. Ser. Statist. 10 (1979), no. 2, 189-201.
12. A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudo-inverses, SIAM J. Appl. Math. 17 (1969), 434-440.
13. \qquad , Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York, 1972.
14. \qquad , The Gauss-Markov theorem for regression models with possibly singular covariabes, SIAM J. Appl. Math. 24 (1973), 182-187.
15. \qquad , Statistical applications of the pseudo inverse, In Nashed [1116], pp. 525-548.
16. A. Albert and R. W. Sittler, A method for computing least squares estimators that keep up with the data, SIAM J. Control 3 (1965), 384-417.
17. V. Aleksić and V. Rakočević, Approximate properties of the Moore-Penrose inverse, VIII Conference on Applied Mathematics (Tivat, 1993), Univ. Montenegro, Podgorica, 1994, pp. 1-14.
18. E. L. Allgower, K. Böhmer, A. Hoy, and V. Janovský, Direct methods for solving singular nonlinear equations, ZAMM Z. Angew. Math. Mech. 79 (1999), 219-231.
19. M. Altman, A generalization of Newton's method, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 3 (1955), 189-193.
20. _ On a generalization of Newton's method, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 5 (1957), 789-795.
21. J. K. Amburgey, T. O. Lewis, and T. L. Boullion, On computing generalized characteristic vectors and values for a rectangular matrix, In Boullion and Odell [207], pp. 267-275.
22. A. R. Amir-Moéz, Geometry of generalized inverses, Math. Mag. 43 (1970), 33-36.
23. \qquad , Extreme properties of linear transformations, Polygonal Publ. House, Washington, NJ, 1990.
24. C. L. Anderson, A geometric theory of pseudoinverses and some applications in statistics, Master's thesis in statistics, Southern Methodist Univ., 1967.
25. W. N. Anderson, Jr., Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525.
26. W. N. Anderson, Jr. and R. J. Duffin, Series and parallel addition of matrices, SIAM J. Appl. Math. 26 (1969), 576-594, (see [878]).
27. W. N. Anderson, Jr. and M. Schreiber, The infimum of two projections, Acta Sci. Math. (Szeged) 33 (1972), 165-168.
28. W. N. Anderson, Jr. and G. E. Trapp, Inequalities for the parallel connection of resistive n-port networks, J. Franklin Inst. 209 (1975), no. 5, 305-313.
29. \qquad , Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71, (this concept first introduced by Krein [880]).
30. \qquad , Analytic operator functions and electrical networks, In Campbell [267], pp. 12-26.
31. , Inverse problems for means of matrices, SIAM J. Algebraic Discrete Methods 7 (1986), no. 2, 188-192.
32. T. Ando, Generalized Schur complements, Linear Algebra and its Applications 27 (1979), 173-186.
33. Mihai Anitescu, Dan I. Coroian, M. Zuhair Nashed, and Florian A. Potra, Outer inverses and multibody system simulation, Numer. Funct. Anal. Optim. 17 (1996), no. 7-8, 661-678.
34. P. M. Anselone and P. J. Laurent, A general method for the construction of interpolating or smoothing spline-functions, Numer. Math. 12 (1968), 66-82.
35. H. Anton and C. S. Duris, On minimum norm and best approximate solutions of $A v=b$ in normed spaces, J. Approximation Theory 16 (1976), no. 3, 245-250.
36. E. Arghiriade, Sur les matrices qui sont permutables avec leur inverse généralisée, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 35 (1963), 244-251.
37. _ On the generalized inverse of a product of matrices, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 5 (1967), 37-42.
38. \qquad , Remarques sur l'inverse généralisée d'un produit de matrices, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 42 (1967), 621625.
39._ Sur quelques équations fonctionnelles de matrices, Rev. Roumaine Math. Pures Appl. 12 (1967), 1127-1133.
39. , Sur l'inverse généralisée d'un operateur lineaire dans les espaces de Hilbert, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 45 (1968), 471-477.
40. E. Arghiriade and A. Dragomir, Une nouvelle définition de l'inverse généralisée d'une matrice, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 35 (1963), 158-165.
41. \qquad , Remarques sur quelques théoremes relatives a l'inverse généralisée d'un operateur lineaire dans les espaces de hilbert, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 46 (1969), 333-338.
42. I. K. Argyros, Local convergence theorems of Newton's method for nonlinear equations using outer or generalized inverses, Czechoslovak Math. J. 50(125) (2000), no. 3, 603-614.
43. S. Aronowitz and B. E. Eichinger, Petrie matrices and generalized inverses, J. Math. Phys. 16 (1975), 1278-1283.
44. F. V. Atkinson, The normal solvability of linear equations in normed spaces (russian), Mat. Sbornik N.S. 28(70) (1951), 3-14.
45. \qquad , On relatively regular operators, Acta Sci. Math. Szeged 15 (1953), 38-56.
46. K. E. Atkinson, The solution of non-unique linear integral equations, Numer. Math. 10 (1967), 117124, (see also [1090]).
47. L. Autonne, Bull. Soc. Math. France 30 (1902), 121-133.
48. __, Sur les matrices hypohermitiennes et sur les matrices unitaires, Ann. Univ. Lyon 38 (1917), 1-77.
49. G. Backus, Inference from inadequate and inaccurate data. I, II, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 1-7; ibid. 65 (1970), 281-287.
50. G. Backus and F. Gilbert, Uniqueness in the inversion of inaccurate gross Earth data, Philos. Trans. Roy. Soc. London Ser. A 266 (1970), no. 1173, 123192.
51. C. Badea and M. Mbekhta, Generalized inverses and the maximal radius of regularity of a Fredholm operator, Integral Equations Operator Theory 28 (1997), no. 2, 133-146.
52. _ Compressions of resolvents and maximal radius of regularity, Trans. Amer. Math. Soc. $\mathbf{3 5 1}$ (1999), no. 7, 2949-2960.
53. J. K. Baksalary and R. Kala, The matrix equation $A X-Y B=C$, Linear Algebra and its Applications 25 (1979), 41-43.
54. , The matrix equation $A X B+C Y D=E$, Linear Algebra and its Applications 30 (1980), 141-147.
55. \qquad , Two properties of a nonnegative definite matrix, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 5-6, 233-235 (1981).
56. ucts, Linear and Multilinear Algebra 14 (1983), no. 1, 89-96.
57. J. K. Baksalary and T. Mathew, Rank invariance criterion and its application to the unified theory of least squares, Linear Algebra and its Applications 127 (1990), 393-401.
58. J. K. Baksalary, P. R. Pordzik, and G. Trenkler, A note on generalized ridge estimators, Comm. Statist. Theory Methods 19 (1990), no. 8, 28712877.
59. J. K. Baksalary and F. Pukelsheim, On the Löwner, minus, and star partial orderings of nonnegative definite matrices and their squares, Linear Algebra and its Applications 151 (1991), 135-141.
60. J. K. Baksalary, S. Puntanen, and H. Yanai, Canonical correlations associated with symmetric reflexive generalized inverses of the dispersion matrix, Linear Algebra and its Applications 176 (1992), 61-74.
61. A. V. Balakrishnan, An operator theoretic formulation of a class of control problems and a steepest descent method of solution, J. Soc. Indust. Appl. Math. Ser. A: Control 1 (1963), 109-127.
62. K. F. Baldwin and A. E. Hoerl, Bounds of minimum mean squared error in ridge regression, Comm. Statist. A-Theory Methods 7 (1978), no. 13, 1209-1218.
63. J. A. Ball, M. Rakowski, and B. F. Wyman, Coupling operators, Wedderburn-Forney spaces, and generalized inverses, Linear Algebra and its Applications 203/204 (1994), 111-138.
64. K. S. Banerjee, Singularity in Hotelling's weighing designs and generalized inverses, Ann. Math. Statist. 37 (1966), 1021-1032, (erratum, ibid 40(1969), 710).
65. K. S. Banerjee and W. T. Federer, On the structure and analysis of singular fractional replicates, Ann. Math. Statist. 39 (1968), 657-663.
66. R. B. Bapat, Generalized inverses with proportional minors, Linear Algebra and its Applications 211 (1994), 27-33.
67. _, Moore-Penrose inverse of the incidence matrix of a tree, Linear and Multilinear Algebra 42 (1997), no. 2, 159-167.
68. \qquad , Structure of a nonnegative regular matrix and its generalized inverses, Linear Algebra and its Applications 268 (1998), 31-39.
69. \qquad _, Linear Algebra and Linear Models, second ed., Hindustan Book Agency, New Delhi, 1999.
70. \qquad , Linear estimation in models based on a graph, Linear Algebra and its Applications 302/303 (1999), 223-230.
71. \qquad , Resistance distance in graphs, Mathematics Student 68 (1999), 87-98.
72. __, Moore-Penrose inverse of set inclusion matrices, Linear Algebra and its Applications 318 (2000), no. 1-3, 35-44.
73. R. B. Bapat and A. Ben-Israel, Singular values and maximum rank minors of generalized inverses, Linear and Multilinear Algebra 40 (1995), no. 2, 153161.
74. R. B. Bapat and R. E. Hartwig, A master of the row space and the column space: the mathematical work of Sujit Kumar Mitra, In Bapat et al. [80], (special issue of Linear Algebra and its Applications 211 (1994)), pp. 5-14.
75. R. B. Bapat, S. K. Jain, and S. Pati, Weighted Moore-Penrose inverse of a Boolean matrix, Linear Algebra and its Applications 255 (1997), 267-279.
76. R. B. Bapat, S. K. Jain, and K. M. Prasad, Generalized power symmetric stochastic matrices, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1987-1994.
77. R. B. Bapat, S. K. Jain, and L. E. Snyder, Nonnegative idempotent matrices and the minus partial order, Linear Algebra and its Applications 261 (1997), 143-154.
78. R. B. Bapat and D. M. Kulkarni, Minors of some matrices associated with a tree, Algebra and Its Applications. Contemporary Mathematics 259 (D. V. Huynh, S. K. Jain, S. R. Lopez-Permouth Ed.), American Math Society, Providence, RI, 2000, pp. 45-66.
79. R. B. Bapat, S. K. Mitra, and R. Hartwig (eds.), Generalized inverses. papers from the workshop on g-inverses held in calcutta, december 11-16, 1993, New York, North-Holland Publishing Co., 1994, (special issue of Linear Algebra and its Applications 211 (1994)).
80. R. B. Bapat and Sukanta Pati, Algebraic connectivity and the characteristic set of a graph, Linear and Multilinear Algebra 45 (1998), no. 2-3, 247-273.
81. R. B. Bapat and K. M. Prasad, Cochran's theorem and related results on matrix rank over a commutative ring, Statistical Inference and Design of Experiments (U. J. Dixit and M. R. Satam Ed.), Narosa Publishing House, 1999, pp. 125-133.
82. R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, Cambridge, 1997.
83. R. B. Bapat, K. P. S. Bhaskara Rao, and K. Manjunatha Prasad, Generalized inverses over integral domains, Linear Algebra and its Applications 140 (1990), 181-196.
84. R. B. Bapat and D. W. Robinson, The MoorePenrose inverse over a commutative ring, Linear Algebra and its Applications 177 (1992), 89-103.
85. G. P. Barker and S. L. Campbell, Internal stability of two-dimensional systems, Linear and Multilinear Algebra 14 (1983), no. 4, 365-369.
86. S. Barnett, Matrices in Control Theory, Van Nostrand Reinhold, London, 1971.
87. G. Basile, Alcune osservazioni sulla pseudoinversa di una matrice rettangolare., Atti Accad. Sci. Ist. Bologna Cl. Sci. Fis. Rend. (12) 6 (1968/1969), no. fasc., 1-2, 236-240.
88. T. S. Baskett and I. J. Katz, Theorems on products of $E P_{r}$ matrices, Linear Algebra and its Applications 2 (1969), 87-103.
89. H. Bateman, A formula for the solving function of a certain integral equation of the second kind, Transactions of the Cambridge Philosophical Society 20 (1908), 179-187.
90. to the determination of upper and lower limits of a double integral, Transactions of the Cambridge Philosophical Society 21 (1908), 123-128.
91. \qquad , The reality of the roots of certain transcendental equations occurring in the theory of integral equations, Transactions of the Cambridge Philosophical Society 20 (1908), 371-381.
92. \qquad , On the numerical solution of linear integral equations, Proc. Roy. Soc. London Ser. A 100 (1922), 441-449.
93. D. Batigne, Integral generalized inverses of integral matrices, Linear Algebra and its Applications 22 (1978), 125-134.
94. D. R. Batigne, F. J. Hall, and I. J. Katz, Further results on integral generalized inverses of integral matrices, Linear and Multilinear Algebra 6 (1978/79), no. 3, 233-241.
95. F. L. Bauer, A further generalization of the Kantorovič inequality, Numer. Math. 3 (1961), 117119.
96. , Elimination with weighted row combinations for solving linear equations and least squares problems, Numer. Math. 7 (1965), 338-352, (republished, pp. 119-133 in [1598]).
97. \qquad , Theory of norms, Computer Science Dept. CS 75, Stanford University, Stanford, 1967.
98. F. L. Bauer, J. Stoer, and C. Witzgall, Absolute and monotonic norms, Numer. Math. 3 (1961), 257-264.
99. E. F. Beckenbach and R. Bellman, Inequalities, 3rd ed., Springer-Verlag, New York, 1971.
100. R. Bellman, Introduction to Matrix Analysis, 2nd ed., McGraw-Hill Book Co., New York, 1970.
101. E. Beltrami, Sulle funzioni bilineari, Giornale di Matematiche ad Uso degli Studenti Delle Universita 11 (1873), 98-106, (an English translation by D. Boley is available as University of Minnesota, Department of Computer Science, Technical Report 90-37, 1990.).
102. E. J. Beltrami, A constructive proof of the KuhnTucker multiplier rule, J. Math. Anal. Appl. 26 (1969), 297-306.
103. A. Ben-Israel, On direct sum decompositions of Hestenes algebras, Israel J. Math. 2 (1964), 50-54.
104. \qquad , An iterative method for computing the generalized inverse of an arbitrary matrix, Math. Comput. 19 (1965), 452-455.
105. \qquad , A modified Newton-Raphson method for the solution of systems of equations, Israel J. Math. 3 (1965), 94-98.
106. \qquad , A Newton-Raphson method for the solution of systems of equations, J. Math. Anal. Appl. 15 (1966), 243-252.
107. \qquad , A note on an iterative method for generalized inversion of matrices, Math. Comput. 20 (1966), 439-440.
108. , A note on the Cayley transform, Notices Amer. Math. Soc. 13 (1966), 599.
109. \qquad , On error bounds for generalized inverses, SIAM J. Numer. Anal. 3 (1966), 585-592, (see also [1399]).
110. _, On iterative methods for solving nonlinear least squares problems over convex sets, Israel J. Math. 5 (1967), 211-214.
111. \qquad , On the geometry of subspaces in Euclidean n-spaces, SIAM J. Appl. Math. 15 (1967), 11841198.
112. \qquad , On applications of generalized inverses in nonlinear analysis, In Boullion and Odell [207], pp. 183-202.
113. \qquad , On decompositions of matrix spaces with applications to matrix equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 45 (1968), 122-128.
114. \qquad , On optimal solutions of 2-person 0-sum games, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 44 (1968), 512-516.
115. \qquad , A note on partitioned matrices and equations, SIAM Rev. 11 (1969), 247-250.
116. \qquad , On matrices of index zero or one, SIAM J. Appl. Math. 17 (1969), 1118-1121, (see [1028], [1309]).
117. gramming, In Kuhn [890], pp. 339-352.
118. \qquad , Applications of generalized inverses to programming, games, and networks, In Nashed [1116], pp. 495-523.
120._, A Cramer rule for least-norm solutions of consistent linear equations, Linear Algebra and its Applications 43 (1982), 223-226, (extended in [1502]).
119. _, Generalized inverses of matrices: a perspective of the work of Penrose, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 407-425.
120. \qquad , A volume associated with $m \times n$ matrices, Linear Algebra and its Applications 167 (1992), 87-111, (this concept was introduced by Good [563]).
121. \qquad , The change-of-variables formula using matrix volume, SIAM J. Matrix Anal. Appl. 21 (1999), no. 1, 300-312 (electronic).
124._, An application of the matrix volume in probability, Linear Algebra and its Applications 321 (2001), 9-25.
122. \qquad , A local inverse for nonlinear mappings, Numerical Algorithms 25 (2001), 37-46.
123. A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667-699.
124. \qquad , Generalized inverses and the Bott-Duffin network analysis, J. Math. Anal. Appl. 7 (1963), 428-435, (corrigendum in J. Math. Anal. Appl. 18(1967), 393).
125. \qquad , An explicit solution of a special class of linear programming problems, Operations Res. 16 (1968), 1166-1175, (see [145], [170], [1277], [1313]).
126. A. Ben-Israel, A. Charnes, and P. D. Robers, On generalized inverses and interval linear programming, In Boullion and Odell [207], pp. 53-70.
127. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410-419.
128. A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications, Wiley-Interscience [John Wiley \& Sons], New York, 1974, (reprinted by Robert E. Krieger Publishing Co. Inc., Huntington, NY, 1980.).
132._ Some topics in generalized inverses of matrices, In Nashed [1116], pp. 125-147.
129. A. Ben-Israel and M. J. L. Kirby, A characterization of equilibrium points of bimatrix games, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 46 (1969), 402-407.
130. A. Ben-Israel and S. J. Wersan, An elimination method for computing the generalized inverse of an arbitrary complex matrix, J. Assoc. Comput. Mach. 10 (1963), 532-537.
131. A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations, Linear Algebra and its Applications 139 (1990), 165-170, (see [142], [406], [122], [136], [188], [502]).
132. \qquad , Addenda: "A geometric property of the least squares solution of linear equations" [Linear Algebra Appl. 139 (1990), 165-170], Linear Algebra and its Applications 180 (1993), 5.
133. M. W. Benson and P. O. Frederickson, Fast parallel algorithms for the Moore-Penrose pseudo-inverse, Hypercube multiprocessors 1987 (Knoxville, TN, 1986), SIAM, Philadelphia, PA, 1987, pp. 597-604.
134. \qquad , Fast pseudo-inverse algorithms on hypercubes, Multigrid methods (Copper Mountain, CO, 1987), Dekker, New York, 1988, pp. 23-33.
135. M. Benzi and C. D. Meyer, Jr., A direct projection method for sparse linear systems, SIAM J. Sci. Comput. 16 (1995), no. 5, 1159-1176.
136. I.S. Berezin and N.P. Zhidkov, Computing Methods, Pergamon Press, London, 1965.
137. L. Berg, Über quasivertauschbare Matrixinversen, Rostock. Math. Kolloq. (1980), no. 15, 5-10.
138. , Three results in connection with inverse matrices, Linear Algebra and its Applications 84 (1986), 63-77, (see also [135]).
139. P. G. Bergman, R. Penfield, R. Schiller, and H. Zatkis, The Hamiltonian of the general theory of relativity with electromagnetic field, Physical Review 52 (1950), 1950.
140. A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra and its Applications 9 (1974), 261-265.
141. \qquad , Generalized interval programming, Bull. Calcutta Math. Soc. 71 (1979), no. 3, 169-176.
142. A. Berman and S. K. Jain, Nonnegative generalized inverses of powers of nonnegative matrices, Proceedings of the Victoria Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987), vol. 107, 1988, pp. 169-179.
143. A. Berman and M. Neumann, Consistency and splittings, SIAM J. Numer. Anal. 13 (1976), no. 6, 877-888.
144. $877-888$. SIAM J. Appl. Math. 31 (1976), no. 2, 307-312.
145. A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math. 22 (1972), 155-161.
146. _ Cones and iterative methods for best least squares solutions of linear systems, SIAM J. Numer. Anal. 11 (1974), 145-154.
147. \qquad , Inverses of nonnegative matrices, Linear and Multilinear Algebra 2 (1974), 161-172.
148. \qquad , Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, (revised reprint of the 1979 original).
149. L. Bernard, A generalized inverse method for asymptotic linear programming, Mathematical Programming 43 (1989), 71-86.
154._, An efficient basis update for asymptotic linear programming, Linear Algebra and its Applications 184 (1993), 83-102.
150. M. Bertero, C. De Mol, and E. R. Pike, Linear inverse problems with discrete data. I. General formulation and singular system analysis, Inverse Problems 1 (1985), no. 4, 301-330.
151. J. Bérubé, R. E. Hartwig, and G. P. H. Styan, On canonical correlations and the degrees of nonorthogonality in the three-way layout, Statistical sciences and data analysis (Tokyo, 1991), VSP, Utrecht, 1993, pp. 247-252.
152. F. J. Beutler, The operator theory of the pseudoinverse. I. Bounded operators, J. Math. Anal. Appl. 10 (1965), 451-470.
153. \qquad , The operator theory of the pseudo-inverse. II. Unbounded operators with arbitrary range, J. Math. Anal. Appl. 10 (1965), 471-493.
154. F. J. Beutler and W. L. Root, The operator pseudoinverse in control and systems identification, In Nashed [1116], pp. 397-494.
155. J. H. Bevis, F. J. Hall, and R. E. Hartwig, Consimilarity and the matrix equation $A \bar{X}-X B=C$, Current trends in matrix theory (Auburn, Ala., 1986), North-Holland, New York, 1987, pp. 51-64.
156. _ The Drazin inverse of a semilinear transformation and its matrix representation, Linear Algebra and its Applications 97 (1987), 229-242.
157. J. H. Bevis, F. J. Hall, and I. J. Katz, Integer generalized inverses of incidence matrices, Linear Algebra and its Applications 39 (1981), 247-258.
158. R. Bhatia, Perturbation bounds for matrix eigenvalues, Longman Scientific \& Technical, Harlow, 1987.
164._, Letter to the editor: "The n-dimensional Pythagorean theorem" [Linear and Multilinear Algebra 26 (1990), no. 1-2, 9-13; MR 90k:51031] by S.- Y. T. Lin and Y. F. Lin, Linear and Multilinear Algebra 30 (1991), no. 1-2, 155, (see [960]).
159. \qquad , Matrix analysis, Springer-Verlag, New York, 1997.
160. P. Bhimasankaram, A characterization of subclasses of generalized inverses of specified rank, Sankhyā Ser. A 36 (1974), no. 2, 214-218.
161. \qquad , On generalized inverses of a block in a partitioned matrix, Linear Algebra and its Applications 109 (1988), 131-143.
162. _ Rank factorization of a matrix and its applications, Math. Sci. 13 (1988), no. 1, 4-14, (see [1267]).
163. P. Bhimasankaram and Thomas Mathew, On ordering properties of generalized inverses of nonnegative definite matrices, Linear Algebra and its Applications 183 (1993), 131-146.
164. M. Bilodeau, Sur une représentation explicite des solutions optimales d'un programme linéaire, Canad. Math. Bull. 29 (1986), no. 4, 419-425.
165. Z. W. Birnbaum, Introduction to probability and mathematical statistics, Harper \& Brothers, Publishers, New York, 1962.
166. A. Bjerhammar, Application of calculus of matrices to method of least squares with special reference to
geodetic calculations, Trans. Roy. Inst. Tech. Stockholm 1951 (1951), no. 49, 86 pp. (2 plates).
167. \qquad , Rectangular reciprocal matrices, with special reference to geodetic calculations, Bull. Géodésique (1951), 188-220.
168. \qquad , A generalized matrix algebra, Trans. Roy. Inst. Tech. Stockholm 1958 (1958), no. 124, 32 pp.
169. \qquad , Studies with generalized matrix algebra, Bull. Géodésique (N.S.) No. 85 (1967), 193-210.
170. \qquad Theory of errors and generalized matrix inverses, Elsevier Scientific Publishing Co., Amsterdam, 1973.
171. A. Björck, Iterative refinement of linear least squares solutions I, BIT 7 (1967), 257-278.
172. \qquad , Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 7 (1967), 121.
173. \qquad , Iterative refinement of linear least squares solutions II, BIT 8 (1968), 8-30.
174. \qquad , A uniform numerical method for linear estimation from general gauss-markov models, Proceedings of the First Symposium on Comutational Staistics (COMPSTAT), (G. Bruckmann, F. Ferschl and L. Schmetterer, Editors), Physica Verlag, Vienna, 1974, pp. 131-140.
175. A. Björck and Tommy Elfving, Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations, BIT 19 (1979), 145-163.
176. \AA. Björck and G. H. Golub, Iterative refinement of linear least squares solutions by householder transformation, BIT 7 (1967), 322-337.
183._ , Numerical methods for computing angles between linear subspaces, Mathematics of Computation 27 (1973), 579-594.
177. J. Blatter and E. W. Cheney, On the existence of extremal projections, J. Approximation Theory 6 (1972), 72-79.
178. J. W. Blattner, Bordered matrices, J. Soc. Indust. Appl. Math. 10 (1962), 528-536.
179. \qquad , On the convergence of a certain matrix iteration, Bul. Inst. Politehn. Iaşi (N.S.) 10 (14) (1964), no. 3-4, 43-46.
180. L. Bober and P. Chrzan, Application of the generalized Moore-Penrose matrix inversion to the estimation of a classical econometric model under additional constraints, Przeglạd Statyst. 25 (1978), no. 3, 315-324 (1979).
181. E. Y. Bobrovnikova and S. A. Vavasis, A norm bound for projections with complex weights, Linear Algebra and its Applications 307 (2000), no. 1-3, 69-75, (A complex version of the bounds in [1404], [1455]).
182. P. T. Boggs, The convergence of the Ben-Israel iteration for nonlinear least squares problems, Math. Comp. 30 (1976), no. 135, 512-522.
183. E. Bohl and P. Lancaster, Perturbation of spectral inverses applied to a boundary layer phenomenon
arising in chemical networks, Linear Algebra and its Applications 180 (1993), 35-59.
184. F. Bohnenblust, A characterization of complex Hilbert spaces, Portugal. Math. 3 (1942), 103-109.
185. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
186. C. de Boor, The Method of Projections as applied to the Numerical Solution of Two Point Boundary Value Problems using Cubic Splines, Doctoral dissertation in mathematics, University of Michigan, Ann Arbor, MI, 1966.
187. \qquad Convergence of abstract splines, J. Approx. Theory 31 (1981), no. 1, 80-89.
188. J. C. G. Boot, The computation of the generalized inverse of singular or rectangular matrices, Amer. Math. Monthly 70 (1963), 302-303.
189. E. Boroş, On the generalized inverse of an $E P_{r}$ matrix, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 2 (1964), 33-38.
190. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 3 (1965), 77-84.
191. \qquad Das verallgemeinerte Inverse eines linearen Operators in Vektorräumen mit nicht ausgearteter Hermitescher Metrik über einem kommutativen Körper, J. Reine Angew. Math. 252 (1972), 68-78.
192. \qquad The generalized inverse of linear operators on spaces with indefinite metric, An. Univ. Timişoara Ser. Ştiinţ. Mat. 21 (1983), no. 1-2, $9-$ 44.
193. E. Boroş and I. Sturz, On quasi-inverse matri$c e s$, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 1 (1963), 59-66.
194. N. K. Bose and Sujit K. Mitra, Generalized inverse of polynomial matrices, IEEE Trans. Automatic Control 23 (1978), no. 3, 491-493.
195. R. Bott and R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc. 74 (1953), 99-109.
196. R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (1973), 489-495.
197. , Selfadjoint approximants, Indiana Univ. Math. J. 27 (1978), no. 2, 299-307.
198. , Generalized inverses and factorizations, In Campbell [267], pp. 233-249.
199. T. L. Boullion, Contributions to the Theory of Pseudoinverses, Ph.D. thesis, University of Texas, Austin, 1966.
200. T. L. Boullion and P. L. Odell (eds.), Proceedings of the Symposium on Theory and Applications Generalized Inverses of Matrices, Lubbock, Texas Tech. Press, 1968.
201. _, A note on the Scroggs-Odell pseudoinverse, SIAM J. Appl. Math. 17 (1969), 7-10, (correction of [1331, Theorem 6]).
202. \qquad , Generalized Inverse Matrices, John Wiley \& Sons, New York, 1971.
203. T. L. Boullion and G. D. Poole, A characterization of the general solution of the matrix equation $A X+$ $X B=C$, Indust. Math. 20 (1970), 91-95.
204. Z. Boulmaarouf, M. Fernandez Miranda, and J-Ph. Labrousse, An algorithmic approach to orthogonal projections and Moore-Penrose inverses, Numer. Funct. Anal. Optim. 18 (1997), no. 1-2, 55-63.
205. E. Bounitzky, Sur la fonction de Green des équations differentielles linéaires ordinaires, J. Math. Pures Appl. 5 (1909), no. 6, 65-125.
206. N. Bourbaki, Eléments de Mathématiques. Livre V. Espaces Vectoriels Topologiques, Hermann \& Cie, Paris, 1953.
207. \qquad , Eléments de Mathématiques. Livre II. Algèbre, Hermann \& Cie, Paris, 1958.
208. H. J. Bowdler, R. S. Martin, G. Peters, and J. H. Wilkinson, Solutions of real and complex systems of linear equations, Numer. Math. 8 (1966), 217-239, (republished, pp. 93-110 in [1598]).
209. V. J. Bowman and C.-A. Burdet, On the general solution to systems of mixed-integer linear equations, SIAM J. Appl. Math. 26 (1974), 120-125.
210. Yu. E. Boyarintsev, General solutions of boundary value problems for singular systems of ordinary differential equations, Čisl. Metody Meh. Splošn. Sredy 8 (1977), no. 7, 12-21.
211. \qquad , A representation of the Drazin inverse matrix, Numerical Methods of Optimization (Applied Mathematics) (Russian), Akad. Nauk SSSR Sibirsk. Otdel. Ènerget. Inst., Irkutsk, 1978, pp. 176-179.
212. __, Regulyarnye i Singulyarnye Sistemy Lineinykh Obyknovennykh Differentsialnykh Uravnenii, "Nauka" Sibirsk. Otdel., Novosibirsk, 1980.
213. \qquad , Solving a pair of matrices, Approximate Methods for Solving Operator Equations and their Applications, Akad. Nauk SSSR Sibirsk. Otdel. Ènerget. Inst., Irkutsk, 1982, pp. 35-47.
214. \qquad , Representation of the solutions of a system of linear algebraic equations by means of generalized inverse matrices, Computational Methods in Linear Algebra (Russian) (Moscow, 1982), Akad. Nauk SSSR Otdel Vychisl. Mat., Moscow, 1983, pp. 33-45.
215. \qquad , The solving pair of matrices and its application, Current problems in numerical and applied mathematics (Novosibirsk, 1981), "Nauka" Sibirsk. Otdel., Novosibirsk, 1983, pp. 52-55.
216. \qquad , Degenerate systems and the index of a variable matrix, Differential Equations and Numerical Methods, "Nauka" Sibirsk. Otdel., Novosibirsk, 1986, pp. 105-114, 277.
217. \qquad , Methods of Solving Singular Systems of Ordinary Differential Equations, John Wiley \& Sons Ltd., Chichester, 1992, (translation of the 1988 Russian original).
218. \qquad , A resolving transformation of unknowns in an implicit system of ordinary differential equations, Algebrodifferential Systems and Methods for
their Solution (Russian), VO "Nauka", Novosibirsk, 1993, pp. 4-19, 90.
219. Yu. E. Boyarintsev, V. A. Danilov, A. A. Loginov, and V. F. Chistyakov, Chislennye Metody Resheniya Singulyarnykh Sistem, "Nauka" Sibirsk. Otdel., Novosibirsk, 1989.
220. Yu. E. Boyarintsev and V. M. Korsukov, The structure of a general continuously differentiable solution of a boundary value problem for a singular system of ordinary differential equations, Questions in Applied Mathematics (Russian), Sibirsk. Ènerget. Inst., Akad. Nauk SSSR Sibirsk. Otdel., Irkutsk, 1977, pp. 73-93.
221. F. Brackx, R. Delanghe, and J. Van hamme, Generalized inverses of elliptic systems of differential operators with constant coefficients and related REDUCE programs for explicit calculations, Rend. Circ. Mat. Palermo (2) Suppl. (1987), no. 16, 2128.
222. H. W. Braden, R-matrices and generalized inverses, J. Phys. A 30 (1997), no. 15, L485-L493.
223. \qquad , The equations $A^{T} X \pm X^{T} A=B$, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 295-302 (electronic).
224. J. S. Bradley, Adjoint quasi-differential operators of Euler type, Pacific J. Math. 16 (1966), 213-237.
225. \qquad , Generalized Green's matrices for compatible differential systems, Michigan Math. J. 13 (1966), 97-108.
226. L. Brand, The solution of linear algebraic equations, Math. Gaz. 46 (1962), 203-237.
227. C. Brezinski, Projection methods for linear systems, J. Comput. Appl. Math. 77 (1997), no. 1-2, 35-51, (ROLLS Symposium (Leipzig, 1996)).
228. C. Brezinski, M. Morandi Cecchi, and M. Redivo Zaglia, The reverse bordering method, SIAM J. Matrix Anal. Appl. 15 (1994), no. 3, 922-937.
229. C. Brezinski and M. Redivo Zaglia, Extrapolation Methods. Theory and practice, with 1 IBM-PC floppy disk (5.25 inch), North-Holland Publishing Co., Amsterdam, 1991.
230. P. Broadbridge and H. G. Petersen, Use of generalized inverses in the construction of Hamiltonians for constrained dynamical systems, Confronting the infinite (Adelaide, 1994), World Sci. Publishing, River Edge, NJ, 1995, pp. 307-318.
231. C. G. den Broeder Jr. and A. Charnes, Contributions to the theory of generalized inverses for matrices, Dept. of math., Purdue University, Lafayette, IN, 1957, (Reprinted as ONR Res. Memo. No. 39, Northwestern University, Evanston, IL, 1962).
232. R. C. Brown, Generalized Green's functions and generalized inverses for linear differential systems with Stieltjes boundary conditions, J. Differential Equations 16 (1974), 335-351.
233. R. Bru and N. Thome, Group inverse and group involutory matrices, Linear and Multilinear Algebra 45 (1998), no. 2-3, 207-218.
234. J. T. Bruening, A new formula for the MoorePenrose inverse, Current trends in matrix theory (Auburn, Ala., 1986), North-Holland, New York, 1987, pp. 65-74.
235. R. S. Bucy, Comments on a paper by F. E. Udwadia and R. E. Kalaba: "A new perspective on constrained motion" [Proc. Roy. Soc. London Ser. A 439 (1992), no. 1906, 407-410; MR 94b:70027], Proc. Roy. Soc. London Ser. A 444 (1994), no. 1920, 253-255, (see [801]).
236. Hamza Bulut and S. Aysun Bulut, Spectral decompositions and generalized inverses in a circularization network flow problem, J. Math. Anal. Appl. 174 (1993), 390-402.
237. W. Burmeister, Inversionfreie Verfahren zur lösung nichtlinearer Operatorgleichungen, Zeit. angew. Math. Mech. 52 (1972), 101-110.
238. F. Burns, D. Carlson, E. V. Haynsworth, and T. Markham, Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math. 26 (1974), 254-259.
239. P. A. Businger and G. H. Golub, Linear least squares by Householder transformations, Numer. Math. 7 (1965), 269-276, (republished, pp. 111118 in [1598]).
240. \qquad , Algorithm 358: Singular value decomposition of a complex matrix, Comm. ACM 12 (1969), 564-565.
241. C. A. Butler and T. D. Morley, A note on the shorted operator, SIAM J. Matrix Anal. Appl. 9 (1988), no. 2, 147-155.
242. \qquad , Six generalized Schur complements, Linear Algebra and its Applications 106 (1988), 259-269.
243. Kim Ki-Hang Butler, A Moore-Penrose inverse for Boolean relation matrices, Combinatorial mathematics (Proc. Second Australian Conf., Univ. Melbourne, Melbourne, 1973), Springer, Berlin, 1974, pp. 18-28. Lecture Notes in Math., Vol. 403.
244. G. D. Callon and C. W. Groetsch, The method of weighting and approximation of restricted pseudosolutions, J. Approx. Theory 51 (1987), no. 1, 11-18.
245. S. L. Campbell, Differentiation of the Drazin inverse, SIAM J. Appl. Math. 30 (1976), no. 4, 703707.
246. \qquad , The Drazin inverse of an infinite matrix, SIAM J. Appl. Math. 31 (1976), no. 3, 492-503, (see [265]).
247. _ Optimal control of autonomous linear processes with singular matrices in the quadratic cost functional, SIAM J. Control Optimization 14 (1976), no. 6, 1092-1106.
248. , Linear systems of differential equations with singular coefficients, SIAM J. Math. Anal. 8 (1977), no. 6, 1057-1066.
249. \qquad , On continuity of the Moore-Penrose and Drazin generalized inverses, Linear Algebra and Appl. 18 (1977), no. 1, 53-57.
250. \qquad , Optimal control of discrete linear processes with quadratic cost, Internat. J. Systems Sci. 9 (1978), no. 8, 841-847.
251. \qquad , Singular perturbation of autonomous linear systems. II, J. Differential Equations 29 (1978), no. 3, 362-373.
252. \qquad , Limit behavior of solutions of singular difference equations, Linear Algebra and its Applications 23 (1979), 167-178.
253. \qquad , Nonregular singular dynamic Leontief systems, Econometrica 47 (1979), no. 6, 1565-1568.
254. \qquad , On a singularly perturbed autonomous linear control problem, IEEE Trans. Automat. Control 24 (1979), no. 1, 115-117.
255. \qquad , Continuity of the Drazin inverse, Linear and Multilinear Algebra 8 (1979/80), no. 3, 265268.
256. __, Singular Systems of Differential Equations, Pitman (Advanced Publishing Program), Boston, Mass., 1980.
257. \qquad , On an assumption guaranteeing boundary layer convergence of singularly perturbed systems, Automatica-J. IFAC 17 (1981), no. 4, 645-646.
258. \qquad , The Drazin inverse of an operator, [267], pp. 250-260.
259. \qquad , On positive controllers and linear quadratic optimal control problems, Internat. J. Control 36 (1982), no. 5, 885-888.
260. S. L. Campbell (ed.), Recent Applications of Generalized Inverses, Boston, Mass., Pitman (Advanced Publishing Program), 1982.
261. \qquad , Singular Systems of Differential Equations. II, Pitman (Advanced Publishing Program), Boston, Mass., 1982.
262. \qquad , Index two linear time-varying singular systems of differential equations, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 237-243.
263. \qquad , Control problem structure and the numerical solution of linear singular systems, Math. Control Signals Systems 1 (1988), no. 1, 73-87.
264. \qquad , Uniqueness of completions for linear time varying differential algebraic equations, Linear Algebra and its Applications 161 (1992), 55-67.
265. \qquad , Least squares completions for nonlinear differential algebraic equations, Numer. Math. 65 (1993), no. 1, 77-94.
266. S. L. Campbell and C. D. Meyer, Jr., Continuity properties of the Drazin pseudoinverse, Linear Algebra and its Applications 10 (1975), 77-83.
267. \qquad , EP operators and generalized inverses, Canad. Math. Bull 18 (1975), no. 3, 327-333.
268. \qquad , Weak Drazin inverses, Linear Algebra and its Applications 20 (1978), no. 2, 167-178.
269. \qquad , Generalized Inverses of Linear Transformations, Pitman (Advanced Publishing Program), Boston, Mass., 1979, (reprinted by Dover, 1991).
270. S. L. Campbell, C. D. Meyer, Jr., and N. J. Rose, Applications of the Drazin inverse to linear systems
of differential equations with singular constant coefficients, SIAM J. Appl. Math. 31 (1976), no. 3, 411-425.
271. S. L. Campbell and G. D. Poole, Computing nonnegative rank factorizations, Linear Algebra and its Applications 35 (1981), 175-182.
272. \qquad _, Convergent regular splittings for nonnegative matrices, Linear and Multilinear Algebra 10 (1981), no. 1, 63-73.
273. S. L. Campbell and M. Rakowski, Explicit formulae for completions of linear time varying singular systems of differential equations, Circuits Systems Signal Process. 13 (1994), no. 2-3, 185-199.
274. S. L. Campbell and N. J. Rose, Singular perturbation of autonomous linear systems. III, Houston J. Math. 4 (1978), no. 4, 527-539.
275. \qquad , Singular perturbation of autonomous linear systems, SIAM J. Math. Anal. 10 (1979), no. 3, 542-551.
276. \quad, A second order singular linear system arising in electric power systems analysis, Internat. J. Systems Sci. 13 (1982), no. 1, 101-108.
277. S. L. Campbell and K. D. Yeomans, Behavior of the nonunique terms in general DAE integrators, Appl. Numer. Math. 28 (1998), no. 2-4, 209-226.
278. Wei Ping Cao and Ji Pu Ma, Perturbation of $A_{0}^{+} h$, Numer. Math. J. Chinese Univ. (English Ser.) 3 (1994), no. 1, 96-103.
279. __, The pointwise continuity of the M-P generalized inverses A_{x}^{+}, Acta Math. Sinica 40 (1997), no. 2, 287-295.
280. \qquad , Moore-Penrose generalized inverses of closed operators, Nanjing Daxue Xuebao Shuxue Bannian Kan 16 (1999), no. 1, 75-81.
281. S. R. Caradus, An equational approach to products of relatively regular operators, Aequationes Math. 15 (1977), no. 1, 55-62.
282. \qquad , Generalized Inverses and Operator Theory, Queen's University, Kingston, Ont., 1978.
283. D. Carlson, Matrix decompositions involving the Schur complement, SIAM J. Appl. Math. 28 (1975), 577-587.
284. \qquad , What are Schur complements, anyway?, Linear Algebra and its Applications 74 (1986), 257-275.
285. \qquad , Generalized inverse invariance, partial orders, and rank-minimization problems for matrices, Current trends in matrix theory (Auburn, Ala., 1986), North-Holland, New York, 1987, pp. 81-87.
286. D. Carlson, E. V. Haynsworth, and T. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169-175.
287. R. Caron, H. J. Greenberg, and A. Holder, Analytic centers and repelling inequalities, Tech. Report CCM 142, Center for Computational Mathematics, University of Colorado at Denver, 1999, (to appear in European Journal of Operations Research).
288. N. Castro González, On the convergence of semiiterative methods to the Drazin inverse solution of linear equations in Banach spaces, Collect. Math. 46 (1995), no. 3, 303-314.
289. N. Castro González and J. J. Koliha, Semi-iterative methods for the Drazin inverse solution of linear equations in Banach spaces, Numer. Funct. Anal. Optim. 20 (1999), no. 5-6, 405-418.
290. \qquad , Perturbation of the Drazin inverse for closed linear operators, Integral Equations Operator Theory 36 (2000), no. 1, 92-106.
291. N. Castro González, J. J. Koliha, and Yimin Wei, Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero, Linear Algebra and its Applications 312 (2000), no. 1-3, 181-189.
292. Jian Miao Cen, Fuzzy matrix partial orderings and generalized inverses, Fuzzy Sets and Systems 105 (1999), no. 3, 453-458.
293. N. N. Chan, On a downdating formula for regression, J. Statist. Plann. Inference 46 (1995), no. 3, 347-350, (see [442]).
294. E. Chang, The generalized inverse and interpolation theory, In Campbell [267], pp. 196-219.
295. A. Charnes and W. W. Cooper, Structural sensitivity analysis in linear programming and an exact product form left inverse, Naval Res. Logist. Quart. 15 (1968), 517-522.
296. A. Charnes, W. W. Cooper, and G. L. Thompson, Constrained generalized medians and hypermedians as deterministic equivalents for two-stage linear programs under uncertainty, Management Sci. 12 (1965), 83-112.
297. A. Charnes and F. Granot, Existence and representation of Diophantine and mixed Diophantine solutions to linear equations and inequalities, Center for cybernetic studies, The University of Texas, Austin, TX, 1973.
298. A. Charnes and M. J. L. Kirby, Modular design, generalized inverses and convex programming, Operations Res. 13 (1965), 836-847.
299. Guoliang Chen, Musheng Wei, and Yifeng Xue, Perturbation analysis of the least squares solution in Hilbert spaces, Linear Algebra and its Applications 244 (1996), 69-80.
300. Guoliang Chen and Yimin Wei, Perturbation analysis for the projection of a point onto an affine set in a Hilbert space, Chinese Ann. Math. Ser. A 19 (1998), no. 4, 405-410, (translation in Chinese J. Contemp. Math. 19(1998), 245-252).
301. Guoliang Chen and Yifeng Xue, Perturbation analysis for the operator equation $T x=b$ in Banach spaces, J. Math. Anal. Appl. 212 (1997), no. 1, 107-125.
302. , The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces, Linear Algebra and its Applications 285 (1998), no. 1-3, 1-6.
303. Han Fu Chen, Two kinds of linear estimators in Hilbert spaces, and their connection, Acta Math. Sinica 25 (1982), no. 6, 671-679.
304. X. Chen, M. Z. Nashed, and L. Qi, Convergence of Newton's method for singular smooth and nonsmooth equations using adaptive outer inverses, SIAM J. Optim. 7 (1997), 445-462.
305. Xuzhou Chen and R. E. Hartwig, The group inverse of a triangular matrix, Linear Algebra and its Applications 237/238 (1996), 97-108.
306. \qquad , The hyperpower iteration revisited, Linear Algebra Appl. 233 (1996), 207-229.
307. Yong-Lin Chen, On the weighted projector and weighted generalized inverse matrices, Acta Math. Appl. Sinica 6 (1983), no. 3, 282-291.
308. \qquad , The generalized Bott-Duffin inverse and its applications, Linear Algebra and its Applications 134 (1990), 71-91.
309. \qquad , Representations and Cramer rules for the solution of a restricted matrix equation, Linear and Multilinear Algebra 35 (1993), no. 3-4, 339-354.
310. \qquad , Finite algorithms for the (2)-generalized inverse $A_{T, S}^{(2)}$, Linear and Multilinear Algebra 40 (1995), no. 1, 61-68.
311. __, Iterative methods for solving restricted linear equations, Appl. Math. Comput. 86 (1997), no. 2-3, 171-184.
312. \qquad , Defining equations and explicit expressions for the generalized inverse $A_{T, S}^{(2)}$, J. Nanjing Norm. Univ. Nat. Sci. Ed. 23 (2000), no. 2, 5-8.
313. Yong-Lin Chen and Xin Chen, Representation and approximation of the outer inverse $A_{T, S}^{(2)}$ of a matrix A, Linear Algebra and its Applications 308 (2000), no. 1-3, 85-107.
314. Yonghong Chen, S. J. Kirkland, and M. Neumann, Group generalized inverses of M-matrices associated with periodic and nonperiodic Jacobi matrices, Linear and Multilinear Algebra 39 (1995), no. 4, 325-340.
315. \qquad , Nonnegative alternating circulants leading to M-matrix group inverses, Linear Algebra and its Applications 233 (1996), 81-97.
316. Yonghong Chen and M. Neumann, M-matrix generalized inverses of M-matrices, Linear Algebra and its Applications 256 (1997), 263-285.
317. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill Book Co., New York, 1966.
318. H. Chernoff, Locally optimal designs for estimating parameters, Ann. Math. Statist. 24 (1953), 586602.
319. J. S. Chipman, On least squares with insufficient observations, J. Amer. Statist. Assoc. 54 (1964), 1078-1111.
320. \qquad , Specification problems in regression analysis, In Boullion and Odell [207], pp. 114-176.
321. __, "Proofs" and proofs of the Eckart-Young theorem, Stochastic Processes and Functional

Analysis (Riverside, CA, 1994), Dekker, New York, 1997, pp. 71-83.
329. \qquad , Linear restrictions, rank reduction, and biased estimation in linear regression, Linear Algebra and its Applications 289 (1999), no. 1-3, 55-74.
330. J. S. Chipman and M. M. Rao, On the treatment of linear restrictions in regression analysis, Econometrica 32 (1964), 198-209.
331. \qquad , Projections, generalized inverses and quadratic forms, J. Math. Anal. Appl. 9 (1964), 1-11.
332. H. Chitwood, Generalized Green's matrices for linear differential systems, SIAM J. Math. Anal. 4 (1973), 104-110.
333. Han Hyuk Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems 105 (1999), no. 3, 445-451.
334. K. K. Choong and J. Y. Kim, A numerical strategy for computing the stability boundaries for multiloading systems by using generalized inverse and continuation method, Engineering Structures 23 (2001), 715-724.
335. Shui-Nee Chow and Yun Qiu Shen, Bifurcations via singular value decompositions, Appl. Math. Comput. 28 (1988), no. 3, part I, 231-245.
336. Ole Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. 195 (1995), no. 2, 401-414.
337. \qquad , Operators with closed range, pseudoinverses, and perturbation of frames for a subspace, Canad. Math. Bull. 42 (1999), no. 1, 37-45.
338. \qquad , Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. 38 (2001), no. 3, 273-291.
339. Moody T. Chu, On a numerical treatment for the curve-tracing of the homotopy method, Numer. Math. 42 (1983), no. 3, 323-329.
340. Moody T. Chu, R. E. Funderlic, and G. H. Golub, On a variational formulation of the generalized singular value decomposition, SIAM J. Matrix Anal. Appl. 18 (1997), no. 4, 1082-1092.
341. G. Ciecierska, A note on another method of computing the Moore-Penrose inverse of a matrix, Demonstratio Math. 31 (1998), no. 4, 879-886.
342. G. Cimmino, Inversione delle corrispondenze funzionali lineari ed equazioni differenziali, Rivista Mat. Univ. Parma 1 (1950), 105-116.
343. \qquad , Cramer's rule without the notion of determinant, Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend. (14) 3 (1985/86), 115-138 (1987).
344. \qquad , An unusual way of solving linear systems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 80 (1986), no. 1-2, 6-7 (1987).
345. __, On some identities involving spherical means, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 69-72 (1990).
346. J. F. Claerbout, Geophysical Estimation by Example, Stanford Exploration Project, Stanford University, 2001, (on-line book).
347. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
348. J.-J. Climent, M. Neumann, and A. Sidi, A semiiterative method for real spectrum singular linear systems with an arbitrary index, J. Comput. Appl. Math. 87 (1997), no. 1, 21-38.
349. J.-J. Climent, N. Thome, and Y. Wei, A geometrical approach on generalized inverses by Neumanntype series, Linear Algebra and its Applications 332/334 (2001), 535-542.
350. R. E. Cline, Representations for the generalized inverse of a partitioned matrix, J. Soc. Indust. Appl. Math. 12 (1964), 588-600.
351. \qquad , Representations for the generalized inverse of sums of matrices, J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal. 2 (1965), 99-114.
352. \qquad , Inverses of rank invariant powers of a matrix, SIAM J. Appl. Math. 5 (1968), 182-197.
353. \qquad , Elements of the theory of generalized inverses for matrices. (umap modules and monographs in undergraduate mathematics and its applications project). the umap expository monograph series), EDC/UMAP, Newton, Mass., 1979.
354. \qquad , Note on an extension of the MoorePenrose inverse, Linear Algebra and its Applications 40 (1981), 19-23.
355. R. E. Cline and R. E. Funderlic, The rank of a difference of matrices and associated generalized inverses, Linear Algebra and its Applications 24 (1979), 185-215.
356. R. E. Cline and T. N. E. Greville, An extension of the generalized inverse of a matrix, SIAM J. Appl. Math. 19 (1970), 682-688.
357. , A Drazin inverse for rectangular matrices, Linear Algebra and its Applications 29 (1980), 5362.
358. R. E. Cline and R. J. Plemmons, l_{2}-solutions to underdetermined linear systems, SIAM Rev. 18 (1976), no. 1, 92-106.
359. R. E. Cline and L. D. Pyle, The generalized inverse in linear programming. an intersecton projection method and the solution of a class of structured linear programming problems, SIAM J. Appl. Math. 24 (1973), 338-351.
360. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Co., 1955.
361. L. Collatz, Aufgaben monotoner Art, Arch. Math. 3 (1952), 366-376.
362. D. Constales, A closed formula for the MoorePenrose generalized inverse of a complex matrix of given rank, Acta Math. Hungar. 80 (1998), no. 1-2, 83-88.
363. Corrado Corradi, A note on the solution of separable nonlinear least-squares problems with separable nonlinear equality constraints, SIAM J. Numer. Anal. 18 (1981), no. 6, 1134-1138.
364. \qquad , Computing methods for restricted estimation in linear models, Statistica (Bologna) 42 (1982), no. 1, 55-68, (See [529]).
365. R. W. Cottle, Manifestations of the Schur complement, Linear Algebra and Appl. 8 (1974), 189-211.
366. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, New York, 1953, (First published in German 1924).
367. D. E. Crabtree and E. V. Haynsworth, An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc. 22 (1969), 364-366.
368. D. F. Cudia, Rotundity, Convexity, Proc, Sympos. Pure Math. Vol. VII (V. Klee, Editor), Amer. Math. Soc., Providence, R.I., 1963, pp. 73-97.
369. C. G. Cullen and K. J. Gale, A functional definition of the determinant, Amer. Math. Monthly 72 (1965), 403-406.
370. B. Cvetkov, A new method of computation in the theory of least squares, Austral. J. Appl. Sci. 6 (1955), 274-280.
371. Hua Dai, An algorithm for symmetric generalized inverse eigenvalue problems, Linear Algebra and its Applications 296 (1999), no. 1-3, 79-98.
372. J. F. Dalphin and V. Lovass-Nagy, Best least squares solutions to finite difference equations using the generalized inverse and tensor product methods, Journal of the ACM 20 (1973), no. 2, 279-289.
373. D. F. Davidenko, On a new method of numerical solution of systems of nonlinear equations, Doklady Akad. Nauk SSSR (N.S.) 88 (1953), 601-602.
374. \qquad The evaluation of determinants by the method of variation of parameters, Soviet Math. Dokl. 1 (1960), 316-319.
375. \qquad , Inversion of matrices by the method of variation of parameters, Soviet Math. Dokl. 1 (1960), 279-282.
376. \qquad The method of variation of parameters as applied to the computation of eigenvalues and eigenvectors of matrices, Soviet Math. Dokl. 1 (1960), 364-367.
377. \qquad , Pseudo-inversion and construction of generalized solutions of linear equations that arise in calculations for nuclear reactors, Computational processes and systems, No. 6 (Russian), "Nauka", Moscow, 1988, pp. 98-109.
378. C. Davis, Separation of two linear subspaces, Acta Sci. Math. Szeged 19 (1958), 172-187.
379. \qquad , Completing a matrix so as to minimize the rank, Topics in operator theory and interpolation, Birkhäuser, Basel, 1988, pp. 87-95.
380. C. Davis and W. M. Kahan, Some new bounds on perturbation of subspaces, Bull. Amer. Math. Soc. 75 (1969), 863-868.
381. D. L. Davis and D. W. Robinson, Generalized inverses of morphisms, Linear Algebra and its Applications 5 (1972), 329-338.
382. Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl. 21 (2000), no. 4, 1253-1278 (electronic).
383. \qquad , On the best rank-1 and rank- $\left(R_{1}, R_{2}, \cdots, R_{N}\right)$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl. 21 (2000), no. 4, 1324-1342 (electronic).
384. Alvaro R. De Pierro and Musheng Wei, Reverse order law for reflexive generalized inverses of products of matrices, Linear Algebra and its Applications 277 (1998), 299-311.
385. O. Y. De Vel and E. V. Krishnamurthy, An iterative pipelined array architecture for the generalized matrix inversion, Information Processing Letters 26 (1988), no. 5, 263-267.
386. L. de Vito, Sugli autovalori e sulle autosoluzioni di una classe di trasformazioni hermitiane, Rend. Sem. Mat. Univ. Padova 25 (1956), 144-175.
387. P. Dean and J. Porrill, Pseudo-inverse control in biological systems: a learning mechanism for fixation stability, Neural Networks 11 (1998), 1205-1218.
388. Stanley R. Deans, The Radon transform and some of its applications (revised reprint of the 1983 original), Robert E. Krieger Publishing Co. Inc., Malabar, FL, 1993.
389. H. P. Decell, Jr., An alternate form of the generalized inverse of an arbitrary complex matrix, SIAM Rev. 7 (1965), 356-358, (see [1652]).
390. \qquad An application of the Cayley-Hamilton theorem to generalized matrix inversion, SIAM Rev. 7 (1965), 526-528, (extended in [1520]).
391. \qquad , On the derivative of the generalized inverse of a matrix, Linear and Multilinear Algebra 1 (1973/74), 357-359.
392. H. P. Decell, Jr. and P. L. Odell, On the fixed point probability vector of regular or ergodic transition matrices, J. Amer. Statist. Assoc. 62 (1967), 600602.
393. J. P. Dedieu and M. Shub, Newton's method for overdetermined systems of equations, Math. of Comput. 69 (2000), 1099-1115.
394. J. B. Dennis, Mathematical Programming and Electrical Networks, MIT Press, Cambridge, Mass., 1959.
395. B. A. Dent and A. Newhouse, Polynomials orthogonal over discrete domains, SIAM Rev. 1 (1959), 55-59.
396. C. A. Desoer and B. H. Whalen, A note on pseudoinverses, J. Soc. Indust. Appl. Math. 11 (1963), 442-447.
397. M. Desplas, Matrice pseudo-inverse de MoorePenrose et variables duales généralisées en programmation mathématique, RAIRO Rech. Opér. 26 (1992), no. 4, 313-360.
398. P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), 1-10.
399. P. Deuflhard and W. Sautter, On rank-deficient pseudoinverses, Linear Algebra and its Applications 29 (1980), 91-111.
100. E. Deutsch, Semi-inverses, reflexive semiinverses, and pseudo-inverses of an arbitrary linear transformation, Linear Algebra and its Applications 4 (1971), 313-322.
401. E. Deutsch and M. Neumann, Derivatives of the Perron root at an essentially nonnegative matrix and the group inverse of an M-matrix, J. Math. Anal. Appl. 102 (1984), no. 1, 1-29.
402. F. Deutsch, The angle between subspaces of a Hilbert space, Approximation theory, wavelets and applications (Maratea, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 107-130.
403. M. E. Díaz Lozano, The class of $\{1,2,4\}$-inverses as the solution of a linear problem, Bol. Soc. Mat. Mexicana (3) 4 (1998), no. 2, 223-228.
404. V. D. Didenko and B. Silbermann, Extension of C^{*}-algebras and Moore-Penrose stability of sequences of additive operators, Linear Algebra and its Applications 275/276 (1998), 121-140.
405. F. Diele, L. Lopez, and R. Peluso, The Cayley transform in the numerical solution of unitary differential systems, Adv. Comput. Math. 8 (1998), no. 4, 317-334.
406. I. I. Dikin, On the speed of an iterative process, Upravlyaemye Sistemi 12 (1974), 54-60, (see [1496]).
407. Jiu Ding, Perturbation results for projecting a point onto a linear manifold, SIAM J. Matrix Anal. Appl. 19 (1998), no. 3, 696-700 (electronic).
408. ___ Perturbation of systems of linear algebraic equations, Linear and Multilinear Algebra 47 (2000), no. 2, 119-127.
409. , Lower and upper bounds in the perturbation of general linear algebraic equations, Appl. Math. Lett. 14 (2001), no. 1, 49-52.
410. Jiu Ding and Liang Jiao Huang, On the perturbation of the least squares solutions in Hilbert spaces, Linear Algebra and its Applications 212/213 (1994), 487-500.
411. \qquad , Perturbation of generalized inverses of linear operators in Hilbert spaces, J. Math. Anal. Appl. 198 (1996), no. 2, 506-515.
412. D. S. Djordjević and P. S. Stanimirović, Universal iterative methods for computing generalized inverses, Acta Math. Hungar. 79 (1998), no. 3, 253268.
413._, Applications of the Groetsch theorem, Indian J. Pure Appl. Math. 31 (2000), no. 3, 277-286.
414. Dragomir Ž. Doković, On the generalized inverse for matrices, Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske 20 (1965), 51-55.
415. J. Dommanget, L'inverse d'un cracovien rectangulaire: Son emploi dans la résolution des systèmes d'équations linéaires, Publ. Sci. Tech. Ministère de l'Air (Paris) Notes Tech. No. 128 (1963), 11-41.
416. J. Douglas, Jr. and C. M. Pearcy, On convergence of alternating direction procedures in the presence of singular operators, Numer. Math. 5 (1963), 175184.
417. A. Doust and V. E. Price, The latent roots and vectors of a singular matrix, Comput. J. 7 (1964), 222-227.
418. A. Dragomir, On the generalized inverse of a matrix, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 3 (1965), 123-128.
419. A. Dragomir and P. Dragomir, Formulas of the Bjerhammar type for the generalized inverse of an arbitrary matrix, Proceedings of the Conference on Algebra (Romanian) (Timişoara, 1986) (Timişoara), Univ. Timişoara, 1987, pp. 33-36.
420. A. Dragomir and M. Fildan, L'inverse généralisé d'un opérateur linéaire, An. Univ. Timişoara Ser. Şti. Mat. 7 (1969), 55-65.
421. P. Dragomir, On the Greville-Moore formula for calculating the generalized inverse matrix, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 1 (1963), 115-119.
422. \qquad , The generalized inverse of a bilinear form, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 2 (1964), 71-76.
423. M. P. Drazin, Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
424. \qquad , Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), no. 1, 139-141.
425. \qquad , Differentiation of generalized inverses, In Campbell [267], pp. 138-144.
426. \qquad , Extremal definitions of generalized inverses, Linear Algebra and its Applications 165 (1992), 185-196.
427. Pierre Druilhet, Optimality of neighbour balanced designs, J. Statist. Plann. Inference 81 (1999), no. 1, 142-152.
428. H. Drygas, On a generalization of the Farkas theorem, Unternehmensforschung 13 (1969), 283-290.
429. \qquad , The Coordinate-Free Approach to GaussMarkov Estimation, Springer-Verlag, Berlin, 1970.
430. \qquad , Consistency of the least squares and Gauss-Markov estimators in regression models, Z. Wahrscheinlichkeitstheorie u. verw. Gebiete 17 (1971), 309-326.
431. , Estimation and prediction for linear models in general spaces (Vorträge auf der Ersten Sommerschule über Probleme der Modellwahl und Parameterschätzung in der Regressions-Analyse, Zinnowitz, 1974), Math. Operationsforsch. Statist. 6 (1975), no. 2, 301-324.
432. \qquad , Gauss-Markov estimation for multivariate linear models with missing observations, Ann. Statist. 4 (1976), no. 4, 779-787.
433. \qquad , On the unified theory of least squares, Probab. Math. Statist. 5 (1985), no. 2, 177-186.
434. H. Drygas and J. Srzednicka, A new result on Hsu's model of regression analysis, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 12, 1133-1136.
435. R. J. Duffin, Network models, In Wilf and Harary [1594], pp. 65-91.
436. R. J. Duffin and T. D. Morley, Inequalities induced by network connections. II. Hybrid connections, J. Math. Anal. Appl. 67 (1979), no. 1, 215-231.
437. \qquad Inequalities induced by network connections, In Campbell [267], pp. 27-49.
438. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
439. R. J. Duffin and G. E. Trapp, Hybrid addition of matrices-network theory concept, Applicable Anal. 2 (1972/73), 241-254.
440. J. W. Duke, A note on EP linear transformations, Linear Algebra and its Applications 3 (1970), 379382.
441. N. Dunford and J. T. Schwartz, Linear Operators. Part I, Interscience, New York, 1957.
442. T. T. Dunne and M. Stone, Downdating the MoorePenrose generalized inverse for cross-validation of centred least squares prediction, J. Roy. Statist. Soc. Ser. B 55 (1993), no. 2, 369-375.
443. Arthur M. DuPré and Seymour Kass, Distance and parallelism between flats in \mathbb{R}^{n}, Linear Algebra and its Applications 171 (1992), 99-107.
444. C. S. Duris, Optimal quadrature formulas using generalized inverses. I. General theory and minimum variance formulas, Math. Comp. 25 (1971), 495-504.
445. C. S. Duris and V. P. Sreedharan, Chebyshev and l^{1}-solutions of linear equations using least squares solutions, SIAM J. Numer. Anal. 5 (1968), 491505.
446. P. S. Dwyer, Some applications of matrix derivatives in multivariate analysis, J. Amer. Statist. Assoc 62 (1967), 607-625.
447. P. S. Dwyer and M. S. Macphail, Symbolic matrix derivatives, Ann. Math. Statistics 19 (1948), 517534.
448. N. Eagambaram, Generalized inverses with nonnegative principal minors, Linear Algebra and its Applications 111 (1988), 293-312.
449.,(i, j, \cdots, k)-inverses via bordered matrices, Sankhyā Ser. A 53 (1991), no. 3, 298-308.
450. C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211-218.
451. \qquad , A principal axis transformation for nonHermitian matrices, Bull. Amer. Math. Soc. 45 (1939), 118-121.
452. E. Egerváry, On a property of the projector matrices and its application to the canonical representation of matrix functions, Acta Sci. Math. Szeged 15 (1953), 1-6.
453. M. Eiermann, I. Marek, and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math. 53 (1988), no. 3, 265-283.
454. E. Eitelberg and H. Hanselmann, Comments on: "On system realization by matrix generalized inverses" (Internat. J. Control 26 (1977), no. 5, 745-751) by V. Lovass-Nagy, R. J. Miller and D. L. Powers, Internat. J. Control 27 (1978), no. 4, 651-652, (see [976]).
455. L. Eldén, Perturbation theory for the least squares problem with linear equality constraints, SIAM J. Numer. Anal. 17 (1980), 338-350.
456. _ A weighted pseudoinverse, generalized singular values, and constrained least squares problems, BIT 22 (1983), 487-502.
457. W. W. Elliott, Generalized Green's functions for compatible differential systems, Amer. J. Math. 50 (1928), 243-258.
458. \quad, Green's functions for differential systems containing a parameter, Amer. J. Math. 51 (1929), 397-416.
459. L. Elsner and Kh. D. Ikramov, Normal matrices: an update, Linear Algebra and its Applications 285 (1998), no. 1-3, 291-303, (see [602]).
460. C. Elster, Recovering wavefronts from difference measurements in lateral shearing interferometry, J. Comput. Appl. Math. 110 (1999), no. 1, 177-180.
461. H. W. Engl and C. W. Groetsch, A higher order approximation technique for restricted linear least-squares problems, Bull. Austral. Math. Soc. 37 (1988), no. 1, 121-130.
462. H. W. Engl and R. Kress, A singular perturbation problem for linear operators with an application to electrostatic and magnetostatic boundary and transmission problems, Math. Methods Appl. Sci. 3 (1981), no. 2, 249-274.
463. H. W. Engl and M. Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82 (1981), no. 2, 566586.
464. H. W. Engl and A. Neubauer, On projection methods for solving linear ill-posed problems, Model optimization in exploration geophysics (Berlin, 1986), Vieweg, Braunschweig, 1987, pp. 73-92.
465. M. J. Englefield, The commuting inverses of a square matrix, Proc. Cambridge Philos. Soc. 62 (1966), 667-671.
466. P. J. Erdelsky, Projections in a normed linear space and a generalization of the pseudo-inverse, Doctoral dissertation in mathematics, California Inst. Tech., Pasadena, CA, 1969.
467. I. Erdélyi, On partial isometries in finite dimensional Euclidean spaces, SIAM J. Appl. Math. 14 (1966), 453-467.
468. \qquad , On the "reversed order law" related to the generalized inverse of matrix products, J. Assoc. Comput. Mach. 13 (1966), 439-443.
469. On the matrix equation $A x=\lambda B x$, J. Math. Anal. Appl. 17 (1967), 119-132.
470._, The quasi-commuting inverse for a square matrix, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 42 (1967), 626-633.
471. \qquad , Normal partial isometries closed under multiplication on unitary spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 43 (1968), 186-190.
472. \qquad , Partial isometries and generalized inverses, In Boullion and Odell [207], pp. 203-217.
473. \qquad , Partial isometries closed under multiplication on Hilbert spaces, J. Math. Anal. Appl. 22 (1968), 546-551.
474. \qquad , Partial isometries defined by a spectral property on unitary spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 44 (1968), 741-747.
475. __, A generalized inverse for arbitrary operators between hilbert spaces, Proceedings of the Cambridge Philosophical Society 71 (1972), 43-50.
476. \qquad , Spectral decompositions for generalized inversions, In Campbell [267], pp. 261-274.
477. I. Erdélyi and A. Ben-Israel, Extremal solutions of linear equations and generalized inversion between Hilbert spaces, J. Math. Anal. Appl. 39 (1972), 298-313.
478. I. Erdélyi and F. R. Miller, Decomposition theorems for partial isometries, J. Math. Anal. Appl. 30 (1970), 665-679.
479. C. A. Eschenbach, F. J. Hall, and Zhongshan Li, Sign pattern matrices and generalized inverses, Linear Algebra and its Applications 211 (1994), 53-66.
480. D. J. Evans, Wenyu Sun, R. J. B. de Sampaio, and J. Y. Yuan, The restricted generalized inverses corresponding to constrained quadratic system, Int. J. Comput. Math. 62 (1996), no. 3-4, 285-296.
481. Ky Fan and A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc. 6 (1955), 111-116.
482. R. W. Farebrother, Further results on the mean square error of ridge regression, J. Roy. Statist. Soc. Ser. B 38 (1976), no. 3, 248-250.
483. \qquad , An historical note on recursive residuals, J. Roy. Statist. Soc. Ser. B 40 (1978), no. 3, 373375.
484._, A class of statistical estimators related to principal components, Linear Algebra and its Applications 289 (1999), no. 1-3, 121-126.
485. R. Featherstone and O. Khatib, Load independence of the dynamically consistent inverse of the jacobian matrix. source, International Journal of Robotics Research 16 (1997), 168-170.
486. C. A. Felippa, K. C. Park, and M. R. Justino Filho, The construction of free-free flexibility matrices as generalized stiffness inverses, Computers \& Structures 68 (1998), 411-418.
487. I. S. Fenyő, A representation of the generalized inverse in Hilbert spaces, Rend. Sem. Mat. Fis. Milano 50 (1980), 23-29 (1982).
488. M. Ferrante and P. Vidoni, A Gaussian-generalized inverse Gaussian finite-dimensional filter, Stochastic Process. Appl. 84 (1999), no. 1, 165-176.
489. M. Fiedler, Moore-Penrose involutions in the classes of Laplacians and simplices, Linear and Multilinear Algebra 39 (1995), no. 1-2, 171-178.
490. M. Fiedler and T. L. Markham, Some connections between the Drazin inverse, P-matrices, and the closure of inverse M-matrices, Linear Algebra and its Applications 132 (1990), 163-172.
491. \qquad , A characterization of the Moore-Penrose inverse, Linear Algebra and its Applications 179 (1993), 129-133.
492. J. A. Fill and D. E. Fishkind, The Moore-Penrose generalized inverse for sums of matrices, SIAM J. Matrix Anal. Appl. 21 (1999), no. 2, 629-635 (electronic).
493. P. A. Filmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281.
494. A. G. Fisher, On construction and properties of the generalized inverse, SIAM J. Appl. Math. 15 (1967), 269-272.
495. R. Fletcher, Generalized inverse methods for the best least squares solution of systems of non-linear equations, Comput. J. 10 (1968), 392-399.
496. \qquad , A technique for orthogonalization, J. Inst. Math. Appl. 5 (1969), 162-166.
497. \qquad , Generalized inverses for nonlinear equations and optimization, pp. 75-85, In [1226], 1970.
498. Delia Flores de Chela, Generalized inverses on normed vector spaces, Linear Algebra and its Applications 26 (1979), 243-263.
499. \qquad , Approximations in the l_{∞} norm and the generalized inverse, Linear Algebra and its Applications 42 (1982), 3-21.
500. , Generalized inverses under the l_{1}-norm, Linear Algebra and its Applications 94 (1987), 237-261.
501. N. Florsch and J. Hinderer, Bayesian estimation of the free core nutation parameters from the analysis of precise tidal gravity data, Physics of The Earth and Planetary Interiors 117 (2000), 21-35.
502. A. Forsgren, On linear least-squares problems with diagonally dominant weight matrices, SIAM J. Matrix Anal. Appl. 17 (1996), no. 4, 763-788.
503. A. Forsgren and G. Sporre, On weighted linear least-squares problems related to interior methods for convex quadratic programming, SIAM J. Matrix Anal. Appl. 23 (2001), 42-56.
504. G. E. Forsythe, The maximum and minimum of a positive definite quadratic polynomial on a sphere are convex functions of the radius, SIAM J. Appl. Math. 19 (1970), 551-554.
505. G. E. Forsythe and G. H. Golub, On the stationary values of a second-degree polynomial on the unit sphere, SIAM J. Appl. Math. 13 (1965), 1050-1068.
506. D. J. Foulis, Baer*-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.
507. , Relative inverses in Baer*-semigroups, Michigan Math. J. 10 (1963), 65-84.
508. J. S. Frame, Matrix functions and applications. I. matrix operations and generalized inverses, IEEE Spectrum 1 (1964), 209-220.
509. \qquad Matrix functions and applications. II. Functions of a matrix, IEEE Spectrum 1 (1964), no. 4, 102-108.
510. , Matrix functions and applications. IV. Matrix functions and constituent matrices, IEEE Spectrum 1 (1964), no. 6, 123-131.
511. , Matrix functions and applications. V. Similarity reductions by rational or orthogonal matrices, IEEE Spectrum 1 (1964), no. 7, 103-109.
512. J. S. Frame and H. E. Koenig, Matrix functions and applications. III. Applications of matrices to systems analysis, IEEE Spectrum 1 (1964), no. 5, 100-109.
513. C. Franchetti and E. W. Cheney, Orthogonal projections in spaces of continuous functions, J. Math. Anal. Appl. 63 (1978), no. 1, 253-264.
514. P. Franck, Sur la distance minimale d'une matrice régulière donnée au lieu des matrices singulières, Deux. Congr. Assoc. Franc. Calcul. et Trait. Inform. Paris 1961, Gauthiers-Villars, Paris, 1962, pp. 55-60.
515. I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math. 27 (1903), 365-390.
516. A. Friedlander, J. M. Martínez, and H. D. Scolnik, Generalized inverses and a new stable secant type minimization algorithm, Optimization techniques (Proc. 8th IFIP Conf., Würzburg, 1977), Part 2, Springer, Berlin, 1978, pp. 136-146. Lecture Notes in Control and Informat. Sci., Vol. 7.
517. J. D. Fulton, Generalized inverses of matrices over a finite field, Discrete Math. 21 (1978), no. 1, 2329.
518. \qquad , Generalized inverses of matrices over fields of characteristic two, Linear Algebra and its Applications 28 (1979), 69-76.
519. R. E. Funderlic and C. D. Meyer, Jr., Sensitivity of the stationary distribution vector for an ergodic Markov chain, Linear Algebra and its Applications 76 (1986), 1-17.
520. R. Gabriel, Extensions of generalized algebraic complement to arbitrary matrices (romanian), Stud. Cerc. Mat. 17 (1965), 1567-1581.
521. \qquad , Das verallgemeinerte Inverse einer Matrix deren Elemente einem beliebigen Körper angehören, J. Reine Angew. Math. 234 (1969), 107-122.
522. ___, Das verallgemeinerte Inverse einer Matrix über einem beliebigen Körperanalytisch betrachtet, J. Reine Angew. Math. 244 (1970), 83-93.
523. __, Das verallgemeinerte Inverse einer Matrix über einen beliebigen Körper-mit Skelettzerlegungen berechnet, Rev. Roumaine Math. Pures Appl. 20 (1975), 213-225.
524. \qquad , Das verallgemeinerte Inverse in Algebren, Rev. Roumaine Math. Pures Appl. 20 (1975), 311324, (corrigendum: Rev. Roumaine Math. Pures Appl. 20(1975), 747).
525. R. Gabriel and R. E. Hartwig, The Drazin inverse as a gradient, Linear Algebra and its Applications 63 (1984), 237-252.
526. J. Gaches, J.-L. Rigal, and X. Rousset de Pina, Distance euclidienne d'une application linéaire σ au lieu des applications de rang r donné, C. R. Acad. Sci. Paris 260 (1965), 5672-5674.
527. A. Galántai, The theory of Newton's method, J. Comput. Appl. Math. 124 (2000), no. 1-2, 25-44, (Numerical analysis 2000, Vol. IV, Optimization and nonlinear equations).
528. A. Galántai and G. Varga, A relaxation method for the computation of generalized inverses of matrices, Közlemények-MTA Számitástechn. Automat. Kutato Int. Budapest (1976), no. 17, 57-62.
529. A. R. Gallant and T. M. Gerig, Computations for constrained linear models, J. Econometrics 12 (1980), no. 1, 59-84, (See [364]).
530. A. M. Galperin and Z. Waksman, On pseudoinverses of operator products, Linear Algebra and its Applications 33 (1980), 123-131.
531. \qquad , Ulm's method under regular smoothness, Numer. Funct. Anal. Optim. 19 (1998), no. 3-4, 285-307.
532. W. Gander, Algorithms for the polar decomposition, SIAM J. Sci. Statist. Comput. 11 (1990), no. 6, 1102-1115.
533. F. R. Gantmacher, The Theory of Matrices, vol. I and II, Chelsea, New York, 1959.
534. J. M. Garnett III, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104-109.
535. M. K. Gavurin and Ju. B. Farforovskaja, An iterative method for finding the minimum of sums of squares, Ž. Vyčisl. Mat. i Mat. Fiz. 6 (1966), 10941097.
536. D. M. Gay, Modifying singular values: existence of solutions to sytems of nonlinear equations having a possibly singular Jacobian matrix, Math. Comp. 31 (1977), no. 140, 962-973.
537. \qquad , Corrigenda: "Modifying singular values: existence of solutions to systems of nonlinear equations having a possibly singular Jacobian matrix" (Math. Comp. 31 (1977), no. 140, 962-973), Math. Comp. 33 (1979), no. 145, 432-433.
538. T. M. Gerig and A. R. Gallant, Computing methods for linear models subject to linear parametric constraints, J. Statist. Comput. Simulation 3 (1975), 283-296, (Errata: ibid 4 (1975), no. 1, 81-82).
539. B. Germain-Bonne, Calcul de pseuodo-inverses, Rev. Francaise Informat. Recherce Opérationelle 3 (1969), 3-14.
540. A. J. Getson and F. C. Hsuan, \{2\}-inverses and their statistical application, Springer-Verlag, New York, 1988.
541. C. Giurescu and R. Gabriel, Some properties of the generalized matrix inverse and semiinverse, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 2 (1964), 103-111.
542. I. M. Glazman and Ju. I. Ljubich, Finite Dimensional Linear Analysis, Nauka, Moscow, 1969, (English translation published by MIT Press).
543. S. Goldberg, Unbounded Linear Operators, McGraw-Hill Book Co., New York, 1966.
544. A. J. Goldman and M. Zelen, Weak generalized inverses and minimum variance linear unbiased estimation, J. Res. Nat. Bur. Standards Sect. B 68B (1964), 151-172.
545. A. A. Goldstein, Constructive Real Analysis, Harper and Row, New York, 1967.
546. G. R. Goldstein and J. A. Goldstein, The best generalized inverse, J. Math. Anal. Appl. 252 (2000), no. 1, 91-101.
547. H. Goller, Shorted operators and rank decomposition matrices, Linear Algebra and its Applications 81 (1986), 207-236.
548. G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math. 7 (1965), 206-216.
549. __, Least squares, singular values and matrix approximations, Aplikace Mathematiky 13 (1968), 44-51.
550._, Matrix decompositions and statistical calculations, Tech. Report STAN-CS-124, Stanford University, Stanford, March 1969.
551. G. H. Golub, M. T. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21 (1979), 215-223.
552. G. H. Golub, A. Hoffman, and G. W. Stewart, A generalization of the Eckart-Young matrix approximation theorem, Linear Algebra and Its Applications 88/89 (1987), 317-327.
553. G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 205-224.
554. G. H. Golub and C. D. Meyer, Jr., Using the $Q R$ factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains, SIAM J. Algebraic Discrete Methods 7 (1986), no. 2, 273-281.
555. G. H. Golub and V. Pereyra, The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal. 10 (1973), 413-432.
556. _ Differentiation of pseudoinverses, separable nonlinear least squares problems and other tales, In Nashed [1116], pp. 303-324.
557. G. H. Golub and C. Reinsch, Singular value decompositions and least squares solutions, Numer.

Math. 14 (1970), 403-420, (republished, pp. 134151 in [1598]).
558. G. H. Golub and G. P. H. Styan, Numerical computations for univariate linear models, Journal of Statistical Computations and Simulation 2 (1973), 253-274.
559. G. H. Golub and J. H. Wilkinson, Note on the iterative refinement of least squares solutions, Numer. Math. 9 (1966), 139-148.
560. Xiangyang Gong, Wanyi Chen, and Fengsheng Tu, The stability and design of nonlinear neural networks, Comput. Math. Appl. 35 (1998), no. 8, 1-7.
561. C. C. Gonzaga and H. J. Lara, A note on properties of condition numbers, Linear Algebra and its Applications 261 (1997), 269-273, (see [767]).
562. I. J. Good, Some applications of the singular decomposition of a matrix, Technometrics 11 (1969), 823-831.
563. \qquad , Generalized determinants and generalized generalized variance, J. Statist. Comput. Simulation 12 (1980/81), no. 3-4, 311-315, (see [122]).
564. M. C. Gouveia, Generalized invertibility of Hankel and Toeplitz matrices, Linear Algebra and its Applications 193 (1993), 95-106.
565. \qquad , Group and Moore-Penrose invertibility of Bezoutians, Linear Algebra and its Applications 197/198 (1994), 495-509.
566. M. C. Gouveia and R. Puystjens, About the group inverse and Moore-Penrose inverse of a product, Linear Algebra and its Applications 150 (1991), 361-369.
567. P. R. Graves-Morris, D. E. Roberts, and A. Salam, The epsilon algorithm and related topics, J. Comput. Appl. Math. 122 (2000), no. 1-2, 51-80.
568. F. A. Graybill, An Introduction to Linear Statistical Models. Vol I, McGraw-Hill Book Co., Inc., New York, 1961.
569. \qquad , Theory and application of the linear model, Duxbury Press, North Scituate, Mass., 1976.
570. \qquad , Matrices with applications in statistics, second ed., Wadsworth Advanced Books and Software, Belmont, Calif., 1983.
571. F. A. Graybill and G. Marsaglia, Idempotent matrices and quadratic forms in the general linear hypothesis, Ann. Math. Statist. 28 (1957), 678-686.
572. F. A. Graybill, C. D. Meyer, Jr., and R. J. Painter, Note on the computation of the generalized inverse of a matrix, SIAM Rev. 8 (1966), 522-524.
573. B. Green, The orthogonal approximation of an oblique structure in factor analysis, Psychometrika 17 (1952), 429-440.
574. W. L. Green and T. D. Morley, Operator means and matrix functions, Linear Algebra and its Applications 137/138 (1990), 453-465.
575. _, Operator means, norm convergence and matrix functions, Signal processing, scattering and operator theory, and numerical methods (Amsterdam, 1989), Birkhäuser Boston, Boston, MA, 1990, pp. 551-556.
576. W. Greub and W. C. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc. 10 (1959), 407-415.
577. __, Non self-adjoint boundary value problems in ordinary differential equations, J. Res. Nat. Bur. Standards Sect. B 1960 (64B), 83-90.
578. T. N. E. Greville, On smoothing a finite table: A matrix approach, J. Soc. Indust. Appl. Math. 5 (1957), 137-154.
579. \qquad , The pseudoinverse of a rectangular matrix and its application to the solution of systems of linear equations, SIAM Rev. 1 (1959), 38-43.
580. \qquad , Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), 15-22.
581. \qquad , Note on fitting functions of several independent variables, J. Soc. Indust. Appl. Math. 9 (1961), 109-115, (Erratum, ibid 9(1961), 317).
582. __, Note on the generalized inverse of a matrix product, J. Soc. Indust. Appl. Math. 9 (1966), 109115.
583. \qquad , Spectral generalized inverses of square matrices, Math. Research Center Technical Summary Report 823, University of Wisconsin, Madison, WI, October 1967.
584. \qquad , Some new generalized inverses with spectral properties, In Boullion and Odell [207], pp. 2646.
585. \qquad The Souriau-Frame algorithm and the Drazin pseudoinverse, Linear Algebra and Appl. 6 (1973), 205-208.
586. , Solutions of the matrix equation $X A X=$ X and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26 (1974), 828832.
587. T. N. E. Greville and N. Keyfitz, Backward population projection by a generalized inverse, Computational probability (Proc. Actuarial Res. Conf., Brown Univ., Providence, R.I., 1975), Academic Press, New York, 1980, pp. 173-183.
588. E. Griepentrog and R. März, Basic properties of some differential-algebraic equations, Z. Anal. Anwendungen 8 (1989), no. 1, 25-41.
589. C. W. Groetsch, Steepest descent and least squares solvability, Canad. Math. Bull. 17 (1974), 275-276.
590. \qquad , A product integral representation of the generalized inverse, Comment. Math. Univ. Carolinae 16 (1975), 13-20.
591. \qquad , Generalized Inverses of Linear Operators: Representation and Approximation. monographs and textbooks in pure and applied mathematics, no. 37, Marcel Dekker Inc., New York, 1977.
592. \qquad , The Forsythe-Motzkin method for singular linear operator equations, J. Optim. Theory Appl. 25 (1978), no. 2, 311-315.
593._, On rates of convergence for approximations to the generalized inverse, Numer. Funct. Anal. Optim. 1 (1979), no. 2, 195-201.
594. \qquad splines, Numer. Funct. Anal. Optim. 2 (1980), no. 1, 93-97.
595. \qquad , Spectral methods for linear inverse problems with unbounded operators, J. Approx. Theory 70 (1992), no. 1, 16-28.
596. __ Inclusions for the Moore-Penrose inverse with applications to computational methods, Contributions in Numerical Mathematics, World Sci. Publishing, River Edge, NJ, 1993, pp. 203-211.
597. \qquad , Inverse Problems in the Mathematical Sciences, Friedr. Vieweg \& Sohn, Braunschweig, 1993.
598. \qquad , Inclusions and identities for the MoorePenrose inverse of a closed linear operator, Math. Nachr. 171 (1995), 157-164.
599. C. W. Groetsch and B. J. Jacobs, Iterative methods for generalized inverses based on functional interpolation, In Campbell [267], pp. 220-232.
600. C. W. Groetsch and J. T. King, Extrapolation and the method of regularization for generalized inverses, J. Approx. Theory 25 (1979), no. 3, 233247.
601. R. Grone, Certain isometries of rectangular complex matrices, Linear Algebra and its Applications 29 (1980), 161-171.
602. R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Normal matrices, Linear Algebra and its Applications 87 (1987), 213-225, (characterizations of normal matrices, continued in [459]).
603. J. Groß, A note on a partial ordering in the set of Hermitian matrices, SIAM J. Matrix Anal. Appl. 18 (1997), no. 4, 887-892.
604. \qquad , Some remarks concerning the reverse order law, Discuss. Math. Algebra Stochastic Methods 17 (1997), no. 2, 135-141.
605. \qquad , Special generalized inverse matrices connected with the theory of unified least squares, Linear Algebra and its Applications 264 (1997), 325327.
606. \qquad , More on concavity of a matrix function, SIAM J. Matrix Anal. Appl. 19 (1998), no. 2, 365368 (electronic).
607. J. Gross, On contractions in linear regression, J. Statist. Plann. Inference 74 (1998), no. 2, 343-351.
608. J. Groß, Idempotency of the Hermitian part of a complex matrix, Linear Algebra and its Applications 289 (1999), no. 1-3, 135-139.
609. \qquad , On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matrices, Linear and Multilinear Algebra 46 (1999), no. 4, 265-275.
610. \qquad , On the product of orthogonal projectors, Linear Algebra and its Applications 289 (1999), no. 1-3, 141-150.
611. \qquad , Solution to a rank equation, Linear Algebra and its Applications 289 (1999), no. 1-3, 127130.
612. \qquad , The Moore-Penrose inverse of a partitioned nonnegative definite matrix, Linear Algebra and its Applications 321 (2000), no. 1-3, 113-121.
613. \qquad , Nonnegative-definite and positive-definite solutions to the matrix equation $A X A^{*}=B-$ revisited, Linear Algebra and its Applications 321 (2000), no. 1-3, 123-129.
614. , Löwner partial ordering and space preordering of Hermitian non-negative definite matrices, Linear Algebra and its Applications 326 (2001), no. 1-3, 215-223.
615. J. Groß, J. Hauke, and A. Markiewicz, Partial orderings, preorderings, and the polar decomposition of matrices, Linear Algebra and its Applications 289 (1999), no. 1-3, 161-168.
616. J. Groß and S. Puntanen, Estimation under a general partitioned linear model, Linear Algebra and its Applications 321 (2000), no. 1-3, 131-144.
617. J. Groß and G. Trenkler, On the least squares distance between affine subspaces, Linear Algebra and its Applications 237/238 (1996), 269-276.
618. \qquad , Generalized and hypergeneralized projectors, Linear Algebra and its Applications 264 (1997), 463-474.
619. \qquad , On the equality of usual and Amemiya's partially generalized least squares estimator, Comm. Statist. Theory Methods 26 (1997), no. 9, 2075-2086.
620. _ , Restrictions and projections in linear regression, Internat. J. Math. Ed. Sci. Tech. 28 (1997), no. 3, 465-468.
621. _ On the product of oblique projectors, Linear and Multilinear Algebra 44 (1998), no. 3, 247259.
622. _, Nonsingularity of the difference of two oblique projectors, SIAM J. Matrix Anal. Appl. 21 (1999), no. 2, 390-395 (electronic).
623. J. Groß, G. Trenkler, and S. O. Troschke, On semiorthogonality and a special class of matrices, Linear Algebra and its Applications 289 (1999), no. 1-3, 169-182.
624. J. Groß and S. O. Troschke, Some remarks on partial orderings of nonnegative definite matrices, Linear Algebra and its Applications 264 (1997), 457461.
625. Marek Gruszczyński, The Moore-Penrose matrix inversion and estimation under additional constraints, Przeglạd Statyst. 28 (1981), no. 3-4, 311319 (1982).
626. Chuanqing Gu, Generalized inverse matrix Padé approximation on the basis of scalar products, Linear Algebra and its Applications 322 (2001), no. 13, 141-167.
627. S. P. Gudder and M. Neumann, Splittings and iterative methods for approximate solutions to singular operator equations in Hilbert spaces, J. Math. Anal. Appl. 62 (1978), no. 2, 272-294.
628. P. G. Guest, Orthogonal polynomials in the least squares fitting of observations, Philos. Mag. (7) 41 (1950), 124-137.
629. E. A. Guillemin, Theory of linear physical systems, Wiley, New York, 1963.
630. M. E. Gulliksson, On modified Gram-Schmidt for weighted and constrained linear least squares, BIT 35 (1995), 458-473.
631. M. E. Gulliksson, P.-Å. Wedin, and Yimin Wei, Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverses, BIT 40 (2000), no. 3, 513-523.
632. N. N. Gupta, An iterative method for computation of generalized inverse and matrix rank, IEEE Trans. Systems Man Cybernet. (1971), 89-90.
633. \qquad , An optimum iterative method for the computation of matrix rank, IEEE Trans. Systems Man Cybernet. (1972), 437-438.
634. S. J. Haberman, How much do Gauss-Markov and least square estimates differ? A coordinate-free approach, Ann. Statist. 3 (1975), no. 4, 982-990, (extension of [885].
635. F. J. Hall, Generalized inverses of a bordered matrix of operators, SIAM J. Appl. Math. 29 (1975), 152-163.
636. ized inverses of bordered matrices, Linear Algebra and Appl. 14 (1976), no. 1, 53-61.
637. F. J. Hall and R. E. Hartwig, Further results on generalized inverses of partitioned matrices, SIAM J. Appl. Math. 30 (1976), no. 4, 617-624.
638. F. J. Hall, R. E. Hartwig, I. J. Katz, and M. Newman, Pseudosimilarity and partial unit regularity, Czechoslovak Math. J. 33(108) (1983), no. 3, 361372.
639. F. J. Hall and I. J. Katz, On ranks of integral generalized inverses of integral matrices, Linear and Multilinear Algebra 7 (1979), no. 1, 73-85.
640. \qquad , More on integral generalized inverses of integral matrices, Linear and Multilinear Algebra 9 (1980), no. 3, 201-209.
641. \qquad , Nonnegative integral generalized inverses, Linear Algebra and its Applications 39 (1981), 2339.
642. F. J. Hall and C. D. Meyer, Jr., Generalized inverses of the fundamental bordered matrix used in linear estimation, Sankhyā Ser. A 37 (1975), no. 3, 428-438, (corrigendum in Sankhyā Ser. A 40(1980), 399).
643. C. R. Hallum, T. L. Boullion, and P. L. Odell, Best linear estimation in the restricted general linear model, Indust. Math. 34 (1984), no. 1, 53-64.
644. C. R. Hallum, T. O. Lewis, and T. L. Boullion, Estimation in the restricted general linear model with a positive semidefinite covariance matrix, Comm. Statist. 1 (1973), 157-166.
645. P. R. Halmos, Finite-Dimensional Vector Spaces, 2nd ed., D. Van Nostrand, Co., Princeton, 1958.
646. \qquad , A Hilbert Space Problem Book, D. Van Nostrand, Co., Princeton, 1967.
647. P. R. Halmos and J. E. McLaughlin, Partial isometries, Pacific J. Math. 13 (1963), 585-596.
648. P. R. Halmos and L. J. Wallen, Powers of partial isometries, J. Math. Mech. 19 (1970), 657-663.
649. I. Halperin, Closures and adjoints of linear differential operators, Ann. of Math. (1937), 880-919.
650. H. Hamburger, Non-symmetric operators in Hilbert space, Proceedings Symposium on Spectral Theory and Differential Problems, Oklahoma A\& M College, Stillwater, OK, 1951, pp. 67-112.
651. M. Hanke and M. Neumann, Preconditionings and splittings for rectangular systems, Numerische Mathematik 57 (1990), no. 1, 85-95.
652. \qquad The geometry of the set of scaled projections, Linear Algebra and its Applications 190 (1993), 137-148.
653. G. W. Hansen and D. W. Robinson, On the existence of generalized inverses, Linear Algebra and its Applications 8 (1974), 95-104.
654. P. C. Hansen, The truncated SVD as a method for regularization, BIT 27 (1987), 534-553.
655. R. J. Hanson, A numerical method for solving Fredholm integral equations of the first kind using singular values, SIAM J. Numer. Anal. 8 (1971), 616622.
656. R. J. Hanson and M. J. Norris, Analysis of measurements based on the singular value decomposition, SIAM J. Sci. Statist. Comput. 2 (1981), no. 3, 363-373.
657. B. Harris, Theory of probability, Addison-Wesley, Reading, Mass., 1966.
658. W. A. Harris, Jr. and T. N. Helvig, Applications of the pseudoinverse to modeling, Technometrics 8 (1966), 351-357.
659. R. Harte, Polar decomposition and the MoorePenrose inverse, Panamer. Math. J. 2 (1992), no. 4, 71-76.
660. W. M. Hartmann and R. E. Hartwig, Computing the Moore-Penrose inverse for the covariance matrix in constrained nonlinear estimation, SIAM J. Optim. 6 (1996), no. 3, 727-747.
661. J. Hartung, On a method for computing pseudoinverses, Optimization and operations research (Proc. Conf., Oberwolfach, 1975). Lecture Notes in Econom. Math. Systems, Vol. 117, Springer, Berlin, 1976, pp. 115-125.
662. \qquad Zur Darstellung pseudoinverser Operatoren, Arch. Math. (Basel) 28 (1977), no. 2, 200208.
663.
_ , A note on restricted pseudoinverses, SIAM J. Math. Anal. 10 (1979), no. 2, 266-273.
664. J. Hartung and H. -J. Werner, Zur Verwendung der restringierten Moore-Penrose-Inversen beim Testen von linearen Hypothesen, Z. Angew. Math. Mech. 60 (1980), no. 7, T344-T346.
665. \qquad _, Hypothesenprüfung im restringierten linearen Modell. theorie und anwendungen (with
english and french summaries), Vandenhoeck \& Ruprecht, Göttingen, 1984.
666. R. E. Hartwig, 1-2 inverses and the invariance of $B A^{+} C$, Linear Algebra and its Applications 11 (1975), no. 3, 271-275.
667. \qquad , $A X-X B=C$, resultants and generalized inverses, SIAM J. Appl. Math. 28 (1975), 154-183.
668. \qquad , Block generalized inverses, Arch. Rational Mech. Anal. 61 (1976), no. 3, 197-251.
669. \qquad , More on the Souriau-Frame algorithm and the Drazin inverse, SIAM J. Appl. Math. 31 (1976), no. 1, 42-46.
670. \qquad , Rank factorization and Moore-Penrose inversion, Indust. Math. 26 (1976), no. 1, 49-63.
671. \qquad , Singular value decomposition and the Moore-Penrose inverse of bordered matrices, SIAM J. Appl. Math. 31 (1976), no. 1, 31-41.
672. __, Generalized inverses, EP elements and associates, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 1, 57-60.
673. \qquad , Schur's theorem and the Drazin inverse, Pacific J. Math. 78 (1978), no. 1, 133-138.
674. \qquad , Spectral inverses and the row-space equations, Linear Algebra and its Applications 20 (1978), no. 1, 57-68.
675. \qquad , An application of the Moore-Penrose inverse to antisymmetric relations, Proc. Amer. Math. Soc. 78 (1980), no. 2, 181-186.
676. \qquad , How to partially order regular elements, Math. Japon. 25 (1980), no. 1, 1-13.
677. \qquad , A method for calculating A^{d}, Math. Japon. 26 (1981), no. 1, 37-43.
678. \qquad , Applications of the Wronskian and Gram matrices of $\left\{t^{i} e^{\lambda_{k} t}\right\}$, Linear Algebra and its Applications 43 (1982), 229-241.
679. \qquad , The reverse order law revisited, Linear Algebra and its Applications 76 (1986), 241-246.
680. \qquad , The group inverse of a block triangular matrix, Current trends in matrix theory (Auburn, Ala., 1986), North-Holland, New York, 1987, pp. 137-146.
681. \qquad , A remark on the characterization of the parallel sum of two matrices, Linear and Multilinear Algebra 22 (1987), no. 2, 193-197.
682. \qquad , The pyramid decomposition and rank minimization, Linear Algebra and its Applications 191 (1993), 53-76.
683. , EP perturbations, Sankhyā Ser. A 56 (1994), no. 2, 347-357.
684. \qquad , The weighted $*$-core-nilpotent decomposition, Linear Algebra and its Applications 211 (1994), 101-111.
685. R. E. Hartwig and F. J. Hall, Pseudo-similarity for matrices over a field, Proc. Amer. Math. Soc. 71 (1978), no. 1, 6-10.
686. \qquad , Applications of the Drazin inverse to Cesàro- Neumann iterations, In Campbell [267], pp. 145-195.
687. R. E. Hartwig and I. J. Katz, On products of EP matrices, Linear Algebra and its Applications 252 (1997), 339-345.
688. R. E. Hartwig and J. Levine, Applications of the Drazin inverse to the Hill cryptographic system. III, Cryptologia 5 (1981), no. 2, 67-77.
689. \qquad , Applications of the Drazin inverse to the Hill cryptographic system. IV, Cryptologia 5 (1981), no. 4, 213-228.
690. R. E. Hartwig and Jiang Luh, A note on the group structure of unit regular ring elements, Pacific J. Math. 71 (1977), no. 2, 449-461.
691. R. E. Hartwig and J. M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser. A 24 (1977), no. 1, 10-34.
692. \qquad , On the derivative of the Drazin inverse of a complex matrix, SIAM J. Math. Anal. 10 (1979), no. 1, 207-216.
693. \qquad Invariance, group inverses and parallel sums, Rev. Roumaine Math. Pures Appl. 25 (1980), no. 1, 33-42.
694. R. E. Hartwig, Guorong Wang, and Yimin Wei, Some additive results on Drazin inverse, Linear Algebra and its Applications 322 (2001), no. 1-3, 207-217.
695. D. A. Harville, Extension of the Gauss-Markov theorem to include the estimation of random effects, Ann. Statist. 4 (1976), no. 2, 384-395.
696. \qquad _, Generalized inverses and ranks of modified matrices, J. Indian Soc. Agricultural Statist. 49 (1996/97), 67-78, iv.
697. \qquad , Matrix Algebra from a Statistician's Perspective, Springer-Verlag, New York, 1997.
698. W. R. Harwood, V. Lovass-Nagy, and D. L. Powers, A note on the generalized inverses of some partitioned matrices, SIAM J. Appl. Math. 19 (1970), 555-559.
699. D. M. Hawkins and D. Bradu, Application of the Moore-Penrose inverse of a data matrix in multiple regression, Linear Algebra and its Applications 127 (1990), 403-425.
700. J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear and Multilinear Algebra 1 (1973), no. 2, 163-171.
701. E. V. Haynsworth and J. R. Wall, Group inverses of certain nonnegative matrices, Linear Algebra Appl. 25 (1979), 271-288.
702. \qquad Group inverses of certain positive operators, Linear Algebra and its Applications 40 (1981), 143-159.
703. J. Z. Hearon, Construction of epr generalized inverses by inversion of nonsingular matrices, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 57-60.
704. _ A generalized matrix version of Rennie's inequality, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 61-64.
705. \qquad , On the singularity of a certain bordered matrix, SIAM J. Appl. Math. 15 (1967), 14131421.
706. _ Partially isometric matrices, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 225-228.
707. \qquad , Polar factorization of a matrix, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 65-67.
708. \qquad , Symmetrizable generalized inverses of symmetrizable matrices, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 229-231.
709. \qquad , Generalized inverses and solutions of linear systems, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 303-308.
710. J. Z. Hearon and J. W. Evans, Differentiable generalized inverses, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 109-113.
711. , On spaces and maps of generalized inverses, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 103-107.
712. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628666.
713. G. Heinig, The group inverse of the transformation $S(X)=A X-X B$, Linear Algebra and its Applications 257 (1997), 321-342.
714. G. Heinig and F. Hellinger, On the Bezoutian structure of the Moore-Penrose inverses of Hankel matrices, SIAM Journal on Matrix Analysis and Applications 14 (1993), no. 3, 629-645.
715. \qquad , Displacement structure of generalized inverse matrices, Linear Algebra and its Applications 211 (1994), 67-83.
716. \qquad , Displacement structure of generalized inverse matrices, Linear Algebra and its Applications 211 (1994), 67-83.
717. , Moore-Penrose inversion of square Toeplitz matrices, SIAM Journal on Matrix Analysis and Applications 15 (1994), no. 2, 418-450.
718. B. W. Helton, Logarithms of matrices, Proceedings of the American Mathematical Society 19 (1968), 733-736.
719. H. V. Henderson and S. R. Searle, The vecpermutation matrix, the vec operator and Kronecker products: a review, Linear and Multilinear Algebra 9 (1980/81), no. 4, 271-288.
720. \qquad , On deriving the inverse of a sum of matrices, SIAM Rev. 23 (1981), no. 1, 53-60.
721. G. P. Herring, A note on generalized interpolation and the pseudoinverse, SIAM J. Numer. Anal. 4 (1967), 548-556.
722. M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math. 1 (1951), 525-581.
723. \qquad , Inversion of matrices by biorthogonalization and related results, J. Soc. Indust. Appl. Math. 6 (1958), 51-90.
724. \qquad , Relative Hermitian matrices, Pacific J. Math. 11 (1961), 225-245.
725. \qquad , Relative self-adjoint operators in Hilbert space, Pacific J. Math. 11 (1961), 1315-1357.
726. \qquad , A ternary algelbra with applications to matrices and linear transformations, Arch. Rational Mech. Anal. 11 (1962), 138-194.
727. _ On a ternary algebra, Scripta Math. 29 (1973), 253-272.
728. , Pseudoinverses and conjugate gradients, Comm. ACM 18 (1975), 40-43.
729. K. R. Hickey and G. R. Luecke, Remarks on Marti's method for solving first kind equations, SIAM J. Numer. Anal. 19 (1982), no. 3, 623-628.
730. N. J. Higham, Computing the polar decomposition with applications, SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1160-1174.
731. \qquad , Computing real square roots of a real matrix, Linear Algebra and its Applications 88/89 (1987), 405-430.
732. , Computing a nearest symmetric positive semidefinite matrix, Linear Algebra and Its Applications 103 (1988), 103-118.
733. N. J. Higham and R. S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J. Sci. Comput. 11 (1990), no. 4, 648-655.
734. D. Hilbert, Grundzüge einer algemeine Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig and Berlin, 1912, (Reprint of six articles which appeared originally in the Götingen Nachrichten (1904), 49-51; (1904), 213-259; (1905), 307-338; (1906), 157-227; (1906), 439-480; (1910), 355-417).
735. B. L. Ho and R. E. Kalman, Effective construction of linear state-variables models from input/output functions, Regelungstechnik 14 (1966), 545-548.
736. Yu-chi Ho and R. L. Kashyap, A class of iterative procedures for linear inequalities, SIAM J. Control 4 (1966), 112-115.
737. H. W. Hodaway, GINV, A subroutine in ANSI fortran for generalized matrix inversion, Australian Computer J. 9 (1977), no. 4, 159-161.
738. A. E. Hoerl and R. W. Kennard, Ridge regression1980. Advances, algorithms, and applications, Amer. J. Math. Management Sci. 1 (1981), no. 1, 5-83.
739. R. W. Hoerl, Ridge analysis 25 years later, Amer. Statist. 39 (1985), no. 3, 186-192.
740. A. Holder, Desinging radiotherapy plans with elastic constraints and interior point methods, Tech. Report No. 49, Trinity University, San Antonio, TX, 2000.
741. A. Holder, J. Sturm, and S. Zhang, Marginal and parametric analysis of the central optimal solution, Tech. Report No. 48, Trinity University Mathematics, 1999, (to appear in Information Systems and Operational Research).
742. A. G. Holder and R. J. Caron, Uniform bounds on the limiting and marginal derivatives of the analytic center solution over a set of normalized weights, Oper. Res. Lett. 26 (2000), no. 2, 49-54.
743. R. B. Holmes, A Course on Optimization and Best Approximation, Springer-Verlag, Berlin, 1972.
744. H. H. H. Homeier, Extrapolationsverfahren für Zahlen-, Vektor- und Matrizenfolgen und ihre Anwendung in der Theoretischen und Physikalischen Chemie, Habilitation thesis, Universität Regensburg, 1996.
745. H. H. H. Homeier, The vector \mathcal{J} extrapolation method, Iterative Methods in Scientific Computation (Junping Wang, Myron B. Allen, III., Benito M. Chen, and Tarek Mathew, eds.), IMACS Series in Computational and Applied Mathematics, vol. 4, IMACS, Dept. of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA, 1998, Proceedings of the Third IMACS International Symposium on Iterative Methods in Scientific Computation Jackson Hole, Wyoming, USA July 9-12, 1997, pp. 375-380.
746. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985, (corrected reprint Cambridge University Press, Cambridge, 1990).
747. \qquad , Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
748. A. Höskuldsson, Data analysis, matrix decompositions, and generalized inverse, SIAM J. Sci. Comput. 15 (1994), no. 2, 239-262.
749. H. Hotelling, Relation between two sets of variates, Biometrika 28 (1936), 322-377.
750. \qquad , Some new methods in matrix calculations, Annals of Mathematical Statistics 14 (1943), 1-34.
751. \ldots, Relation of the newer multivariate statistical methods to factor analysis, Br. J. Static. Psychol. 10 (1957), 69-79.
752. P. D. Hough and S. A. Vavasis, Complete orthogonal decomposition for weighted least squares, SIAM J. Matrix Anal. Appl. 18 (1997), no. 2, 369-392.
753. A. S. Householder, The Theory of Matrices in $N u$ merical Analysis, Blaisdell, New York, 1964.
754. \qquad , The Kantorovich and some related inequalities, SIAM Rev. 7 (1965), 463-473.
755. A. S. Householder and G. Young, Matrix approximation and latent roots, Amer. Math. Monthly 45 (1938), 165-171.
756. F. C. Hsuan, P. Langenberg, and A. J. Getson, The \{2\}-inverse with applications in statistics, Linear Algebra and its Applications 70 (1985), 241-248.
757. K. Huang and J. Yu, Remarks on a formula for the pseudoinverse by the modified Huang algorithm, Computing 59 (1997), no. 2, 183-185.
758. Ching Hsiang Hung and T. L. Markham, The Moore-Penrose inverse of a partitioned matrix $M=\left(\begin{array}{ll}A & 0 \\ B & C\end{array}\right)$, Czechoslovak Math. J. 25(100) (1975), no. 3, 354-361.
759. _, The Moore-Penrose inverse of a sum of matrices, J. Austral. Math. Soc. Ser. A 24 (1977), no. 4, 385-392.
760. M. F. Hurt and C. Waid, A generalized inverse which gives all the integral solutions to a system of
linear equations, SIAM J. Appl. Math. 19 (1970), 547-550.
761. W. A. Hurwitz, On the pseudo-resolvent to the kernel of an integral equation, Trans. Amer. Math. Soc. 13 (1912), 405-418.
762. D. Huylebrouck, The generalized inverse of a sum with radical element: applications, Linear Algebra and its Applications 246 (1996), 159-175.
763. D. Huylebrouck and R. Puystjens, Generalized inverses of a sum with a radical element, Linear Algebra and its Applications 84 (1986), 289-300.
764. D. Huylebrouck, R. Puystjens, and J. Van Geel, The Moore-Penrose inverse of a matrix over a semisimple Artinian ring, Linear and Multilinear Algebra 16 (1984), no. 1-4, 239-246.
765. \qquad The Moore-Penrose inverse of a matrix over a semi-simple Artinian ring with respect to an involution, Linear and Multilinear Algebra 23 (1988), no. 3, 269-276.
766. Y. Ijiri, On the generalized inverse of an incidence matrix, J. Soc. Indust. Appl. Math. 13 (1965), 941945.
767. K. D. Ikramov, An algebraic proof of a result by Gonzaga and Lara, Linear Algebra and its Applications 299 (1999), no. 1-3, 191-194.
768. I. C. F. Ipsen, An overview of relative $\sin \theta$ theorems for invariant subspaces of complex matrices, J. Comput. Appl. Math. 123 (2000), no. 1-2, 131153.
769. I. C. F. Ipsen and C. D. Meyer, Jr., The angle between complementary subspaces, Amer. Math. Monthly 102 (1995), no. 10, 904-911.
770. _ The idea behind Krylov methods, Amer. Math. Monthly 105 (1998), no. 10, 889-899.
771. C. Itiki, R. E. Kalaba, and F. E. Udwadia, Appell's equations of motion and the generalized inverse form, Recent trends in optimization theory and applications, World Sci. Publishing, River Edge, NJ, 1995, pp. 123-143.
772. Saichi Izumino, Convergence of generalized inverses and spline projectors, J. Approx. Theory 38 (1983), no. 3, 269-278.
773. N. Jacobson, An application of E. H. Moore's determinant of a Hermitian matrix, Bull. Amer. Math. Soc. 45 (1939), 745-748.
774. S. K. Jain, Nonnegative rectangular matrices having certain nonnegative W-weighted group inverses, Proc. Amer. Math. Soc. 85 (1982), no. 1, 1-9.
775. S. K. Jain, S. K. Mitra, and H. -J. Werner, Extensions of \mathcal{G}-based matrix partial orders, SIAM J. Matrix Anal. Appl. 17 (1996), no. 4, 834-850.
776. D. James, Implicit nullspace iterative methods for constrained least squares problems, SIAM J. Matrix. Anal. Appl. 13 (1992), 962-978.
777. D. R. Jensen, Minimal properties of Moore-Penrose inverses, Linear Algebra and its Applications 196 (1994), 175-182.
778. J. W. Jerome and L. L. Schumaker, A note on obtaining natural spline functions by the abstract
approach of Atteia and Laurent, SIAM J. Numer. Anal. 5 (1968), 657-663.
779. Jun Ji, The algebraic perturbation method for generalized inverses, J. Comput. Math. 7 (1989), no. 4, 327-333.
780. \qquad , An alternative limit expression of Drazin inverse and its application, Appl. Math. Comput. 61 (1994), no. 2-3, 151-156.
781. Sheng Jiang, Angles between Euclidean subspaces, Geom. Dedicata 63 (1996), no. 2, 113-121.
782. L. Jódar, A. G. Law, A. Rezazadeh, J. H. Weston, and G. Wu, Computations for the Moore Penrose and other generalized inverses, Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1990), vol. 80, 1991, pp. 57-64.
783. J. A. John, Use of generalized inverse matrices in MANOVA, J. Roy. Statist. Soc. Ser. B 32 (1970), 137-143.
784. P. W. M. John, Pseudo-inverses in the analysis of variance, Ann. Math. Statist. 35 (1964), 895-896.
785. C. R. Johnson, M. K. Kerr, and D. P. Stanford, Semipositivity of matrices, Linear and Multilinear Algebra 37 (1994), no. 4, 265-271, (see [1585]).
786. C. R. Johnson, R. Loewy, D. D. Olesky, and P. van den Driessche, Maximizing the spectral radius of fixed trace diagonal perturbations of nonnegative matrices, Linear Algebra and its Applications 241/243 (1996), 635-654.
787. J. Jones, Jr., On the Lyapunov stability criteria, J. Soc. Indust. Appl. Math. 13 (1965), 941-945.
788. \qquad , Solution of certain matrix equations, Proc. Amer. Math. Soc. 31 (1972), 333-339.
789. Jon Jones, N. P. Karampetakis, and A. C. Pugh, The computation and application of the generalized inverse via Maple, J. Symbolic Comput. 25 (1998), no. 1, 99-124.
790. F. Jongmans, Resolution numérique de l'équation matricielle $A X B=C$, Simon Stevin 34 (1960/1961), 3-26.
791.__, Retour critique sur l'équation matricielle $A X B=C$, Hommage au Professeur Lucien Godeaux, Librairie Universitaire, Louvain, 1968, pp. 127-134.
792. V. N. Joshi, Remarks on iterative methods for computing the generalised inverse, Studia Sci. Math. Hungar. 8 (1973), 457-461.
793. \qquad , A determinant for rectangular matrices, Bull. Austral. Math. Soc. 21 (1980), no. 1, 137146.
794. V. N. Joshi and R. P. Tewarson, On solving illconditioned systems of linear equations, Trans. New York Acad. Sci. (2) 34 (1972), 565-571.
795. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin de l'Académie Polonaise des Sciences et Lettres A35 (1937), 355357.
796. D. G. Kaffes, An inequality for matrices, Bull. Soc. Math. Grèce (N.S.) 22 (1981), 143-159.
797. D. G. Kaffes, T. Mathew, M. Bhaskara Rao, and K. Subramanyam, On the matrix convexity of the Moore-Penrose inverse and some applications, Linear and Multilinear Algebra 24 (1989), no. 4, 265271.
798. W. Kahan, Huge generalized inverses of rankdefficient matrices, University of Calfornia at Berkley, 2001, (online lecture notes).
799. S. Kakutani, Some characterizations of Euclidean spaces, Japan J. Math. 16 (1939), 93-97.
800. Radoslaw Kala, Projectors and linear estimation in general linear models, Comm. Statist. A-Theory Methods 10 (1981), no. 9, 849-873.
801. R. E. Kalaba and F. E. Udwadia, On constrained motion, Appl. Math. Comput. 51 (1992), no. 1, 85-86.
802.
_, Lagrangian mechanics, Gauss' principle, quadratic programming, and generalized inverses: new equations for non-holonomically constrained discrete mechanical systems, Quart. Appl. Math. 52 (1994), no. 2, 229-241.
803. R. E. Kalaba, F. E. Udwadia, and R. Xu, Constrained motion revisited, Appl. Math. Comput. 70 (1995), no. 1, 67-76.
804. R. E. Kalaba, F. E. Udwadia, R. Xu, and C. Itiki, The equivalence of Lagrange's equations of motion of the first kind and the generalized inverse form, Nonlinear World 2 (1995), no. 4, 519-526.
805. R. E. Kalaba and Rong Xu, On the generalized inverse form of the equations of constrained motion, Amer. Math. Monthly 102 (1995), no. 9, 821-825.
806. C. Kallina, A Green's function approach to perturbations of periodic solutions, Pacific J. Math. 29 (1969), 325-334.
807. R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana 5 (1960), no. 2, 102-119.
808. \qquad , A new approach to linear filtering and prediction problems, Trans. ASME Ser. D. J. Basic Eng. 82 (1960), 35-45.
809. \qquad , New results in linear filtering and prediction problems, Trans. ASME Ser. D. J. Basic Eng. 83 (1961), 95-107.
810. \qquad , Mathematical description of linear dynamical systems, SIAM J. Control 1 (1963), 152-192.
811. \qquad , Algebraic aspects of the generalized inverses of a rectangular matrix, Generalized Inverses and Applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973) (M. Z. Nashed, ed.), Academic Press, New York, 1976, pp. 189-213.
812. R. E. Kalman, Y. C. Ho, and K. S. Narendra, Controllability of linear dynamical systems, Contributions to Differential Equations, Vol. I, Interscience, New York, 1963, pp. 189-213.
813. W. J. Kammerer and M. Z. Nashed, A generalization of a matrix iterative method of g. cimmino to best approximate solution of linear integral equations of the first kind, Atti Accad. Naz. Lincei

Rend. Cl. Sci. Fis. Mat. Natur. (8) 51 (1971), 2025.
814. \qquad , Steepest descent for singular linear operators with nonclosed range, Applicable Anal. 1 (1971), no. 2, 143-159.
815. \qquad , Iterative methods for best approximate solutions of linear integral equations of the first and second kinds, J. Math. Anal. Appl. 40 (1972), 547573.
816. \qquad , On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9 (1972), 165-181.
817. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964, (translated from Russian).
818. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis, Interscience, New York, 1958, (translated from Russian).
819. N. P. Karampetakis, Computation of the generalized inverse of a polynomial matrix and applications, Linear Algebra and its Applications 252 (1997), 35-60.
820._, Generalized inverses of two-variable polynomial matrices and applications, Circuits Systems Signal Process. 16 (1997), no. 4, 439-453.
821. I. Karasalo, A criterion for truncation of the $Q R$ decomposition algorithm for the singular linear least squares problem, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 156-166.
822. S. Kass, Spaces of closest fit, Linear Algebra and its Applications 117 (1989), 93-97.
823. A. K. Katsaggelos and S. N. Efstratiadis, A class of iterative signal restoration algorithms, IEEE Trans. Acoust. Speech Signal Process. 38 (1990), no. 5, 778-786.
824. I. J. Katz, Wiegmann type theorems for $E P_{r} m a-$ trices, Duke Math. J. 32 (1965), 423-427.
825. \qquad , Remarks on a paper of Ben-Israel, SIAM J. Appl. Math. 18 (1970), 511-513.
826. I. J. Katz and M. H. Pearl, On EPr and normal EPr matrices, J. Res. Nat. Bur. Standards Sect. B 70B (1966), 47-77.
827. _, Solutions of the matrix equation $A^{*}=$ $X A=A X$, J. London Math. Soc. 41 (1966), 443452.
828. L. Kaufman and V. Pereyra, A method for separable nonlinear least squares problems with separable nonlinear equality constraints, SIAM J. Numer. Anal. 15 (1978), no. 1, 12-20.
829. H. B. Keller, On the solution of singular and semidefinite linear systems by iteration, SIAM Journal on Numerical Analysis 2 (1965), 281-290.
830. S. Keller-McNulty and W. J. Kennedy, Error-free computation of the Moore-Penrose inverse with application to linear least squares analysis, J. Statist. Comput. Simulation 27 (1987), no. 1, 45-64.
831. J. D. Kelly, A regularization approach to the reconciliation of constrained data sets, Computers \& Chemical Engineering 22 (1998), 1771-1788.
832. I. M. Khabaza, An iterative least-square method suitable for solving large sparse matrices, Comput. J. 6 (1963/1964), 202-206.
833. C. G. Khatri, A note on a commutative g-inverse of a matrix, Sankhyā Ser. A 32 (1970), 299-310.
834. _ , A representation of a matrix and its use in the Gauss-Markoff model, J. Indian Statist. Assoc. 20 (1982), 89-98.
835. \qquad , A generalization of Lavoie's inequality concerning the sum of idempotent matrices, Linear Algebra and its Applications 54 (1983), 97-108.
836. \qquad , Commutative g-inverse of a matrix, Math. Today 3 (1985), 37-40.
837. \qquad , A note on idempotent matrices, Linear Algebra and its Applications 70 (1985), 185-195.
838. \qquad , Study of redundancy of vector variables in canonical correlations, Comm. Statist. Theory Methods 18 (1989), no. 4, 1425-1440.
839. C. G. Khatri and S. K. Mitra, Hermitian and nonnegative solutions of linear matrix equations, SIAM J. Appl. Math. 31 (1976), 579-585.
840. C. G. Khatri and C. R. Rao, Some extensions of the Kantorovich inequality and statistical applications, J. Multivariate Anal. 11 (1981), no. 4, 498-505.
841. Byung Chun Kim and Jang Taek Lee, The MoorePenrose inverse for the classificatory models, J. Korean Statist. Soc. 15 (1986), no. 1, 46-61.
842. Doh-Hyun Kim and Jun-Ho Oh, The MoorePenrose inverse for the classificatory models, Control Engineering Practice 7 (1999), no. 3, 369-373.
843. S. Kim, Generalized inverses in numerical solutions of Cauchy singular integral equations, Commun. Korean Math. Soc. 13 (1998), no. 4, 875-888.
844. \qquad , Numerical solutions of cauchy singular integral equations using generalized inverses, Computers \& Mathematics with Applications 38 (1999), no. 5-6, 183-195.
845. Chen F. King, A note on Drazin inverses, Pacific J. Math. 70 (1977), no. 2, 383-390.
846. M. J. L. Kirby, Generalized Inverses and Chance Constrained Programming, Applied math., Northwestern Univ., Evanston, IL, June 1965.
847. S. J. Kirkland, The group inverse associated with an irreducible periodic nonnegative matrix, SIAM J. Matrix Anal. Appl. 16 (1995), no. 4, 1127-1134.
848. S. J. Kirkland and M. Neumann, Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model, SIAM J. Matrix Anal. Appl. 15 (1994), no. 4, 10921107.
849. __, Group inverses of M-matrices associated with nonnegative matrices having few eigenvalues, Proceedings of the Workshop "Nonnegative Matrices, Applications and Generalizations" and the Eighth Haifa Matrix Theory Conference (Haifa, 1993), vol. 220, 1995, pp. 181-213.
850. \quad, The M-matrix group generalized inverse problem for weighted trees, SIAM J. Matrix Anal. Appl. 19 (1998), no. 1, 226-234 (electronic).
851. \qquad times for random walks on graphs, SIAM J. Matrix Anal. Appl. 20 (1999), no. 4, 860-870 (electronic).
852. \qquad , On group inverses of M-matrices with uniform diagonal entries, Linear Algebra and its Applications 296 (1999), no. 1-3, 153-170.
853. \qquad , Extremal first passage times for trees, Linear and Multilinear Algebra 48 (2000), 21-33.
854. \qquad , Regular Markov chains for which the transition matrix has large exponent, Linear Algebra and its Applications 316 (2000), no. 1-3, 45-65.
855. S. J. Kirkland, M. Neumann, and B. L. Shader, Distances in weighted trees and group inverse of Laplacian matrices, SIAM J. Matrix Anal. Appl. 18 (1997), no. 4, 827-841.
856. \qquad , Applications of Paz's inequality to perturbation bounds for Markov chains, Linear Algebra and its Applications 268 (1998), 183-196.
857. \qquad , Bounds on the subdominant eigenvalue involving group inverses with applications to graphs, Czechoslovak Math. J. 48(123) (1998), no. 1, 120.
858. \qquad , On a bound on algebraic connectivity: the case of equality, Czechoslovak Math. J. 48(123) (1998), no. 1, 65-76.
859. F. H. Kishi, On line computer control techniques and their application to re-entry aerospace vehicle control, Advances in Control Systems Theory and Applications (C. T. Leondes, Editor), Academic Press, New York, 1964, pp. 245-257.
860. V. Klee, Review of 'linearity of best approximations: A characterization of ellipsoids' (Rudin and Smith), Math. Reviews 23 (1962), A2028.
861. A. Klinger, Approximate pseudoinverse solutions to ill-conditioned linear systems, J. Optimization Th. Appl. 2 (1968), 117-128.
862. A. V. Knyazev and M. E. Argentati, An effective and robust algorithm for finding principal angles between subspaces using an A-based scalar product, Tech. Report 163, Center for Computational Mathematics, University of Colorado at Denver, August 2000.
863. M. Koecher, The generalized inverse of integral matrices, Linear Algebra and its Applications 71 (1985), 187-198.
864. E. G. Kogbetliantz, Solution of linear systems by diagonalization of coefficients matrix, Quarterly of Applied Mathematics 13 (1955), 123-132.
865. J. J. Koliha, Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48 (1974), 446-469.
866. \qquad , Pseudo-inverses of operators, Bull. Amer. Math. Soc. 80 (1974), 325-328.
867. , A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381.
868. EP matrices, Linear Algebra and its Applications 294 (1999), no. 1-3, 213-215.
869. \qquad , Elements of C^{*}-algebras commuting with their Moore-Penrose inverse, Studia Math. 139 (2000), no. 1, 81-90.
870. J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse. II, Studia Math. 131 (1998), no. 2, 167-177.
871. J. J. Koliha and Ivan Straškraba, Power bounded and exponentially bounded matrices, Appl. Math. 44 (1999), no. 4, 289-308.
872. A. Korányi, Around the finite-dimensional spectral theorem, Amer. Math. Monthly 108 (2001), 120125.
873. André Korganoff and Monica Pavel-Parvu, Méthodes de calcul numérique. Tome II: Éléments de théorie des matrices carrées et rectangles en analyse numérique, Dunod, Paris, 1967.
874. V. M. Korsukov, An application of iteration methods to the computation of semi-inverses of matrices, Optimization methods and operations research, applied mathematics (Russian), Akad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Ènerget. Inst., Irkutsk, 1976, pp. 171-173, 191.
875. _ Some properties of generalized inverse matrices, Degenerate systems of ordinary differential equations, "Nauka" Sibirsk. Otdel., Novosibirsk, 1982, pp. 19-37.
876. Mathew Koshy and R. P. Tewarson, On the use of restricted pseudo-inverses for the unified derivation of quasi-Newton updates, IMA J. Numer. Anal. 5 (1985), no. 2, 141-151.
877. S. Kourouklis and C. C. Paige, A constrained least squares approach to the general Gauss-Markov linear model, J. Amer. Statist. Assoc. 76 (1981), no. $375,620-625$.
878. Olaf Krafft, An arithmetic-harmonic-mean inequality for nonnegative definite matrices, Linear Algebra and its Applications 268 (1998), 243-246.
879. R. G. Kreijger and H. Neudecker, Exact linear restrictions on parameters in the general linear model with a singular covariance matrix, J. Amer. Statist. Assoc. 72 (1977), no. 358, 430-432.
880. M. G. Kreĭn, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947), 431-495.
881. _, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat. Sbornik N.S. 21(63) (1947), 365-404.
882. R. Kress, On the Fredholm alternative, Integral Equations Operator Theory 6 (1983), no. 3, 453457.
883. E. V. Krishnamurthy, Fast parallel exact computation of the Moore-Penrose inverse and rank of a matrix, Elektron. Informationsverarb. Kybernet. 19 (1983), no. 1-2, 95-98.
884. W. Kruskal, The coordinate-free approach to Gauss-Markov estimation, and its application to
missing and extra observations, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I, Univ. California Press, Berkeley, Calif., 1961, pp. 435451.
885. \qquad , When are Gauss-Markov and least squares estimators identical? A coordinate-free approach, Ann. Math. Statist 39 (1968), 70-75, (see [634]).
886. \qquad , The geometry of generalized inverses, J. Roy. Statist. Soc. Ser. B 37 (1975), 272-283, (correction in J. Roy. Statist. Soc. Ser. B48(1986), 258).
887. Jiao Xun Kuang, The representation and approximation of Drazin inverses of linear operators, Numer. Math. J. Chinese Univ. 4 (1982), no. 2, 97106.
888. ___, Approximate methods for generalized inverses of operators in Banach spaces, J. Comput. Math. 11 (1993), no. 4, 323-328.
889. V. N. Kublanovskaya, On the calculation of generalized inverses and projections (Russian), Z. Vycisl. Mat. i Mat. Fiz. 6 (1966), 326-332.
890. H. W. Kuhn (ed.), Proceedings Princeton Sympos. Math. Prog., Princeton, NJ, Princeton Univ. Press, 1970.
891. S. H. Kulkarni and K. C. Sivakumar, Applications of generalized inverses to interval linear programs in Hilbert spaces, Numer. Funct. Anal. Optim. 16 (1995), no. 7-8, 965-973.
892._, Explicit solutions of a special class of linear programming problems in Banach spaces, Acta Sci. Math. (Szeged) 62 (1996), no. 3-4, 457-465.
893. P. Kunkel and V. Mehrmann, Generalized inverses of differential-algebraic operators, SIAM J. Matrix Anal. Appl. 17 (1996), no. 2, 426-442.
894. I Wen Kuo, The Moore-Penrose inverses of singular M-matrices, Linear Algebra and Appl. 17 (1977), no. 1, 1-14.
895. M. C. Y. Kuo and L. F. Mazda, Mimimum energy problems in Hilbert function space, J. Franklin Inst. 283 (1967), 38-54.
896. S. Kurepa, Generalized inverse of an operator with a closed range, Glasnik Mat. 3 (1968), no. 23, 207214.
897. B. Kutzler and V. Kokol-Voljc, Introduction to Derive 5, Texas Instruments, Dallas, TX 75265, 2000.
898. C. D. LaBudde and G. R. Verma, On the computation of a generalized inverse of a matrix, Quart. Appl. Math. 27 (1969), 391-395.
899. B. F. Lamond, An efficient factorization for the group inverse, SIAM J. Algebraic Discrete Methods 8 (1987), no. 4, 797-808.
900. \qquad , A generalized inverse method for asymptotic linear programming, Math. Programming 43 (1989), no. 1 (Ser. A), 71-86.
901. B. F. Lamond and M. L. Puterman, Generalized inverses in discrete time Markov decision processes, SIAM J. Matrix Anal. Appl. 10 (1989), no. 1, 118134.
902. P. Lancaster, Explicit solutions of linear matrix equations, SIAM Rev. 12 (1970), 544-566.
903. \qquad , A fundemental theorem on lambdamatrices with applications - I. ordinary differential equations with constant coefficients, Linear Algebra and Its Applications 18 (1977), 189-211.
904. \qquad , A fundemental theorem on lambdamatrices with applications-II. difference equations with constant coefficients, Linear Algebra and Its Applications 18 (1977), 213-222.
905. P. Lancaster and J. G. Rokne, Solutions of nonlinear operator equations, SIAM Journal on Mathematical Analysis 8 (1977), 448-457.
906. C. Lanczos, Linear systems in self-adjoint form, Amer. Math. Monthly 65 (1958), 665-679.
907. \qquad , Linear Differential Operators, D. Van Nostrand, Co., Princeton, 1961.
908. E. M. Landesman, Hilbert-space methods in elliptic partial differential equations, Pacific J. Math. 21 (1967), 113-131.
909. P. M. Lang, J. M. Brenchley, R. G. Nieves, and J. H. Kalivas, Cyclic subspace regression, J. Multivariate Anal. 65 (1998), no. 1, 58-70.
910. C. E. Langenhop, On generalized inverses of matrices, SIAM J. Appl. Math. 15 (1967), 1239-1246.
911. \qquad The Laurent expansion for a nearly singular matrix, Linear Algebra and its Applications 4 (1971), 329-340.
912._, On the invertibiliby of a nearly singular matrix, Linear Algebra and its Applications 7 (1973), 361-365.
913. L. J. Lardy, A series representation for the generalized inverse of a closed linear operator, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 2, 152-157.
914. Ty A. Lasky and B. Ravani, Sensor-based path planning and motion control for a robotic system for roadway crack sealing, IEEE Transactions on Control Systems Technology 8 (2000), 609-622.
915. K. J. Latawiec, S. Bańka, and J. Tokarzewski, Control zeros and nonminimum phase lti mimo systems, Annual Reviews in Control 24 (2000), no. 1, 105-112.
916. P. -J. Laurent, Approximation et Optimisation. collection enseignement des sciences, no. 13, Hermann, Paris, 1972.
917. \qquad , Quadratic convex analysis and splines, Methods of Functional Analysis in Approximation Theory (Bombay, 1985), Birkhäuser, Basel, 1986, pp. 17-43.
918. J. -L. Lavoie, A determinantal inequality involving the Moore-Penrose inverse, Linear Algebra and its Applications 31 (1980), 77-80.
919. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1974, (reprinted, Classics in Applied Mathematics, 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. xii +337 pp).
920. E. B. Leach, A note on inverse function theorems, Proc. Amer. Math. Soc. 12 (1961), 694-697.
921. \qquad , On a related function theorem, Proc. Amer. Math. Soc. 14 (1963), 687-689.
922. G. G. Lendaris, K. Mathia, and R. Saeks, Linear Hopfield networks and constrained optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29 (1999), 114-118.
923. G. -S. Leng and Y. Zhang, Vertex angles for simplices, Applied Mathematics Letters 12 (1999), 15.
924. A. H. Lent, Wiener-Hopf Operators and Factorizations, Doctoral dissertation in applied mathematics, Northwestern Univertsity, Evanston, IL, June 1971.
925. A. S. Leonov, Approximate calculation of a pseudoinverse matrix by means of the generalized residual principle, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), no. 6, 933-935, 959.
926. \qquad , The method of a minimal pseudoinverse matrix for solving ill-posed problems of linear algebra, Dokl. Akad. Nauk SSSR 285 (1985), no. 1, 36-40, (English translation: Soviet Math. Dokl. 32(1985), no. 3, 628-632).
927. \qquad , The method of a minimal pseudoinverse matrix, Zh. Vychisl. Mat. i Mat. Fiz. 27 (1987), no. $8,1123-1138,1276$.
928. \qquad The minimal pseudo-inverse matrix method: theory and numerical realization, Zh. Vychisl. Mat. i Mat. Fiz. 31 (1991), no. 10, 1427-1443.
929. \qquad , The method of minimal pseudoinversed matrix. Basic statements, Ill-posed problems in natural sciences (Moscow, 1991), VSP, Utrecht, 1992, pp. 57-62.
930. Ö. Leringe and P.- \AA. Wedin, A comparison between different methods to compute a vector \mathbf{x} which minimizes $\|A \mathbf{x}-\mathbf{b}\|_{2}$ when $G \mathbf{x}=\mathbf{h}$, Department of computer science, Lund University, Lund, Sweden, March 1970.
931. G. Lešnjak, Semigroups of EP linear transformations, Linear Algebra and its Applications 304 (2000), no. 1-3, 109-118.
932. Y. Levin and A. Ben-Israel, Inverse-free methods for systems of nonlinear equations, RUTCORRutgers Ctr. Oper. Res. 58-2000, Rutgers University, Piscataway, NJ, 2000.
933. \qquad , Directional Halley and quasi-Halley methods in n variables, Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Amsterdam) (D. Butnariu, Y. Censor, and S. Reich, eds.), Elsevier Science, 2001.
934. \qquad _, Directional Newton methods in n variables, Mathematics of Computations (2001).
935._, The Newton bracketing method for convex minimization, Computational Optimization and Applications (2001).
936. \qquad , A Newton method for systems of m equations in n variables, Nonlinear Analysis (2001).
937. Y. Levin, M. Nediak, and A. Ben-Israel, A direct approach to calculus of variations via NewtonRaphson method, Comput. \& Applied Mathematics (2001).
938. J. Levine and R. E. Hartwig, Applications of the Drazin inverse to the Hill cryptographic system. I, Cryptologia 4 (1980), no. 2, 71-85.
939._, Applications of the Drazin inverse to the Hill cryptographic system. II, Cryptologia 4 (1980), no. 3, 150-168.
940. B. C. Levy, A note on the hyperbolic singular value decomposition, Linear Algebra and its Applications 277 (1998), no. 1-3, 135-142.
941. A. S. Lewis, The convex analysis of unitarily invariant matrix functions, J. Convex Anal. 2 (1995), no. 1-2, 173-183.
942. T. O. Lewis, T. L. Boullion, and P. L. Odell, A bibliography on generalized matrix inverses, In Boullion and Odell [207], pp. 283-315.
943. T. O. Lewis and T. G. Newman, Pseudoinverses of positive semidefinite matrices, SIAM J. Appl. Math. 16 (1968), 701-703.
944. T. O. Lewis and P. L. Odell, A generalization of the Gauss-Markov theorem, J. Amer. Statist. Assoc. 61 (1966), 1063-1066.
945. Bin Li, Yinghui Li, and Xuegang Ying, Dynamic modeling and simulation of flexible cable with large sag, Applied Mathematics and Mechanics (English Edition) 21 (2000), 707-714.
946. Chi-Kwong Li and R. Mathias, Extremal characterizations of the Schur complement and resulting inequalities, SIAM Rev. 42 (2000), no. 2, 233-246 (electronic).
947. Chi-Kwong Li and Nam-Kiu Tsing, Some isometries of rectangular complex matrices, Linear and Multilinear Algebra 23 (1988), no. 1, 47-53.
948. Ren Cang Li, Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils, Linear Algebra and its Applications 182 (1993), 199-234.
949. Ren-Cang Li, A perturbation bound for the generalized polar decomposition, BIT 33 (1993), no. 2, 304-308.
950. \qquad , Relative perturbation theory. III. More bounds on eigenvalue variation, Linear Algebra and its Applications 266 (1997), 337-345.
951. \qquad , Relative perturbation theory. I. Eigenvalue and singular value variations, SIAM J. Matrix Anal. Appl. 19 (1998), no. 4, 956-982 (electronic). 952. \qquad , Relative perturbation theory. II. Eigenspac』 and singular subspace variations, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 471-492 (electronic).
953._, Relative perturbation theory. IV. $\sin 2 \theta$ theorems, Linear Algebra and its Applications 311 (2000), no. 1-3, 45-60.
954. Ren-Cang Li and G. W. Stewart, A new relative perturbation theorem for singular subspaces, Linear Algebra and its Applications 313 (2000), no. 1-3, 41-51.
955. Ping Liang, Su Huan Chen, and Cheng Huang, Moore-Penrose inverse method of topological variation of finite element systems, Comput. \& Structures 62 (1997), no. 2, 243-251.
956. Yi Liang and Xue Rong Yong, Group inverses of block matrices, J. Xinjiang Univ. Natur. Sci. 9 (1992), no. 4, 34-39.
957. A. E. Liber, On the theory of generalized groups, Doklady Akad. Nauk SSSR (N.S.) 97 (1954), 2528.
958. D. K. Lika, The application of generalized inverse operators in iteration processes, Mat. Issled. 10 (1975), no. 2(36), 264-270, 289.
959. K. -W. Lin and A. R. Sanford, Improving regional earthquake locations using a modified G matrix and fuzzy logic, Bulletin of the Seismological Society of America 91 (2001), no. 1-2, 82-93.
960. Shwu-Yeng T. Lin and You Feng Lin, The n dimensional Pythagorean theorem, Linear and Multilinear Algebra 26 (1990), no. 1-2, 9-13, (see [164]).
961. E. P. Liski, On Löwner-ordering antitonicity of matrix inversion, Acta Math. Appl. Sinica (English Ser.) 12 (1996), no. 4, 435-442.
962. E. P. Liski and S. Puntanen, A further note on a theorem on the difference of the generalized inverses of two nonnegative definite matrices, Comm. Statist. Theory Methods 18 (1989), no. 5, 17471751.
963. E. P. Liski and Song Gui Wang, Another look at the naive estimator in a regression model, Metrika 41 (1994), no. 1, 55-64.
964. \qquad , On the $\{2\}$-inverse and some ordering properties of nonnegative definite matrices, Acta Math. Appl. Sinica (English Ser.) 12 (1996), no. 1, 22-27.
965. W. G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971), 37-55.
966. X. Liu and D. Liu, Recursive computation of generalized inverses with application to optimal state estimation, Control Theory Adv. Tech. 10 (1995), 1485-1497.
967. J. Locker, An existence analysis for nonlinear equations in Hilbert space, Trans. Amer. Math. Soc. 128 (1967), 403-413.
968. \qquad , An existence analysis for nonlinear boundary value problems, SIAM J. Appl. Math. 19 (1970), 199-207.
969. A. T. Lonseth, Approximate solutions of Fredholmtype integral equations, Bull. Amer. Math. Soc. 60 (1954), 415-430.
970. J. López and V. Guerra, On the computing of the pseudoinverse by Leonov's minimal method, Revista Investigación Operacional 17 (1996).
971. \qquad , Maximum balance criterion for choosing the parameter λ in the minimal pseudoinverse method, Revista Investigación Operacional 21 (2000).
972. W. S. Loud, Some singular cases of the implicit function theorem, Amer. Math. Monthly 68 (1961), 965-977.
973. \qquad Generalized inverses and generalized Green's functions, SIAM J. Appl. Math. 14 (1966), 342-369.
974. _ Some examples of generalized Green's functions and generalized Green's matrices, SIAM Rev. 12 (1970), 194-210.
975._, A bifurcation application of the generalized inverse of a linear differential operator, SIAM J. Math. Anal. 11 (1980), no. 3, 545-558.
976. V. Lovass-Nagy, R. J. Miller, and D. L. Powers, On system realization by matrix generalized inverses, Internat. J. Control 26 (1977), no. 5, 745-751, (see correction in [454]).
977. V. Lovass-Nagy and D. L. Powers, On the commuting reciprocal inverse of some partitioned matrices, Linear Algebra and its Applications 4 (1971), 183190.
978. V. Lovass-Nagy and D. L. Powers, A note on the "Y-inverse" of a matrix, Internat. J. Control (1) 18 (1973), 1113-1115.
979. , A relation between the Moore-Penrose and commuting reciprocal inverses, SIAM J. Appl. Math. 24 (1973), 44-49.
980. \qquad , On a relation among generalized inverses, with application to the Moore-Penrose inverse of certain Toeplitz matrices, Indust. Math. 24 (1974), 67-76.
981. , Matrix generalized inverses in the handling of control problems containing input derivatives, Internat. J. Systems Sci. 6 (1975), 693-696.
982. \qquad , On rectangular systems of differential equations and their application to circuit theory, J. Franklin Inst. 299 (1975), no. 6, 399-407.
983. Per-Olov Löwdin, Studies in perturbation theory. IV. Solution of eigenvalue problem by projection operator formalism, J. Mathematical Phys. 3 (1962), 969-982.
984. Glenn R. Luecke, A numerical procedure for computing the Moore-Penrose inverse, Numer. Math. 32 (1979), no. 2, 129-137.
985. G. Lukács, The generalized inverse matrix and the surface-surface intersection problem, Theory and practice of geometric modeling (Blaubeuren, 1988), Springer, Berlin, 1989, pp. 167-185.
986. C. C. MacDuffee, The theory of matrices, Chelsea, New York, 1956.
987. G. Maeß, A projection method solving general linear algebraic equations, Rostock. Math. Kolloq. 12 (1979), 77-85, (extension of results of [1420]).
988. _ Iterative solution of rectangular systems of linear algebraic equations, Computational mathematics (Warsaw, 1980) (Warsaw), PWN, 1984, pp. 527-533.
989. G. Maeß and W. Peters, Lösung inkonsistenter linearer Gleichungssysteme und Bestimmung einer Pseudoinversen für rechteckige Matrizen durch

Spaltenapproximation, Z. Angew. Math. Mech. 58 (1978), no. 4, 233-237.
990. J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley \& Sons Ltd., Chichester, 1999, (revised reprint of the 1988 original).
991. P. J. Maher, Some operator inequalities concerning generalized inverses, Illinois J. Math. 34 (1990), no. 3, 503-514.
992. \qquad , Some norm inequalities concerning generalized inverses, Linear Algebra and its Applications 174 (1992), 99-110.
993. Timo Mäkeläinen, Projections and generalized inverses in the general linear model, Soc. Sci. Fenn. Comment. Phys.-Math. 38 (1970), 13-25.
994. R. K. Manherz, New energy theorems in Fourier transform theory, Proc. IEEE 57 (1969), 826-827.
995. R. K. Manherz and S. L. Hakimi, The generalized inverse in network analysis and quadratic errorminimization problems, IEEE Trans. Circuit Theory CT-16 (1969), 559-562.
996. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn \& Bacon, Boston, Mass., 1964.
997. T. L. Markham, An application of theorems of Schur and Albert, Proc. Amer. Math. Soc. 59 (1976), no. 2, 205-210.
998. D. W. Marquardt, Generalized inverses, ridge regression, biased linear estimation, and nonlinear regression, Technometrics 12 (1970), 591-613.
999. G. Marsaglia, Conditional means and variances of normal variables with singular convariance matrix, J. Amer. Statist. Assoc. 58 (1964), 1203-1204.
1000. G. Marsaglia and G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974/75), 269-292.
1001. J. T. Marti, An algorithm for computing minimum norm solutions of Fredholm integral equations of the first kind, SIAM J. Numer. Anal. 15 (1978), no. 6, 1071-1076, (see [729]).
1002. R. S. Martin, G. Peters, and J. H. Wilkinson, Iterative refinement of the solution of a positive definite system of equations, Numer. Math. 8 (1966), 203-216, (republished, pp. 31-44 in [1598]).
1003. J. M. Martínez, A bound for the Moore-Penrose pseudoinverse of a matrix, Comment. Math. Univ. Carolin. 20 (1979), no. 2, 357-360.
1004. E. Martínez-Torres, Formulation of the vibrational theory in terms of redundant internal coordinates, Journal of Molecular Structure 520 (2000), 53-61.
1005. T. Mathew and S. K. Mitra, Shorted operators and the identification problem-the real case, IEEE Trans. Circuits and Systems 31 (1984), no. 3, 299300.
1006. J. C. Maxwell, Treatise of Electricity and Magnetism, 3rd ed., vol. I, Oxford University Press, Oxford, 1892.
1007. D. Q. Mayne, An algorithm for the calculation of the pseudo-inverse of a singular matrix, Comput. J. 9 (1966), 312-317.
1008. \qquad On the calculation of pseudoinverses, IEEE Trans. Automatic Control AC-14 (1969), 204-205.
1009. N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc. 45 (1939), 175-178.
1010. J. S. McMath and S. E. Sims, Mean value theorems for a matrix valued derivative, Linear and Multilinear Algebra 9 (1980/81), no. 4, 255-261.
1011. J. S. McMath, S. E. Sims, and C. R. Hallum, On the properties of a matrix valued derivative utilizing the Moore-Penrose inverse, Linear Algebra and its Applications 18 (1977), no. 3, 281-291, (see [1010]).
1012. __, A comparison of various derivatives for matrix-valued functions, Comput. Math. Appl. 6 (1980), no. 2, 161-166.
1013. A. Meenakshi, On integral $E P_{r}$ matrices, Period. Math. Hungar. 14 (1983), no. 3-4, 229-234.
1014. Ar. Meenakshi and N. Anandam, Polynomial generalized inverses of a partitioned polynomial matrix, J. Indian Math. Soc. (N.S.) 58 (1992), no. 1-4, 11-18.
1015. M. Meicler, Chebyshev solution of an inconsistent system of $n+1$ linear equations in n unknowns in terms of its least squares solution, SIAM Rev. 10 (1968), 373-375.
1016. , A steepest ascent method for the Chebyshev problem, Math. Comp. 23 (1969), 813-817.
1017. E. Meister and F. -O. Speck, The Moore-Penrose inverse of Wiener-Hopf operators on the half axis and the quarter plane, J. Integral Equations 9 (1985), no. 1, 45-61.
1018. G. Merz, Über die Interpolationsaufgabe bei natürlichen Polynom-Splines mit äquidistanten Knoten, J. Approximation Theory 10 (1974), 151158.
1019. C. D. Meyer, Jr., On ranks of pseudoinverses, SIAM Rev. 11 (1969), 382-385.
1020. , On the construction of solutions to the matrix equations $A X=A$ and $Y A=A$, SIAM Rev. 11 (1969), 612-615.
1021. \qquad , Generalized inverses of block triangular matrices, SIAM J. Appl. Math. 19 (1970), 741750.
1022. \qquad , Generalized inverses of triangular matrices, SIAM J. Appl. Math. 18 (1970), 401-406.
1023. \qquad , Some remarks on $E P_{r}$ matrices, and generalized inverses, Linear Algebra and its Applications 3 (1970), 275-278.
1024. __, Representations for (1)- and (1, 2)inverses for partitioned matrices, Linear Algebra and its Applications 4 (1971), 221-232.
1025. __, The Moore-Penrose inverse of a bordered matrix, Linear Algebra and its Applications 5 (1972), 375-382.
1026. \qquad , Generalized inverses and ranks of block matrices, SIAM J. Appl. Math. 25 (1973), 597602.
1027. \qquad , Generalized inversion of modified matrices, SIAM J. Appl. Math. 24 (1973), 315-323.
1028. \qquad Limits and the index of a square matrix, SIAM J. Appl. Math. 26 (1974), 469-478, (see [1309]).
1029. _ , The role of the group generalized inverse in the theory of finite Markov chains, SIAM Rev. 17 (1975), 443-464.
1030. \qquad , Analysis of finite Markov chains by group inversion techniques, In Campbell [267], pp. 50-81.
1031. \qquad , The character of a finite Markov chain, Linear algebra, Markov chains, and queueing models (Minneapolis, MN, 1992), Springer, New York, 1993, pp. 47-58.
1032. C. D. Meyer, Jr. and R. J. Painter, Note on a least squares inverse for a matrix, J. Assoc. Comput. Mach. 17 (1970), 110-112.
1033. C. D. Meyer, Jr. and R. J. Plemmons, Convergent powers of a matrix with applications to iterative methods for singular linear systems, SIAM J. Numer. Anal. 14 (1977), no. 4, 699-705.
1034. C. D. Meyer, Jr. and N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1977), no. 1, 1-7.
1035. C. D. Meyer, Jr. and J. M. Shoaf, Updating finite Markov chains by using techniques of group matrix inversion, J. Statist. Comput. Simulation 11 (1980), no. 3-4, 163-181.
1036. C. D. Meyer, Jr. and M. W. Stadelmaier, Singular M-matrices and inverse positivity, Linear Algebra and its Applications 22 (1978), 139-156.
1037. C. D. Meyer, Jr. and G. W. Stewart, Derivatives and perturbations of eigenvectors, SIAM J. Numer. Anal. 25 (1988), no. 3, 679-691.
1038. Jian Ming Miao, The Moore-Penrose inverse of a rank-r modified matrix, Numer. Math. J. Chinese Univ. 11 (1989), no. 4, 355-361.
1039. \qquad , Representations for the weighted MoorePenrose inverse of a partitioned matrix, J. Comput. Math. 7 (1989), no. 4, 321-323.
1040. \qquad , General expressions for the MoorePenrose inverse of a 2×2 block matrix, Linear Algebra and its Applications 151 (1991), 1-15.
1041. Jian Ming Miao and A. Ben-Israel, On principal angles between subspaces in R^{n}, Linear Algebra and its Applications 171 (1992), 81-98.
1042. \qquad , Minors of the Moore-Penrose inverse, Linear Algebra and its Applications 195 (1993), 191207.
1043. _, On l_{p}-approximate solutions of linear equations, Linear Algebra and its Applications 199 (1994), 305-327.
1044. \qquad , The geometry of basic, approximate, and minimum-norm solutions of linear equations, Linear Algebra and its Applications 216 (1995), 2541.
1045. \qquad , Product cosines of angles between subspaces, Linear Algebra and its Applications 237/238 (1996), 71-81.
1046. Jian Ming Miao and D. W. Robinson, Group and Moore-Penrose inverses of regular morphisms with kernel and cokernel, Linear Algebra and its Applications 110 (1988), 263-270.
1047. C. Miehe and J. Schröder, Comparative study of stress update algorithms for rate-independent and rate-dependent crystal plasticity, Internat. J. Numer. Methods Engrg. 50 (2001), 273-298.
1048. L. Mihályffy, A note on the matrix inversion by the partitioning technique, Studia Sci. Math. Hungar. 5 (1970), 127-135.
1049. \qquad , An alternative representation of the generalized inverse of partitioned matrices, Linear Algebra and its Applications 4 (1971), 95-100.
1050. A. J. Miller and B. D. Cornuelle, Forecasts from fits of frontal fluctuations, Dynamics of Atmospheres and Oceans 29 (1999), no. 2-4, 305-333.
1051. G. A. Milliken and F. Akdeniz, A theorem on the difference of the generalized inverses of two nonnegative matrices, Comm. Statist.-Theory Methods A6 (1977), no. 1, 73-79.
1052. R. D. Milne, An oblique matrix pseudoinverse, SIAM J. Appl. Math. 16 (1968), 931-944.
1053. H. W. Milnes, J. Amburgey, T. O. Lewis, and T. L. Boullion, Spectral eigenvalue property of A^{+}for rectangular matrices, In Boullion and Odell [207], pp. 98-113.
1054. N. Minamide and K. Nakamura, Minimum error control problem in banach space, Research Report of Automatic Control Lab 16, Nagoya University, Nagoya, Japan, 1969.
1055. \quad, A restricted pseudoinverse and its applications to constrained minima, SIAM J. Appl. Math. 19 (1970), 167-177.
1056. L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford 11 (1960), 50-59.
1057. S. K. Mitra, A new class of g-inverse of square matrices, Sankhyā Ser. A 30 (1968), 323-330.
1058. \qquad , On a generalized inverse of a matrix and applications, Sankhyā Ser. A 30 (1968), 107-114.
1059. _ Fixed rank solutions of linear matrix equations, Sankhyā Ser. A 35 (1972), 387-392.
1060. \qquad , Common solutions to a pair of linear matrix equations $A_{1} X B_{1}=C_{1}, A_{2} X B_{2}=C_{2}$, Proceedings of the Cambridge Philosophical Society 74 (1973), 213-216.
1061. _ Shorted operators and the identification problem, IEEE Trans. Circuits and Systems 29 (1982), no. 8, 581-583.
1062. _, Shorted matrices in star and related orderings, Circuits Systems Signal Process. 9 (1990), no. 2, 197-212.
1063. \qquad , Matrix partial order through generalized inverses: unified theory, Linear Algebra and its Applications 148 (1991), 237-263.
1064. \qquad its Applications 208/209 (1994), 239-256.
1065. \qquad , Erratum: "The nonunique shorted matrix" [Linear Algebra Appl. 237/238 (1996), 41-70; MR 97a:15012] by Mitra and K. M. Prasad, Linear Algebra and its Applications 260 (1997), 323.
1066. \qquad , Diagrammatic presentation of inner and outer inverses: S-diagrams, Linear Algebra and its Applications 287 (1999), no. 1-3, 271-288.
1067. S. K. Mitra and P. Bhimasankaram, Generalized inverses of partitioned matrices and recalculation of least squares estimates for data or model changes, Sankhyā Ser. A 33 (1971), 395-410.
1068. S. K. Mitra and R. E. Hartwig, Partial orders based on outer inverses, Linear Algebra and its Applications 176 (1992), 3-20.
1069. S. K. Mitra and P. L. Odell, On parallel summability of matrices, Linear Algebra and its Applications 74 (1986), 239-255.
1070. S. K. Mitra and K. M. Prasad, The nonunique shorted matrix, Linear Algebra and its Applications $\mathbf{2 3 7} / \mathbf{2 3 8}$ (1996), 41-70, (erratum in [1065]).
1071. \qquad , The nonunique parallel sum, Linear Algebra and its Applications 259 (1997), 77-99.
1072. S. K. Mitra and M. L. Puri, Shorted operators and generalized inverses of matrices, Linear Algebra and its Applications 25 (1979), 45-56.
1073. \qquad Shorted matrices-an extended concept and some applications, Linear Algebra and its Applications 42 (1982), 57-79.
1074. \qquad , The fundamental bordered matrix of linear estimation and the Duffin-Morley general linear electromechanical systems, Applicable Anal. 14 (1983), no. 4, 241-258.
1075. S. K. Mitra and C. R. Rao, Some results in estimation and tests of linear hypotheses under the Gauss-Markov model, Sankhyā Ser. A 30 (1968), 281-290.
1076. \qquad , Conditions for optimality and valididty of simple least squares theory, Ann. Math. Statist. 40 (1969), 1617-1624.
1077. \qquad , Projections under seminorms and generalized Moore Penrose inverses, Linear Algebra and its Applications 9 (1974), 155-167.
1078. S. Mohideen and V. Cherkassky, On recursive calculation of the generalized inverse of a matrix, ACM Trans. Math. Software 17 (1991), no. 1, 130147.
1079. C. B. Moler, Iterative refinement in floating point, J. Assoc. Comput. Mach. 14 (1967), 316-321.
1080. W. Mönch, Monotone Einschliessung der MoorePenrose Pseudoinversen einer Matrix, Z. Angew. Math. Mech. 58 (1978), no. 2, 67-74.
1081. \qquad , Iterative refinement of approximations to a generalized inverse of a matrix, Computing 28 (1982), no. 1, 79-87.
1082. B. Mond, Generalized inverse extensions of matrix inequalities, Linear Algebra and its Applications 2 (1969), 393-399.
1083. B. Mond and J. E. Pečarić, Inequalities with weights for powers of generalised inverses, Bull. Austral. Math. Soc. 48 (1993), no. 1, 7-12.
1084. \qquad , Inequalities with weights for powers of generalized inverses. II, Linear Algebra and its Applications 210 (1994), 265-272.
1085. \qquad , On matrix convexity of the Moore-Penrose inverse, Internat. J. Math. Math. Sci. 19 (1996), no. 4, 707-710.
1086. \qquad , Hadamard products and generalized inverses, Austral. Math. Soc. Gaz. 25 (1998), no. 4, 194-197.
1087. E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26 (1920), 394-395, (Abstract).
1088. \qquad , General Analysis, Memoirs of the American Philosophical Society, I, American Philosophical Society, Philadelphia, Pennsylvania, 1935.
1089. R. H. Moore and M. Z. Nashed, Approximations of generalized inverses of linear operators in Banach spaces, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973), Academic Press, New York, 1973, pp. 425-428.
1090. \qquad , Approximations to generalized inverses of linear operators, SIAM J. Appl. Math. 27 (1974), 1-16.
1091. C. F. Moppert, On the Gram determinant, Quart. J. Math. Oxford Ser. (2) 10 (1959), 161-164.
1092. T. D. Morley, A Gauss-Markov theorem for infinite-dimensional regression models with possibly singular covariance, SIAM J. Appl. Math. 37 (1979), no. 2, 257-260, (the uniqueness claim in Corollary 3 is incorrect).
1093. \qquad , Parallel summation, Maxwell's principle and the infimum of projections, J. Math. Anal. Appl. 70 (1979), no. 1, 33-41.
1094. \qquad , An alternative approach to the parallel sum, Adv. in Appl. Math. 10 (1989), no. 3, 358369.
1095. G. L. Morris and P. L. Odell, A characterization for generalized inverses of matrices, SIAM Rev. 10 (1968), 208-211.
1096. _ Common solutions for n matrix equations with applications, J. Assoc. Comput. Mach. 15 (1968), 272-274.
1097. L. Moura and R. Kitney, A direct method for leastsquares circle fitting, Comput. Phys. Comm. 64 (1991), no. 1, 57-63, (see [1140]).
1098. W. D. Munn, Pseudoinverses in semigroups, Proc. Cambridge Phil. Soc. 57 (1961), 247-250.
1099. __, Moore-Penrose inversion in complex contracted inverse semigroup algebras, J. Austral. Math. Soc. Ser. A 66 (1999), no. 3, 297-302.
1100. W. D. Munn and R. Penrose, A note on inverse semigroups, Proceedings of the Cambridge Philosophical Society 51 (1955), 396-399.
1101. K. Murakami and T. Aibara, An improvement on the Moore-Penrose generalized inverse associative
memory, IEEE Trans. Systems Man Cybernet. 17 (1987), no. 4, 699-707.
1102. F. D. Murnaghan and A. Wintner, A canonical form for real matrices under orthogonal transformation, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 417-420.
1103. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229.
1104. K. V. V. Murthy and V. Ramachandran, On the ranks of certain matrices, Matrix Tensor Quart. 31 (1980/81), no. 3, 67-69.
1105. K. N. Murty and P. V. S. Lakshmi, On two-point boundary value problems, J. Math. Anal. Appl. 153 (1990), no. 1, 217-225.
1106. M. S. N. Murty and B. V. Appa Rao, Application of Moore-Penrose inverse to three point boundary value problems, Ranchi Univ. Math. J. 29 (1998), 1-9 (1999).
1107. M. S. N. Murty and D. R. K. S. Rao, Application of generalized inverses to two-point boundary value problems, Bull. Inst. Math. Acad. Sinica 19 (1991), no. 3, 271-278.
1108. S. Nakagiri and K. Suzuki, Finite element interval analysis of external loads identified by displacement input with uncertainty, Computer Methods in Applied Mechanics and Engineering 168 (1999), no. 1-4, 63-72.
1109. K. S. Subramonian Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 3, 249-260.
1110. V. C. Nanda, A generalization of Cayley's theorem, Math. Z. 101 (1967), 331-334.
1111. J. C. Nash, Compact Numerical Methods for Computers, second ed., Adam Hilger Ltd., Bristol, 1990.
1112. J. C. Nash and R. L. C. Wang, Algorithm 645: subroutines for testing programs that compute the generalized inverse of a matrix, ACM Trans. Math. Software 12 (1986), no. 3, 274-277.
1113. S. G. Nash, Newton-type minimization via the Lánczos method, SIAM J. Numer. Anal. 21 (1984), no. 4, 770-788.
1114. M. Z. Nashed, Steepest descent for singular linear operator equations, SIAM J. Numer. Anal. 7 (1970), 358-362.
1115. , Generalized inverses, normal solvability, and iteration for singular operator equations, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1971, pp. 311-359.
1116. M. Z. Nashed (ed.), Generalized Inverses and Applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), New York, Academic Press, 1976.
1117. squares solutions of linear integral equations of the first kind, J. Math. Anal. Appl. 53 (1976), no. 2, 359-366.
1118. \qquad , On the perturbation theory for generalized inverse operators in Banach spaces, Functional analysis methods in numerical analysis (Proc. Special Session, Annual Meeting, Amer. Math. Soc., St. Louis, Mo., 1977), Springer, Berlin, 1979, pp. 180-195.
1119. \qquad , On generalized inverses and operator ranges, Functional analysis and approximation (Oberwolfach, 1980), Birkhäuser, Basel, 1981, pp. 85-96.
1120. M. Z. Nashed and X. Chen, Convergence of Newton-like methods for singular operator equations using outer inverses, Numer. Math. 66 (1993), 235-257.
1121. M. Z. Nashed and L. B. Rall, Annotated bibliography on generalized inverses and applications, In Nashed [1116], pp. 771-1041.
1122. M. Z. Nashed and G. F. Votruba, A unified approach to generalized inverses of linear operators. I. Algebraic, topological and projectional properties, Bull. Amer. Math. Soc. 80 (1974), 825-830.
1123. \qquad , A unified approach to generalized inverses of linear operators. II. Extremal and proximal properties, Bull. Amer. Math. Soc. 80 (1974), 831-835.
1124. \qquad , A unified operator theory of generalized inverses, In Nashed [1116], pp. 1-109.
1125. M. Z. Nashed and G. Wahba, Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind, Math. Comp. 28 (1974), 69-80.
1126._, Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations, SIAM J. Math. Anal. 5 (1974), 974-987.
1127. M. Z. Nashed and Ya Gu Zhao, The Drazin inverse for singular evolution equations and partial differential operators, Recent trends in differential equations, World Sci. Publishing, River Edge, NJ, 1992, pp. 441-456.
1128. D. L. Nelson, T. O. Lewis, and T. L. Boullion, A quadratic programming technique using matrix pseudoinverses, Indust. Math. 21 (1971), 1-21.
1129. H. Neudecker, A note on Kronecker matrix products and matrix equation systems, SIAM J. Appl. Math. 17 (1969), 603-606.
1130. \qquad , Mathematical properties of the variance of the multinomial distribution, J. Math. Anal. Appl. 189 (1995), no. 3, 757-762, (see [1426]).
1131. H. Neudecker and Shuangzhe Liu, The density of the Moore-Penrose inverse of a random matrix, Linear Algebra and its Applications 237/238 (1996), 123-126.
1132. A. Neumaier, Hybrid norms and bounds for overdetermined linear systems, Linear Algebra and its Applications 216 (1995), 257-265.
1133. \qquad , Solving ill-conditioned and singular linear systems: a tutorial on regularization, SIAM Rev. 40 (1998), no. 3, 636-666 (electronic).
1134. M. Neumann, On the Schur complement and the $L U$-factorization of a matrix, Linear and Multilinear Algebra 9 (1980/81), no. 4, 241-254.
1135. M. Neumann and R. J. Plemmons, Generalized inverse-positivity and splittings of M-matrices, Linear Algebra and its Applications 23 (1979), 21-35.
1136. M. Neumann, G. D. Poole, and H. -J. Werner, More on generalizations of matrix monotonicity, Linear Algebra and its Applications 48 (1982), 413-435.
1137. M. Neumann and H. -J. Werner, Nonnegative group inverses, Linear Algebra and its Applications 151 (1991), 85-96.
1138. T. G. Newman, M. Meicler, and P. L. Odell, On the concept of a $p-q$ generalized inverse of a matrix, In Boullion and Odell [207], pp. 276-282.
1139. T. G. Newman and P. L. Odell, On the concept of a $p-q$ generalized inverse of a matrix, SIAM J. Appl. Math. 17 (1969), 520-525.
1140. Y. Nievergelt, Computing circles and spheres of arithmetic least squares, Comput. Phys. Comm. 81 (1994), no. 3, 343-350, (extension of [1097]).
1141. \qquad , Schmidt-Mirsky matrix approximation with linearly constrained singular values, Linear Algebra and its Applications 261 (1997), 207-219.
1142. \qquad , A tutorial history of least squares with applications to astronomy and geodesy, J. Comput. Appl. Math. 121 (2000), no. 1-2, 37-72.
1143. Yves Nievergelt, Total least squares: state-of-theart regression in numerical analysis, SIAM Rev. 36 (1994), no. 2, 258-264.
1144. B. Noble, A method for computing the generalized invrerse of a matrix, SIAM J. Numer. Anal. 3 (1966), 582-584.
1145. \qquad , Applied linear algebra, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969.
1146. \qquad , Methods for computing the Moore-Penrose generalized inverse, and related matters, Generalized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), Academic Press, New York, 1976, pp. 245301. Publ. Math. Res. Center Univ. Wisconsin, No. 32.
1147. K. Nordström, Some further aspects of the Löwnerordering antitonicity of the Moore-Penrose inverse, Comm. Statist. Theory Methods 18 (1989), no. 12, 4471-4489 (1990).
1148. P. L. Odell and T. L. Boullion, Simultaneous diagonalization of rectangular matrices, Comput. Math. Appl. 33 (1997), no. 9, 93-96.
1149. P. L. Odell and H. P. Decell, Jr., On computing the fixed-point probability vector of ergodic transition matrices, J. Assoc. Comput. Mach. 14 (1967), 765768.
1150. W. Oktaba, Tests of hypotheses for the fixed model not of full rank, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 409-413.
1151. D. P. O'Leary, On bounds for scaled projections and pseudo-inverses, Linear Algebra and its Applications 132 (1990), 115-117, (Answer to a question in [1404]).
1152. I. Olkin, The density of the inverse and pseudoinverse of a random matrix, Statist. Probab. Lett. 38 (1998), no. 2, 131-135, (alternative proof to [1631]).
1153. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.
1154. E. E. Osborne, On least squares solutions of linear equations, J. Assoc. Comput. Mach. 8 (1961), 628636.
1155. \qquad , Smallest least squares solutions of linear equations, SIAM J. Numer. Anal. 2 (1965), 300307.
1156. M. R. Osborne, A class of methods for minimising a sum of squares, Austral. Comput. J. 4 (1972), 164-169.
1157. A. Ostrowski, A new proof of Haynsworth's quotient formula for Schur complements., Linear Algebra and its Applications 4 (1971), 389-392.
1158. D. V. Ouellette, Schur complements and statistics, Linear Algebra and its Applications 36 (1981), 187-295.
1159. Ping Qi Pan and Zi Xiang Ouyang, Moore-Penrose inverse simplex algorithms based on successive linear subprogramming approach, Numer. Math. J. Chinese Univ. (English Ser.) 3 (1994), no. 2, 180190.
1160. V. Pan and R. S. R. Schreiber, An improved newton iteration for the generalized inverse of a matrix with applications, SIAM J. Sci. Statist. Comput. 12 (1991), 1109-1130.
1161. B. N. Parlett, The $L U$ and $Q R$ algorithms, In Ralston and Wilf [1238], pp. 116-130, Vol. II.
1162. K. H. Parshall and D. E. Rowe, The emergence of the American mathematical research community, 1876-1900: J. J. Sylvester, Felix Klein, and E. H. Moore, American Mathematical Society, Providence, RI, 1994.
1163. S. Pati, Moore-Penrose inverse of matrices on idempotent semirings, SIAM J. Matrix Anal. Appl. 22 (2000), no. 2, 617-626 (electronic).
1164. M. Pavel-Parvu and A. Korganoff, Iteration functions for solving polynomial equations, Constructive Aspects of the Fundamental Theorem of Algebra (New York) (B. Dejon and P. Henrici, eds.), John Wiley, 1969.
1165. G. Peano, Intégration par séries des équations différentielles linéaires, Mathematische Annallen 32 (1888), 450-456.
1166. M. H. Pearl, On Cayley's parametrization, Canad. J. Math. 9 (1957), 553-562.
1167. \quad, A further extension of Cayley's parametriza-】 tion, Canad. J. Math. 11 (1959), 48-50.
1168. \qquad , On normal and EP matrices, Michigan Math. J. 6 (1959), 1-5.
1169. \qquad , On normal EP P_{r} matrices, Michigan Math. J. 8 (1961), 33-37.
1170. \qquad , On generalized inverses of matrices, Proc. Cambridge Philos. Soc. 62 (1966), 673-677.
1171. __, A decomposition theorem for matrices, Canad. J. Math. 19 (1967), 344-349, (See [1447], [1593]).
1172. _, Generalized inverses of matrices with entries taken from an arbitrary field, Linear Algebra and its Applications 1 (1968), 571-587, (see also [1272]).
1173. , Automorphic transformations of an arbitrary matrix, Linear and Multilinear Algebra 15 (1984), no. 3-4, 245-256.
1174. K. Pearson, On lines and planes of closest fit to points in space, Philosophical Magazine 2 (1901), 559-572.
1175. R. Peluso and G. Piazza, Bounds for products of singular values of a matrix, Rend. Mat. Appl. (7) 19 (1999), no. 4, 507-522 (2000).
1176. R. H. Pennington, Introductory Computer Methods and Numerical Analysis, MacMillan Co., New York, 1970.
1177. R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51 (1955), 406-413.
1178. \qquad , On best approximate solutions of linear matrix equations, Proceedings of the Cambridge Philosophical Society 52 (1956), 17-19.
1179. V. Pereyra, Iterative methods for solving nonlinear least squares problems, SIAM J. Numer. Anal. 4 (1967), 27-36.
1180._, Stability of general systems of linear equations, Aequationes Mathematicae 2 (1969), 194206.
1181. V. Pereyra and J. B. Rosen, Computation of the pseudoinverse of a matrix of unknown rank, Tech. Report CS 13, Dept. of Computer Science, Stanford University, Stanford, CA, Sept. 1964, (Comp. Rev.6(1965), 259 \#7948).
1182. G. Peters and J. H. Wilkinson, The least squares problem and pseudo-inverses, Comput. J. 13 (1970), 309-316.
1183. W. V. Petryshyn, On generalized inverses and on the uniform convergence of $(I-\beta K)^{n}$ with application to iterative methods, J. Math. Anal. Appl. 18 (1967), 417-439.
1184. R. Picón, A systematic deduction of linear natural approach equations, Computer Methods in Applied Mechanics and Engineering 177 (1999), 137-151.
1185. W. H. Pierce, A self-correcting matrix iteration for the Moore-Penrose generalized inverse, Linear Algebra and its Applications 244 (1996), 357-363.
1186. A. Pietsch, Zur Theorie der σ-Transformationen in lokalkonvexen Vektorräumen, Math. Nach. 21 (1960), 347-369.
1187. R. Piziak, P. L. Odell, and R. Hahn, Constructing projections on sums and intersections, Comput. Math. Appl. 37 (1999), no. 1, 67-74.
1188. R. L. Plackett, Some theorems in least squares, Biometrika 37 (1950), 149-157.
1189. R. J. Plemmons, Generalized inverses of Boolean relation matrices, SIAM J. Appl. Math. 20 (1971), 426-433.
1190. R. J. Plemmons and R. E. Cline, The generalized inverse of a nonnegative matrix, Proc. Amer. Math. Soc. 31 (1972), 46-50, (erratum, ibid 39(1972), 651).
1191. Olga Pokorná, On the pseudoinversion of matrix products, Numerical methods (Third Colloq., Keszthely, 1977), North-Holland, Amsterdam, 1980, pp. 501-506.
1192. W. Pölzleitner and H. Wechsler, Selective and focused invariant recognition using distributed associative memories ($D A M$), IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990), no. 8, 809-814.
1193. G. D. Poole and G. P. Barker, MP matrices, Linear Algebra and its Applications 26 (1979), 165-174.
1194. G. D. Poole and T. L. Boullion, The Drazin inverse for certain power matrices, Indust. Math. 22 (1972), 35-37.
1195. , Weak spectral inverses which are partial isometries, SIAM J. Appl. Math. 23 (1972), 171172.
1196. \qquad , The Drazin inverse and a spectral inequality of Marcus, Minc, and Moyls, J. Optimization Theory Appl. 15 (1975), 503-508.
1197. W. A. Porter, Modern Foundations of System Engineering, MacMillan, New York, 1966.
1198. \qquad , A basic optimization problem in linear systems, Math. Syst. Th. 5 (1971), 20-44.
1199. W. A. Porter and J. P. Williams, Extension of the minimum effort control problem, J. Math. Anal. Appl. 13 (1966), 536-549.
1200. \qquad , A note on the minimum effort control problem, J. Math. Anal. Appl. 13 (1966), 251-264.
1201. K. M. Prasad, Generalized inverses of matrices over commutative rings, In Bapat et al. [80], (special issue of Linear Algebra and its Applications 211 (1994)), pp. 35-52.
1202. K. M. Prasad and R. B. Bapat, The generalized Moore-Penrose inverse, Linear Algebra and its Applications 165 (1992), 59-69.
1203. , A note on the Khatri-inverse, Sankhyā Ser. A 54 (1992), no. 2, 291-295.
1204. K. M. Prasad, K. P. S. Bhaskara Rao, and R. B. Bapat, Generalized inverses over integral domains. II. Group inverses and Drazin inverses, Linear Algebra and its Applications 146 (1991), 31-47.
1205. G. B. Preston, Inverse semi-groups, J. London Math. Soc. 29 (1954), 396-403.
1206. C. M. Price, The matrix pseudoinverse and minimal variance estimates, SIAM Rev. 6 (1964), 115120.
1207. R. M. Pringle and A. A. Rayner, Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models, SIAM Rev. 12 (1970), 107-115.
1208. \qquad , Generalized Inverse Matrices with Applications to Statistics. griffin's statistical monographs and courses, no. 28, Hafner Publishing Co., New York, 1971.
1209. D. Przeworska-Rolewicz and S. Rolewicz, Equations in Linear Spaces, Polska Akad. Nauk Monog. Mat., vol. 47, PWN Polish Scientific Publishers, Warsaw, 1968.
1210. A. C. Pugh and Liansheng Tan, A generalized chain-scattering representation and its algebraic system properties, IEEE Trans. Automat. Control 45 (2000), no. 5, 1002-1007.
1211. P. Pulay and G. Fogarasi, Geometry optimization in redundant internal coordinates, The Journal of Chemical Physics 96 (1992), no. 4, 2856-2860, (see [1004]).
1212. S. Puntanen and G. P. H. Styan, The equality of the ordinary least squares estimator and the best linear unbiased estimator (with comments by oscar kempthorne and shayle r. searle and a reply by the authors), Amer. Statist. 43 (1989), no. 3, 153-164.
1213. S. Puntanen, G. P. H. Styan, and H. -J. Werner, Two matrix-based proofs that the linear estimator Gy is the best linear unbiased estimator, J. Statist. Plann. Inference 88 (2000), no. 2, 173-179.
1214. M. L. Puri, C. T. Russell, and T. Mathew, Convergence of generalized inverses with applications to asymptotic hypothesis testing, Sankhyā Ser. A 46 (1984), no. 2, 277-286.
1215. R. Puystjens, Moore-Penrose inverses for matrices over some Noetherian rings, J. Pure Appl. Algebra 31 (1984), no. 1-3, 191-198.
1216. \qquad , Some aspects of generalized invertibility, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 1, 6772.
1217. R. Puystjens and H. de Smet, The Moore-Penrose inverse for matrices over skew polynomial rings, Ring theory, Antwerp 1980 (Proc. Conf., Univ. Antwerp, Antwerp, 1980), Springer, Berlin, 1980, pp. 94-103.
1218. R. Puystjens and R. E. Hartwig, The group inverse of a companion matrix, Linear and Multilinear Algebra 43 (1997), no. 1-3, 137-150.
1219. R. Puystjens and D. W. Robinson, The MoorePenrose inverse of a morphism with factorization, Linear Algebra and its Applications 40 (1981), 129-141.
1220. \qquad , The Moore-Penrose inverse of a morphism in an additive category, Comm. Algebra 12 (1984), no. 3-4, 287-299, (see [640]).
1221. \qquad Symmetric morphisms and the existence of Moore-Penrose inverses, Linear Algebra and its Applications 131 (1990), 51-69.
1222. L. D. Pyle, Generalized inverse computations using the gradient projection method, J. Assoc. Comput. Mach. 11 (1964), 422-428.
1223. \qquad , A generalized inverse ε-algorithm for constructing intersection projection matrices, with applications, Numer. Math. 10 (1967), 86-102.
1224. _._ The generalized inverse in linear programming. Basic structure, SIAM J. Appl. Math. 22 (1972), 335-355.
1225. L. D. Pyle and R. E. Cline, The generalized inverse in linear programming-interior gradient projection methods, SIAM. J. Appl. Math. 24 (1973), 511-534.
1226. P. Rabinowitz (editor), Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, London, 1970.
1227. G. Rabson, The generalized inverse in set theory and matrix theory, Tech. report, Dept. of Mathematics, Clarkson College of Technology, Potsdam, NY, 1969.
1228. M. Radić, A definition of the determinant of a rectangular matrix, Glasnik Mat. Ser. III 1 (21) (1966), 17-22.
1229. \qquad , On a generalization of the ArghiriadeDragomir representation of the Moore-Penrose inverse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 44 (1968), 333-336.
1230. R. Rado, Note on generalized inverses of matrices, Proceedings of the Cambridge Philosophical Society 52 (1956), 600-601.
1231. M. Abdur Rahman, Representation of MoorePenrose generalized inverse of the product of two matrices, Ganit. Journal of Bangladesh Mathematical Society 13 (1993), no. 1-2, 83-85.
1232. V. Rakočević, Moore-Penrose inverse in Banach algebras, Proc. Roy. Irish Acad. Sect. A 88 (1988), no. 1, 57-60.
1233. \qquad , On the continuity of the Moore-Penrose inverse in Banach algebras, Facta Univ. Ser. Math. Inform. (1991), no. 6, 133-138.
1234._, Continuity of the Drazin inverse, J. Operator Theory 41 (1999), no. 1, 55-68.
1235. V. Rakočević and Yimin Wei, The perturbation theory for the Drazin inverse and its applications II, J. Austral. Math. Soc. 70 (2001), no. 2, 189-197.
1236. L. B. Rall, Comutational Solution of Nonlinear Operator Equations, Wiley, New York, 1969.
1237. A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis (2nd edition), McGraw-Hill, New York, 1978.
1238. A. Ralston and H. Wilf (eds.), Mathematical Methods for Digital Computers, New York, Wiley, 1967.
1239. J. H. Randall and A. A. Rayner, The accuracy of least squares calculations with the Cholesky algorithm, Linear Algebra and its Applications 127 (1990), 463-502.
1240. C. R. Rao, A note on a generalized inverse of a matrix with applications to problems in mathematical statistics, J. Roy. Statist. soc. Ser. B 24 (1962), 152-158.
1241. \qquad , Linear Statistical Inference and its Applications, J. Wiley \& Sons, New York, 1965, (Second edition, 1973).
1242. \qquad , Generalized inverse for matrices and its applications in mathematical statistics, Research Papers in Statistics (Festschrift J. Neyman), Wiley, London, 1966, pp. 263-279.
1243. \qquad , Calculus of generalized inverses of matrices, part I: General theory, Sankhyā Ser. A 29 (1967), 317-342.
1244. \qquad , Unified theory of linear estimation, Sankhyā Ser. A 33 (1971), 371-394.
1245. \qquad , Corrigenda: "Unified theory of linear estimation" (Sankhyā Ser. A 33 (1971), 371-394), Sankhyā Ser. A 34 (1972), 477.
1246. _, Corrigendum: "Unified theory of linear estimation" (Sankhyā Ser. A 33 (1971), 371-394), Sankhyā Ser. A 34 (1972), 194.
1247. \qquad , Projectors, generalized inverses and the blue's, J. Roy. Statist. Soc. Ser. B 36 (1974), 442448.
1248. __, A lemma on g-inverse of a matrix and computation of correlation coeffiecients in the singular case, Communications in Statistics (A) 10 (1981), 1-10.
1249. \qquad , Linear transformations, projection operators and generalized inverses: a geometric approach, Contributions to stochastics, Wiley, New York, 1992, pp. 1-10.
1250. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley, New York, 1971.
1251. \qquad Theory and application of constrained inverse of matrices, SIAM J. Appl. Math. 24 (1973), 473-488.
1252. C. R. Rao, S. K. Mitra, and P. Bhimasankaram, Determination of a matrix by its subclasses of generalized inverses, Sankhyā Ser. A 34 (1972), 5-8.
1253. C. R. Rao and H. Yanai, General definition and decomposition of projectors and some applications to statistical problems, J. Statist. Plann. Inference 3 (1979), 1-17.
1254. \qquad , Generalized inverse of linear transformations: a geometric approach, Linear Algebra and its Applications 66 (1985), 87-98.
1255. \qquad , Generalized inverses of partitioned matrices useful in statistical applications, Linear Algebra and its Applications 70 (1985), 105-113.
1256. K. P. S. Bhaskara Rao, On generalized inverses of matrices over principal ideal rings, Linear and Multilinear Algebra 10 (1981), no. 2, 145-154.
1257. \qquad , On generalized inverses of matrices over integral domains, Linear Algebra and its Applications 49 (1983), 179-189.
1258. A. A. Rayner and R. M. Pringle, A note on generalized inverses in the linear hypothesis not of full rank, Ann. Math. Statist. 38 (1967), 271-273.
1259. \qquad , Some aspects of the solution of singular normal equations with the use of linear restrictions, SIAM J. Appl. Math. 31 (1976), no. 3, 449-460, (erratum, ibid $\mathbf{4 7}(1987), 1130)$.
1260. W. T. Reid, Generalized Green's matrices for compatible systems of differential equations, Amer. J. Math. 53 (1931), 443-459.
1261. \qquad , Principal solutions of non-oscillatory linear differential systems, J. Math. Anal. Appl. 9 (1964), 397-423.
1262. \qquad Generalized Green's matrices for twopoint boundary problems, SIAM J. Appl. Math. 15 (1967), 856-870.
1263. \qquad , Generalized inverses of differential and integral operators, In Boullion and Odell [207], pp. 125.
1264. _, Ordinary Differential Equations, WileyInterscience, New York, 1970.
1265. \qquad Generalized polar coordinate transformations for differential systems., Rocky Mountain J. Math. 1 (1971), no. 2, 383-406.
1266. \qquad , A result on the singularities of matrix functions, Quart. Appl. Math. 35 (1977/78), no. 2, 293-296.
1267. B. C. Rennie, Letter to the editor: "Rank factorization of a matrix and its applications" [Math. Sci. 13 (1988), no. 1, 4-14; MR 90a:15009a] by P. Bhimasankaram, Math. Sci. 13 (1988), no. 2, 152, (see [168]).
1268. W. C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), 42-63.
1269. O. M. Ribits'ka, A fractional-analytic method of finding Moore-Penrose and Drasin pseudo-inverse matrices, Mat. Metodi Fiz.-Mekh. Polya 39 (1996), no. 2, 140-143.
1270. J. Rice, Experiments on gram-schmidt orthogonalization, Math. Comput. 20 (1966), 325-328.
1271. M. Q. Rieck, Totally isotropic subspaces, complementary subspaces, and generalized inverses, Linear Algebra and its Applications 251 (1997), 239248 , (extension of a result of [1172]).
1272. -, Maximal orthogonality and pseudoorthogonality with applications to generalized inverses, Linear Algebra and its Applications 315 (2000), no. 1-3, 155-173.
1273. K. S. Riedel, A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering, SIAM J. Matrix Anal. Appl. 13 (1992), no. 2, 659-662, (see [492]).
1274. R. F. Rinehart, The equivalence of definitions of a matric function, Amer. Math. Monthly 62 (1955), 395-414.
1275. W. Rising, Applications of generalized inverses to Markov chains, Adv. in Appl. Probab. 23 (1991), 293-302.
1276. P. D. Robers and A. Ben-Israel, An interval programming algorithm for discrete linear L_{1} approximation problems, J. Approximation Theory 2 (1969), 323-336.
1277. \qquad , A suboptimization method for interval linear programming: A new method for linear programming, Linear Algebra and its Applications 3 (1970), 383-405.
1278. P. Robert, On the group-inverse of a linear transformation, J. Math. Anal. Appl. 22 (1968), 658669.
1279. D. W. Robinson, A proof of the composite function theorem for matric functions, Amer. Math. Monthly 64 (1957), 34-35.
1280. \qquad , On the genralized inverse of an arbitrary linear transformation, Amer. Math. Monthly 69 (1962), 412-416.
1281. \qquad , Gauss and generalized inverses, Historia Mathematica 7 (1980), 118-125.
1282. \qquad , On the covariance of the Moore-Penrose inverse, Linear Algebra and its Applications 61 (1984), 91-99.
1283. \qquad Covariance of Moore-Penrose inverses with respect to an invertible matrix, Linear Algebra and its Applications 71 (1985), 275-281.
1284. \qquad , Nullities of submatrices of the MoorePenrose inverse, Linear Algebra and its Applications 94 (1987), 127-132.
1285. __, The determinantal rank idempotents of a matrix, Linear Algebra and its Applications 237/238 (1996), 83-96.
1286. , The image of the adjoint mapping, Linear Algebra and its Applications 277 (1998), no. 1-3, 143-148.
1287. \qquad , Separation of subspaces by volume, Amer. Math. Monthly 105 (1998), no. 1, 22-27.
1288. D. W. Robinson and R. Puystjens, EP morphisms, Linear Algebra and its Applications 64 (1985), 157-174.
1289. \qquad , Generalized inverses of morphisms with kernels, Linear Algebra and its Applications 96 (1987), 65-85.
1290. D. W. Robinson, R. Puystjens, and J. Van Geel, Categories of matrices with only obvious MoorePenrose inverses, Linear Algebra and its Applications 97 (1987), 93-102.
1291. S. M. Robinson, A short proof of Cramer's rule, Math. Mag. 43 (1977), 94-95, (Reprinted in Selected Papers on Algebra (S. Montgomery et al, editors), Math. Assoc. of Amer., 1977, pp. 313-314).
1292. S. Roch and B. Silbermann, Asymptotic MoorePenrose invertibility of singular integral operators, Integral Equations Operator Theory 26 (1996), no. 1, 81-101.
1293. \qquad , Continuity of generalized inverses in Banach algebras, Studia Math. 136 (1999), no. 3, 197227.
1294. Steffen Roch and Bernd Silbermann, Index calculus for approximation methods and singular value
decomposition, J. Math. Anal. Appl. 225 (1998), no. 2, 401-426.
1295. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
1296. C. A. Rohde, Contributions to the theory, computation and application of generalized inverses, Ph.d., University of North Carolina, Raleigh, N.C., May 1964.
1297. \qquad , Generalized inverses of partitioned matrices, J. Soc. Indust. Appl. Math. 13 (1965), 10331035.
1298. \qquad Some results on generalized inverses, SIAM Rev. 8 (1966), 201-205.
1299. \qquad Special applications of the theory of generalized matrix inversion to statistics, In Boullion and Odell [207], pp. 239-266.
1300. C. A. Rohde and J. R. Harvey, Unified least squares analysis, J. Amer. Statist. Assoc. 60 (1965), 523527.
1301. N. J. Rose, A note on computing the Drazin inverse, Linear Algebra and its Applications 15 (1976), no. 2, 95-98.
1302. \qquad , The Laurent expansion of a generalized resolvent with some applications, SIAM J. Math. Anal. 9 (1978), no. 4, 751-758.
1303. J. B. Rosen, The gradient projection method for nonlinear programming. Part I: Linear Constraints, J. Soc. Indust. Appl. Math. 8 (1960), 181217.
1304. \qquad , The gradient projection method for nonlinear programming. Part II: Nonlinear Constraints, J. Soc. Indust. Appl. Math. 9 (1961), 514-532.
1305. \qquad , Minimum and basic solutions to singular linear systems, J. Soc. Indust. Appl. Math. 12 (1964), 156-162.
1306. \qquad , Chebyshev solutions of large linear systems, J. Comput. Syst. Sci. 1 (1967), 29-43.
1307. M. Rosenberg, Range decomposition and generalized inverse of nonnegative Hermitian matrices, SIAM Rev. 11 (1969), 568-571.
1308. P. C. Rosenbloom, The method of steepest descent, Numerical Analysis. Proceedings of the Sixth Symposium in Applied Mathematics, McGraw-Hill Book Co., New York, 1956, pp. 127-176.
1309. U. G. Rothblum, A representation of the Drazin inverse and characterizations of the index, SIAM J. Appl. Math. 31 (1976), no. 4, 646-648.
1310. \qquad , Resolvent expansions of matrices and applications, Linear Algebra and its Applications 38 (1981), 33-49.
1311. A. L. Rukhin, Pattern correlation matrices and their properties, Linear Algebra and its Applications 327 (2001), no. 1-3, 105-114.
1312. B. Rust, W. R. Burrus, and C. Schneeberger, A simple algorithm for computing the generalized inverse of a matrix, Comm. ACM 9 (1966), 381-385, 387.
1313. G. Salinetti, The generalized inverse in parametric programming, Calcolo 11 (1974), 351-363 (1975).
1314. W. Sautter, A posteriori-Fehlerasbschätzungen für die Pseudoinverse und die Lösung minimaler Länge, Computing 14 (1975), no. 1-2, 37-44.
1315. J. -P. Schellhorn, Generalized inverses and generalized convexity, Statistical data analysis and inference (Neuchâtel, 1989), North-Holland, Amsterdam, 1989, pp. 445-455.
1316. E. Schmidt, Zur Theorie der linearen und nichlinearen Integralgleichungen, I. Entwicklung willküricher Funktionen nach Systemen vargeschriebener, Math. Ann. 63 (1907), 433-476.
1317. \qquad , Zur Theorie der linearen und nichlinearen Integralgleichungen, II. Auflösung der allgemeinen linearen Integralgleichung, Math. Ann. 64 (1907), 161-174.
1318. P. H. Schönemann, A generalized solution of the orthogonal Procrustes problem, Psychmoetrika 31 (1966), 1-10.
1319. P. Schönfeld and H. -J. Werner, A note on C. R. Rao's wider definition BLUE in the general GaussMarkov model, Sankhyā Ser. B 49 (1987), no. 1, 1-8.
1320. R. S. Schreiber, Computing generalized inverses and eigenvalues of symmetric matrices using systolic arrays, Computing methods in applied sciences and engineering, VI (Versailles, 1983), NorthHolland, Amsterdam, 1984, pp. 285-295.
1321. R. S. Schreiber and B. N. Parlett, Block reflectors: Theory and computation, SIAM J. Numer. Anal. 25 (1988), no. 1, 189-205.
1322. O. Schreier and E. Sperner, Introduction to Modern Algebra and Matrix Theory, Chelsea Publishing Company, New York, N. Y., 1951, Translated by Martin Davis and Melvin Hausner.
1323. G. Schulz, Iterative Berechnung der Reziproken Matrix, Z. Angew. Math. Mech. 13 (1933), 57-59.
1324. I. Schur, Potenzreihen im innern des einheitskreises, J. Reine Angew. Math. 147 (1917), 205232.
1325. J. Schwartz, Perturbations of spectral operators, and applications, Pacific J. Math. 4 (1954), 415458.
1326. H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, P. Noordhoff, Groningen, 1950.
1327. \qquad , Remarks on the generalized inverse of a matrix, Linear Algebra and its Applications 1 (1968), 325-328.
1328. \qquad , On the covariance of the Moore-Penrose inverse, Linear Algebra and its Applications 52/53 (1983), 629-643.
1329. \qquad , On the covariance of the Moore-Penrose inverse of a matrix, C. R. Math. Rep. Acad. Sci. Canada 5 (1983), no. 2, 75-77.
1330. R. K. Scott, Existence of strong solutions to the generalized inverse of the quasi-geostrophic equations, Inverse Problems 16 (2000), no. 4, 891-907.
1331. J. E. Scroggs and P. L. Odell, An alternate definition of a pseudoinverse of a matrix, SIAM J. Appl. Math. 14 (1966), 796-810, (see [208]).
1332. H. L. Seal, Studies in the history of probability and statistics. XV. The historical development of the Gauss linear model, Biometrika 54 (1967), 1-24.
1333. S. R. Searle, Additional results concerning estimable functions and generalized inverse matrices, J. Roy. Statist. Soc. Ser. B 27 (1965), 486-490.
1334. , Linear Models, John Wiley \& Sons Inc., New York, 1971.
1335. , Extending some results and proofs for the singular linear model, Linear Algebra and its Applications 210 (1994), 139-151.
1336. G. A. F. Seber, The linear hypothesis: A general theory, Charles Griffin \& Co. Ltd., London, 1966.
1337. J. Seidel, Angles and distances in n-dimensional euclidean and noneuclidean geometry. I, II, III, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 329-335, 336-340, 535-541.
1338. S. K. Sen and S. S. Prabhu, Optimal iterative schemes for computing the Moore-Penrose matrix inverse, Internat. J. Systems Sci. 7 (1976), no. 8, 847-852.
1339. E. Seneta, Perturbation of the stationary distribution measured by ergodicity coefficients, Adv. in Appl. Probab. 20 (1988), no. 1, 228-230.
1340. \qquad , Sensitivity of finite Markov chains under perturbation, Statist. Probab. Lett. 17 (1993), no. 2, 163-168.
1341. A. Sengupta, Multifunction and generalized inverse, J. Inverse Ill-Posed Probl. 5 (1997), 265-285.
1342. Jia-Yu Shao and Hai-Ying Shan, Matrices with signed generalized inverses, Linear Algebra and its Applications 322 (2001), 105-127.
1343. G. E. Sharpe and G. P. H. Styan, Circuit duality and the general network inverse, IEEE Trans. Circuit Th. 12 (1965), 22-27.
1344. \qquad A note on the general network inverse, IEEE Trans. Circuit Th. 12 (1965), 632-633.
1345. \qquad , Circuit duality and the general network inverse, Proc. IEEE 55 (1967), 1226-1227.
1346. R. D. Sheffield, On pseudo-inverses of linear transformations in Banach space, Tech. Report 2133, Oak Ridge National Laboratory, 1956.
1347. , A general theory for linear systems, Amer. Math. Monthly 65 (1958), 109-111.
1348. Ji Lin Shi and Xiao Fa Shi, Two iterative methods for computing generalized inverses of matrices, J. Dalian Inst. Tech. 25 (1986), no. Special Issue on Mathematics, suppl., 37-45.
1349. N. Shinozaki and M. Sibuya, The reverse order law $(A B)^{-}=B^{-} A^{-}$, Linear Algebra and its Applications 9 (1974), 29-40.
1350. \qquad , Further results on the reverse-order law, Linear Algebra and its Applications 27 (1979), 916.
1351. N. Shinozaki, M. Sibuya, and K. Tanabe, Numerical algorithms for the Moore-Penrose inverse of a
matrix: direct methods, Ann. Inst. Statist. Math. 24 (1972), 193-203.
1352. \qquad Numerical algorithms for the MoorePenrose inverse of a matrix: iterative methods, Ann. Inst. Statist. Math. 24 (1972), 621-629.
1353. D. W. Showalter, Representation and computation of the pseudoinverse, Proc. Amer. Math. Soc. 18 (1967), 584-586.
1354. D. W. Showalter and A. Ben-Israel, Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 184-194.
1355. M. Sibuya, Subclasses of generalized inverses of matrices, Ann. Inst. Statist. Math. 22 (1970), 543556.
1356. \qquad Generalized inverses of mappings, Sankhyā Ser. A 33 (1971), 301-310, (corrigendum: Sankhyā Ser. A37(1975), 309).
1357. \qquad , The Azumaya-Drazin pseudoinverse and the spectral inverses of a matrix, Sankhyā Ser. A 35 (1973), 95-102.
1358. A. Sidi, Development of iterative techniques and extrapolation methods for Drazin inverse solution of consistent or inconsistent singular linear systems, Linear Algebra and its Applications 167 (1992), 171-203.
1359. \qquad , A unified approach to Krylov subspace methods for the Drazin-inverse solution of singular nonsymmetric linear systems, Linear Algebra and its Applications 298 (1999), no. 1-3, 99-113.
1360. A. Sidi and V. Kluzner, A Bi-CG type iterative method for Drazin-inverse solution of singular inconsistent nonsymmetric linear systems of arbitrary index, Proceedings of the Eleventh Haifa Matrix Theory Conference (1999), vol. 6, 1999/00, pp. 72-94 (electronic).
1361. C. L. Siegel, Über die analytische theorie der quadratischen formen III, Ann. Math. 38 (1937), 212-291, (See in particular, pp. 217-229).
1362. \qquad , Equivalence of quadratic forms, Amer. J. Math. 63 (1941), 658-680.
1363. Reinhard Siegmund-Schultze, Eliakim Hastings Moore's "general analysis", Arch. Hist. Exact Sci. 52 (1998), no. 1, 51-89.
1364. B. Silbermann, Asymptotic Moore-Penrose inversion of Toeplitz operators, Linear Algebra and its Applications 256 (1997), 219-234.
1365. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, SpringerVerlag, Berlin, 1970.
1366. Inderjit Singh, G. Poole, and T. L. Boullion, A class of Hessenberg matrices with known pseudoinverse and Drazin inverse, Math. Comp. 29 (1975), 615-619.
1367. K. C. Sivakumar, Nonnegative generalized inverses, Indian J. Pure Appl. Math. 28 (1997), no. 7, 939942.
1368. R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, Taylor \& Francis Ltd., London, 1998, (see Chapter 2).
1369. L. Skula, Involutions for matrices and generalized inverses, Linear Algebra and its Applications 271 (1998), 283-308.
1370. P. Slavík, The least extremal solution of the operator equation $A X B=C$, J. Math. Anal. Appl. 148 (1990), no. 1, 251-262.
1371. Per A. Smeds, Line digraphs and the MoorePenrose inverse, Linear Algebra and its Applications 36 (1981), 165-172.
1372. J. H. Smith, A geometric treatment of nonnegative generalized inverses, Linear Algebra and its Applications 2 (1974), 179-184.
1373. R. L. Smith, The Moore-Penrose inverse of a retrocirculant, Linear Algebra and its Applications 22 (1978), 1-8.
1374. F. Smithies, The eigen-values and singular values of integral equations, Proc. London. Math. Soc. 43 (1937), 255-279.
1375. , Integral Equations, Cambridge University Press, Cambridge, England, 1958.
1376. T. Söderstörm and G. W. Stewart, On the numerical proerties of an iterative method for computing the Moore-Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974), 61-74.
1377. E. D. Sontag, On generalized inverses of polynomial and other matrices, IEEE Trans. Automat. Control 25 (1980), no. 3, 514-517.
1378. A. G. Spera, Radical of a Hestenes ring, Atti Accad. Sci. Lett. Arti Palermo Parte I (4) 35 (1975/76), 283-296 (1978).
1379. J. Springer, Die exakte Berechnung der Moore Penrose-Inversen einer Matrix durch Residuenarithmetik, Z. Angew. Math. Mech. 63 (1983), no. 3, 203-210.
1380. ___, Exact solution of general integer systems of linear equations, ACM Trans. Math. Software 12 (1986), no. 1, 51-61.
1381. _, Verallgemeinerte Inversen ganzzahliger Matrizen, Z. Angew. Math. Mech. 67 (1987), no. 10, 503-506.
1382. M. D. Springer, The algebra of random variables, John Wiley \& Sons, New York-ChichesterBrisbane, 1979, Wiley Series in Probability and Mathematical Statistics.
1383. V. P. Sreedharan, Least squares algorithms for finding solutions of overdetermined linear equations which minimize error in an abstract norm, Numer. Math. 17 (1971), 387-401.
1384. R. P. Srivastav, An L_{2}-theory of dual integral equations, J. of M. A. C. T. 9 (1976), 1-21.
1385. M. W. Stadelmaier, N. J. Rose, G. D. Poole, and C. D. Meyer, Jr., Nonnegative matrices with power invariant zero patterns, Linear Algebra and its Applications 42 (1982), 23-29.
1386. P. Stahlecker and G. Trenkler, Linear and ellipsoidal restrictions in linear regression, Statistics 22 (1991), no. 2, 163-176.
1387. I. Stakgold, Branching of solutions of nonlinear equations, SIAM Rev. 13 (1971), 289-332, (errata: SIAM Rev.14(1972), 492).
1388. W. T. Stallings and T. L. Boullion, Computation of pseudoinverse matrices using residue arithmetic, SIAM Rev. 14 (1972), 152-163.
1389. P. S. Stanimirović, General determinantal representation of pseudoinverses and its computation, Rev. Acad. Cienc. Zaragoza (2) 50 (1995), 41-49.
1390. \qquad , Determinantal representation of $\{I, J, K\}$ inverses and solution of linear systems, Math. Slovaca 49 (1999), no. 3, 273-286.
1391. \qquad Limit representations of generalized inverses and related methods, Appl. Math. Comput. 103 (1999), no. 1, 51-68.
1392. P. S. Stanimirović and D. S. Djordjević, Full-rank and determinantal representation of the Drazin inverse, Linear Algebra and its Applications 311 (2000), no. 1-3, 131-151.
1393. P. S. Stanimirović and M. Stanković, Determinantal representation of weighted Moore-Penrose inverse, Mat. Vesnik 46 (1994), no. 1-2, 41-50.
1394. \qquad , Generalized algebraic complement and Moore-Penrose inverse, Filomat (1994), no. 8, 5764.
1395. \qquad , Determinants of rectangular matrices and Moore-Penrose inverse, Novi Sad J. Math. 27 (1997), no. 1, 53-69.
1396. P. Stein, Some general theorems on iterants, J. Res. Nat. Bur. Standards 48 (1952), 82-82.
1397. T. E. Stern, Extremum relations in nonlinear networks and their applications to mathematical programming, Journées d'Études sur le Contrôle Optimum el les Systèmes Nonlinéaires, Institut National des Sciences et Techniques Nucleaires, Saclay, France, pp. 135-156.
1398. \qquad Theory of Nonlinear Networks and Systems, Addison-Wesley, Reading, Mass., 1965.
1399. G. W. Stewart, On the continuity of the generalized inverse, SIAM J. Appl. Math. 17 (1969), 33-45, (see [1214]).
1400. \qquad , Projectors and generalized inverses, Tech Report TNN-97, University of Texas at Austin Computation Center, October 1969.
1401. \qquad , Introduction to Matrix Computations, Academic Press, New York-London, 1973.
1402. \qquad , On the perturbation of pseudo-inverses, projections, and linear least squares problems, SIAM Rev. 19 (1977), 634-662.
1403. \qquad , An iterative method for solving linear inequalities, Technical Report TR-1833, Computer Science Department, University of Maryland, 1987.
1404. \qquad , On scaled projections and pseudo-inverses, Linear Algebra and its Applications 112 (1989), 189-194, (see [1151], [1455], [561], [188]).
1405. \qquad , On the early history of the singular value decomposition, SIAM Rev. 35 (1993), 551-566.
1406. J. Stoer, On the characterization of least upper bound norms in matrix space, Numer. Math. 6 (1964), 302-314.
1407. M. Stojaković, Determinanten rechteckiger Matrizen, Bull. Soc. Mat. Phys. Serbie 4 (1952), no. nos. 1-2, 9-23.
1408. \qquad , Sur les matrices quasi-inverses et les matrices quasi-unités, C. R. Acad. Sci. Paris 236 (1953), 877-879.
1409. G. Strang, A framework for equilibrium equations, SIAM Rev. 30 (1988), no. 2, 283-297.
1410. \qquad Patterns in linear algebra, Amer. Math. Monthly 96 (1989), no. 2, 105-117.
1411. \qquad Inverse problems and derivatives of determinants, Arch. Rational Mech. Anal. 114 (1991), no. 3, 255-265.
1412. _, The fundamental theorem of linear algebra, Amer. Math. Monthly 100 (1993), no. 9, 848855.
1413. Ji Guang Sun, Perturbation of angles between linear subspaces, J. Comput. Math. 5 (1987), no. 1, 58-61.
1414. Wenyu Sun and Yimin Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix Anal. Appl. 19 (1998), no. 3, 772-775 (electronic).
1415. \qquad Researches on inverse order rule for weighted generalized inverse, Numer. Math. J. Chinese Univ. (English Ser.) 9 (2000), no. 2, 234-240.
1416. \qquad , Researches on inverse order rule for weighted generalized inverse, Numer. Math. J. Chinese Univ. (English Ser.) 9 (2000), no. 2, 234-240.
1417. R. Sušanj and M. Radić, Geometrical meaning of one generalization of the determinant of a square matrix, Glas. Mat. Ser. III 29(49) (1994), no. 2, 217-233.
1418. Y. Takane and H. Yanai, On oblique projectors, Linear Algebra and its Applications 289 (1999), no. 1-3, 297-310.
1419. W. Y. Tan, Note on an extension of the GaussMarkov theorems to multivariate linear regression models, SIAM J. Appl. Math. 20 (1971), 24-29.
1420. K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math. 17 (1971), 203-214, (see also [987]).
1421. \qquad , Characterization of linear stationary iterative process for solving a singular system of linear equations, Numer. Math. 22 (1974), 349-359.
1422. \qquad , Neumann-type expansions of reflexive generalized inverses of a matrix and the hyperpower iterative method, Linear Algebra and its Applications 10 (1975), 163-175.
1423. _, Conjugate-gradient method for computing the Moore-Penrose inverse and rank of a matrix, J. Optimization Theory Appl. 22 (1977), no. 1, 1-23.
1424. __, Continuous Newton-Raphson method for solving an underdetermined system of nonlinear
equations, Nonlinear Anal. 3 (1979), no. 4, 495503.
1425. \qquad , Differential geometric approach to extended GRG methods with enforced feasibility in nonlinear programming: global analysis, In Campbell [267], pp. 100-137.
1426. K. Tanabe and M. Sagae, An exact Cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications, J. Roy. Statist. Soc. Ser. B 54 (1992), no. 1, 211-219, (see [1130]).
1427. X. Tang and A. Ben-Israel, Two consequences of Minkowski's 2^{n} theorem, Discrete Math. 169 (1997), 279-282.
1428. R. A. Tapia, An application of a Newton-like method to the Euler-Lagrange equation., Pacific J. Math. 29 (1969), 235-246.
1429. _, The weak Newton method and boundary value problems, SIAM J. Numer. Anal. 6 (1969), 539-550.
1430. A. Tarantola, Inverse Problem Theory. methods for data fitting and model parameter estimation, Elsevier Science Publishers B.V., Amsterdam, 1987.
1431. \qquad Inversion of elastic seismic reflection data, Theory and Applications of Inverse Problems (Helsinki, 1985), Longman Sci. Tech., Harlow, 1988, pp. 97-142.
1432. A. Tarantola and B. Valette, Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys. Space Phys. 20 (1982), no. 2, 219-232.
1433. O. E. Taurian and Per-Olov Löwdin, Some remarks on the projector associated with the intersection of two linear manifolds, Acta Phys. Acad. Sci. Hungar. 51 (1981), no. 1-2, 5-12 (1982).
1434. O. Taussky, Note on the condition of matrices, Math, Tables Aids Comput. 4 (1950), 111-112.
1435. \qquad , Matrices C with $C^{n} \rightarrow O$, J. Algebra 1 (1964), 5-10.
1436. A. E. Taylor, Introduction to Functional Analysis, J. Wiley \& Sons, New York, 1958.
1437. A. E. Taylor and C. J. A. Halberg, Jr., General theorems about a bounded linear operator and its conjugate, J. Reine Angew. Math. 198 (1957), 93111.
1438. R. P. Tewarson, On the product form of inverses of sparse matrices, SIAM Rev. 8 (1966), 336-342.
1439. \qquad , A direct method for generalized matrix inversion, SIAM J. Numer. Anal. 4 (1967), 499-507.
1440. \qquad , The product form of inverses of sparse matrices and graph theory, SIAM Rev. 9 (1967), 9199.
1441. \qquad , A computational method for evaluating generalized inverses, Comput. J. 10 (1967/1968), 411-413.
1442. _ A least squares iterative method for singular equations, Comput. J. 12 (1969), 388-392.
1443. \qquad , On computing generalized inverses, Computing (Arch. Elektron. Rechnen) 4 (1969), 139152.
1444. \qquad , On some representations of generalized inverses, SIAM Rev. 11 (1969), 272-276.
1445. \qquad , On two direct methods for computing generalized inverses, Computing 7 (1971), 236-239.
1446. \qquad , On minimax solutions of linear equations, Comput. J. 15 (1972), 277-279.
1447. R. C. Thompson, On Pearl's paper "A decomposition theorem for matrices", Canad. Math. Bull. 12 (1969), 805-808, (See [1171]).
1448. \qquad , Principal submatrices IX: Interlacing inequalities for singular values, Linear Algebra and its Applications 5 (1972), 1-12.
1449. W. Thomson (Lord Kelvin), Cambridge and Dublin Math. J. (1848), 84-87.
1450. Yong Ge Tian, Reverse order laws for the generalized inverses of multiple matrix products, Linear Algebra and its Applications 211 (1994), 85-100.
1451. \qquad , The Moore-Penrose inverses of $m \times n$ block matrices and their applications, Linear Algebra and its Applications 283 (1998), no. 1-3, 35-60.
1452. A. N. Tihonov, On the stability of algorithms for the solution of degenerate systems of linear algebraic equations, Ž. Vyčisl. Mat. i Mat. Fiz. 5 (1965), 718-722.
1453. A. R. Tipton and H. W. Milnes, Least squares solution of linear equations, Indust. Math. 22 (1972), 11-16.
1454. W. M. To and D. J. Ewins, The role of the generalized inverse in structural dynamics, J. Sound Vibration 186 (1995), 185-195.
1455. M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm, Oper. Res. 38 (1990), no. 6, 1006-1018, (See [1404]).
1456. M. J. Todd, L. Tunçel, and Yinyu Ye, Characterizations, bounds, and probabilistic analysis of two complexity measures for linear programming problems, Math. Program. 90 (2001), no. 1, Ser. A, 59-69.
1457. J. Tokarzewski, Geometric characterization of system zeros and zero directions by the Moore-Penrose inverse of the first non-zero Markov parameter, Arch. Control Sci. 5 (1996), no. 3-4(41), 245-264.
1458. G. Trenkler, Biased Estimators in the Linear Regression Model, Verlagsgruppe Athenäum/Hain/Hanstein, Königstein/Ts., 1981.
1459. \qquad , Generalizing Mallows' C_{L} and optimal ridge constants, VII. symposium on operations research, Sektionen $4-9$ (St. Gallen, 1982), Athenäum/Hain/Hanstein, Königstein, 1983, pp. 157-166.
1460. \qquad , Characterizations of oblique and orthogonal projectors, Proceedings of the International Conference on Linear Statistical Inference LINSTAT '93 (Poznań, 1993) (Dordrecht), Kluwer Acad. Publ., 1994, pp. 255-270.
1461. Yuan-Yung Tseng, The Characteristic Value Problem of Hermitian Functional Operators in a NonHilbert Space, Ph.d. in mathematics, University of Chicago, Chicago, 1933, (Published by the University of Chicago Libraries, 1936).
1462. , On generalized biorthogonal expansions in metric and unitary spaces, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 170-175.
1463. \qquad , Expansions according to an arbitrary system of functions in hyper-Hilbert space, Sci. Rep. Nat. Tsing Hua Univ. 4 (1947), 286-312.
1464. \qquad , Generalized inverses of unbounded operators between two unitary spaces, Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 431-434, (Reviewed in Math. Rev. 11(1950), P. 115).
1465. \qquad , Properties and classification of generalized inverses of closed operators, Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 607-610, (Reviewed in Math. Rev. 11(1950), P. 115).
1466. \qquad , Sur les solutions des équations opératrices fonctionnelles entre les espaces unitaires. Solutions extrémales. Solutions virtuelles, C. R. Acad. Sci. Paris 228 (1949), 640-641, (Reviewed in Math. Rev. 11(1950), P. 115).
1467. \qquad Virtual solutions and general inversions, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 6(72), 213215, (Reviewed in Math. Rev. 18(1957), P. 749).
1468. D. H. Tucker, Boundary value problems for linear differential systems, SIAM J. Appl. Math. 17 (1969), 769-783.
1469. F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion, Proc. Roy. Soc. London Ser. A 439 (1992), no. 1906, 407-410.
1470. \qquad , On motion, J. Franklin Inst. 330 (1993), no. 3, 571-577.
1471. \qquad , An alternate proof for the equation of motion for constrained mechanical systems, Appl. Math. Comput. 70 (1995), no. 2-3, 339-342.
1472. _ , The geometry of constrained motion, Z . Angew. Math. Mech. 75 (1995), no. 8, 637-640.
1473. \qquad , Analytical Dynamics, Cambridge University Press, Cambridge, 1996.
1474. \qquad , Response to: R. S. Bucy's "Comments on a paper by F. E. Udwadia and R. E. Kalaba: 'A new perspective on constrained motion'" [Proc. Roy. Soc. London Ser. A 444 (1994), no. 1920, 253-255; MR 95c:70024], Proc. Roy. Soc. London Ser. A 452 (1996), no. 1948, 1055-1056, (see [242]).
1475. __, An alternative proof of the Greville formula, J. Optim. Theory Appl. 94 (1997), no. 1, 23-28.
1476.
, The explicit Gibbs-Appell equation and generalized inverse forms, Quart. Appl. Math. 56 (1998), no. 2, 277-288.
1477. \qquad , General forms for the recursive determination of generalized inverses: unified approach, J. Optim. Theory Appl. 101 (1999), no. 3, 509-521.
1478. \qquad , A unified approach for the recursive determination of generalized inverses, Comput. Math. Appl. 37 (1999), no. 1, 125-130.
1479. S. Ul'm, Iteration methods with successive approximation of the inverse operator, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 16 (1967), 403-411.
1480. N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev. 10 (1968), 216-218.
1481. \qquad The nature of the lack of uniqueness of generalized inverse matrices, SIAM Rev. 11 (1969), 268-271.
1482. O. Vaarmann, The application of generalized inverse operators and their approximations to the solution of nonlinear equations, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 19 (1970), 265-274.
1483. \qquad , Approximations of pseudo-inverse operators as applied to the solution of nonlinear equations, Eesti NSV Tead. Akad. Toimetised Füüs.Mat. 20 (1971), 386-394.
1484. \qquad , On methods with successive approximation of the pseudoinverse operator, Progress in operations research, Vols. I, II (Proc. Sixth Hungarian Conf., Eger, 1974), North-Holland, Amsterdam, 1976, pp. 941-946. Colloq. Math. Soc. János Bolyai, Vol. 12.
1485. \qquad , Obobshchennye Obratnye Otobrazheniya (Generalized Inverse Mappings), "Valgus", Tallinn, 1988, With English and Estonian summaries.
1486. O. Vaarmann and Marika Lomp, Extension of the domain of convergence of methods with approximation of a pseudoinverse operator, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 31 (1982), no. 4, 410-417, 474.
1487. V. V. Vagner, The theory of generalized heaps and generalized groups, Mat. Sbornik N.S. 32(74) (1953), 545-632.
1488. K. Vala, Sur les projections des bases orthogonales, Ann. Acad. Sci. Fenn. Ser. A I No. 285 (1960), 6.
1489. \qquad , On the Gram determinant and linear transformations of Hilbert space., Ann. Acad. Sci. Fenn. Ser. A I No. 306 (1961), 8.
1490. \qquad _, On a decomposition for operators with closed range, Ann. Acad. Sci. Fenn. Ser. A I No. 364 (1965), 8.
1491. J. Van hamme, Generalized inverses of linear operators in Hilbert spaces, Bull. Soc. Math. Belg. Sér. B 41 (1989), no. 1, 83-93.
1492. \qquad , On the generalized inverse of a matrix partial differential operator, Simon Stevin 66 (1992), no. 1-2, 185-194.
1493. C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal. 13 (1976), no. 1, 76-83.
1494. \qquad , Computing the CS and the generalized singular value decompositions, Numer. Math. 479491 (1985), 479-491.
1495. \qquad , The ubiquitous Kronecker product, J. Comput. Appl. Math. 123 (2000), no. 1-2, 85-100.
1496. R. J. Vanderbei and J. C. Lagarias, I. I. Dikin's convergence result for the affine-scaling algorithm, Mathematical developments arising from linear programming (Brunswick, ME, 1988), Amer. Math. Soc., Providence, RI, 1990, pp. 109-119.
1497. J. M. Varah, On the numerical solution of illconditioned linear systems with applications to illposed problems, SIAM J. Numer. Anal. 10 (1973), 257-267.
1498. S. A. Vavasis, Stable numerical algorithms for equilibrium systems, SIAM J. Matrix Anal. Appl. 15 (1994), 1108-1131.
1499. S. A. Vavasis and Yinyu Ye, Condition numbers for polyhedra with real number data, Oper. Res. Lett. 17 (1995), no. 5, 209-214.
1500. \qquad , A primal-dual interior point method whose running time depends only on the constraint matrix, Math. Programming 74 (1996), no. 1, Ser. A, 79-120.
1501. D. Veljan, The sine theorem and inequalities for volumes of simplices and determinants, Linear Algebra and its Applications 219 (1995), 79-91.
1502. G. C. Verghese, A "Cramer rule" for the leastnorm, least-squared-error solution of inconsistent linear equations, Linear Algebra and its Applications 48 (1982), 315-316, (extension of [120]).
1503. A. Vogt, On the linearity of form isometries, SIAM J. Appl. Math. 22 (1972), 553-560.
1504. J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. 33 (1932), 294-310.
1505. On regular rings, Proc. Nat. Acad. Sci. U.S.A. 33 (1936), 294-310.
1506. __, Some matrix inequalities and metrization of matric-space, Tomsk Univ. Rev. 1 (1937), 286300, (Republished in John von Neumann Collected Works, MacMillan, New York, Vol IV, pp. 205219).
1507. \qquad , Functional Operators. Vol II: The Geometry of Orthogonal Spaces, Annals of Math. Studies, vol. 29, Princeton University Press, Princeton, 1950.
1508. \qquad , Continuous Geometry, Princeton University Press, Princeton, 1960.
1509. D. von Rosen, A matrix formula for testing linear hypotheses in linear models, Linear Algebra and its Applications 127 (1990), 457-461.
1510. \qquad , Some results on homogeneous matrix equations, SIAM J. Matrix Anal. Appl. 14 (1993), no. 1, 137-145.
1511. G. Votruba, Generalized Inverses and Singular Equations in Functional Analysis, doctoral dissertation in mathematics, The University of Michigan, Ann Arbor, MI, 1963.
1512. G. Wahba and M. Z. Nashed, The approximate solution of a class of constrained control problems, Proceedings of the Sixth Hawaii International Conference on Systems Sciences (Hawaii), 1973.
1513. D. Walker and C. R. Hallum, Pseudoinverses in generalizing Newton's method for obtaining the
square root of a symmetric positive semidefinite matrix, Indust. Math. 34 (1984), no. 2, 137-146.
1514. H. F. Walker, Newton-like methods for underdetermined systems, Computational Solution of Nonlinear Systems of Equations (Fort Collins, CO, 1988, Lectures in Applied Math. 26) (E. L. Allgower and K. Georg, eds.), American Mathematical Society, Providence, RI, 1990, pp. 679-699.
1515. H. F. Walker and L. T. Watson, Least-change secant update methods for underdetermined systems, SIAM J. Numer. Anal. 27 (1990), 1227-1262.
1516. J. R. Wall and R. J. Plemmons, Spectral inverses of stochastic matrices, SIAM J. Appl. Math. 22 (1972), 22-26.
1517. Bo-Ying Wang and Bo-Yan Xi, Some inequalities for singular values of matrix products, Linear Algebra and its Applications 264 (1997), 109-115.
1518. Bo-Ying Wang, Xiuping Zhang, and Fuzhen Zhang, Some inequalities on generalized Schur complements, Linear Algebra and its Applications 302/303 (1999), 163-172.
1519. Guorong Wang, A Cramer rule for minimum-norm (T) least-squares (S) solution of inconsistent linear equations, Linear Algebra and its Applications 74 (1986), 213-218, (see [120], [1502]).
1520. \qquad —, m-for computing the Math. Comput. 23 (1987), no. 4, 277-289.
1521. __, Approximation methods for the W weighted Drazin inverses of linear operators in Banach spaces, Numer. Math. J. Chinese Univ. 10 (1988), no. 1, 74-81.
1522. \qquad , A Cramer rule for finding the solution of a class of singular equations, Linear Algebra and its Applications 116 (1989), 27-34.
1523. \qquad , Iterative methods for computing the Drazin inverse and the W-weighted Drazin inverse of linear operators based on functional interpolation, $\mathrm{Nu}-$ mer. Math. J. Chinese Univ. 11 (1989), no. 3, 269280.
1524. \qquad , An imbedding method for computing the generalized inverses, J. Comput. Math. 8 (1990), no. 4, 353-362.
1525. \qquad , Weighted Moore-Penrose, Drazin, and group inverses of the Kronecker product $A \otimes B$, and some applications, Linear Algebra and its Applications 250 (1997), 39-50.
1526. Guorong Wang and Yong Lin Chen, A recursive algorithm for computing the weighted Moore-Penrose inverse $A_{M N}^{+}$, J. Comput. Math. 4 (1986), no. 1, 74-85.
1527. Guorong Wang and Jiao Xun Kuang, A new measure of the degree of ill-conditioning of a matrix, Numer. Math. J. Chinese Univ. 1 (1979), no. 1, 20-30.
1528. Guorong Wang and Hongjiong Tian, Projection methods for computing generalized inverses $A_{T, S}^{(1,2)}$
and $A_{T, S}^{(2)}$ and their applications, Math. Appl. 9 (1996), no. 4, 464-469, Projection methods.
1529. Guorong Wang and Yimin Wei, Limiting expression for generalized inverse $A_{T, S}^{(2)}$ and its corresponding projectors, Numer. Math. J. Chinese Univ. (English Ser.) 4 (1995), no. 1, 25-30.
1530. Jia Song Wang and Xiao Wen Chang, Some notes on the generalized inverse under the L_{1} norm, Nanjing Daxue Xuebao Shuxue Bannian Kan 7 (1990), no. 2, 228-237.
1531. Song-Gui Wang and Wai-Cheung Ip, A matrix version of the Wielandt inequality and its applications to statistics, Linear Algebra and its Applications 296 (1999), no. 1-3, 171-181.
1532. Yu Wen Wang, Geometry of Banach space and generalized inverses of operators, Natur. Sci. J. Harbin Normal Univ. 14 (1998), no. 5, 1-7.
1533. Yu Wen Wang and Da Qin Ji, The Tseng-metric generalized inverse for linear operators in Banach spaces, J. Systems Sci. Math. Sci. 20 (2000), no. 2, 203-209.
1534. Yu Wen Wang and Zhi Wei Li, Moore-Penrose generalized inverses in Banach spaces and ill-posed boundary value problems, J. Systems Sci. Math. Sci. 15 (1995), no. 2, 175-185.
1535. Yu Wen Wang and Run Jie Wang, Pseudoinverse and two-objective optimal control in Banach spaces, Funct. Approx. Comment. Math. 21 (1992), 149160.
1536. J. F. Ward, T. L. Boullion, and T. O. Lewis, A note on the oblique matrix pseudoinverse, SIAM J. Appl. Math. 20 (1971), 173-175.
1537. \qquad , Weak spectral inverses, SIAM J. Appl. Math. 22 (1972), 514-518.
1538. J. H. M. Wedderburn, Lectures on Matrices, Colloq. Publ., vol. XVII, Amer. Math. Soc., Providence, RI, 1934.
1539. P.-Å. Wedin, The non-linear least squares problem from a numerical point of view. I. geometrical properties, Dept. of computer sciences, Lund University, Lund, Sweden, August 1972.
1540. \qquad _, Perturbation bounds in connection with singular value decomposition, BIT 12 (1972), 99111.
1541. \qquad Pertubation theory for pseudo-inverses, BIT 13 (1973), 217-232.
1542. W. G. Wee, Generalized inverse approach to adaptive multiclass pattern classification, IEEE Trans. Electron. Comput. C17 (1968), 1157-1164.
1543. \qquad , A generalized inverse approach to clustering pattern selection and classification, IEEE Trans. Info. Th. 17 (1971).
1544. Musheng Wei, Upper bounds and stability of scaled pseudoinverses, Numer. Math. 72 (1995), 285-293.
1545. \qquad , Equivalent conditions for generalized inverses of products, Linear Algebra and its Applications 266 (1997), 347-363.
1546. \qquad , Reverse order laws for generalized inverses of multiple matrix products, Linear Algebra and its Applications 293 (1999), 273-288.
1547. Yimin Wei, A characterization and representation of the Drazin inverse, SIAM J. Matrix Anal. Appl. 17 (1996), no. 4, 744-747.
1548. _, A characterization and representation of the generalized inverse $A_{T, S}^{(2)}$ and its applications, Linear Algebra and its Applications 280 (1998), 87-96.
1549. , Expressions for the Drazin inverse of a $2 \times$ 2 block matrix, Linear and Multilinear Algebra 45 (1998), no. 2-3, 131-146.
1550. \qquad , Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput. 95 (1998), no. 2-3, 115-124.
1551. \qquad , On the perturbation of the group inverse and oblique projection, Appl. Math. Comput. 98 (1999), no. 1, 29-42.
1552. \qquad , Perturbation bound of singular linear systems, Appl. Math. Comput. 105 (1999), no. 2-3, 211-220.
1553. \qquad , The Drazin inverse of updating of a square matrix with application to perturbation formula, Appl. Math. Comput. 108 (2000), no. 2-3, '77-83.
1554. \qquad -, Perturbation analysis of singular linear systems with index one, Int. J. Comput. Math. 74 (2000), no. 4, 483-491.
1555. \qquad , Recurrent neural networks for computing weighted Moore-Penrose inverse, Appl. Math. Comput. 116 (2000), no. 3, 279-287.
1556. \qquad , Representations and perturbations of Drazin inverses in Banach spaces, Chinese Ann. Math. Ser. A 21 (2000), no. 1, 33-38.
1557. \qquad , Successive matrix squaring algorithm for computing the Drazin inverse, Appl. Math. Comput. 108 (2000), no. 2-3, 67-75.
1558. Yimin Wei and Guoliang Chen, Perturbation of least squares problem in Hilbert space, Appl. Math. Comput. 121 (2001), 171-177.
1559. Yimin Wei and Jiu Ding, Representations for Moore-Penrose inverses in Hilbert spaces, Appl. Math. Letters 14 (2001), 599-604.
1560. Yimin Wei and Jiao Xun Kuang, Iterative methods for computing the Drazin inverses of linear operators in Banach spaces, J. Fudan Univ. Nat. Sci. 35 (1996), no. 4, 407-413.
1561. Yimin Wei and Guorong Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra and its Applications 258 (1997), 179-186.
1562. __, Approximate methods for the generalized inverse $A_{T, S}^{(2)}$, J. Fudan Univ. Nat. Sci. 38 (1999), no. 2, 234-239.
1563. __, Perturbation theory for the generalized inverse $A_{T, S}^{(2)}$, J. Fudan Univ. Nat. Sci. 39 (2000), no. 5, 482-488.
1564. Yimin Wei and Hebing Wu, Expression for the perturbation of the weighted Moore-Penrose inverse, Comput. Math. Appl. 39 (2000), no. 5-6, 13-18.
1565. _ , The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett. 13 (2000), no. 3, 77-83.
1566. \qquad , The representation and approximation for Drazin inverse, J. Comput. Appl. Math. 126 (2000), no. 1-2, 417-432.
1567. , Additional results on index splittings for drazin inverse solutions of singular linear systems, The Electronic Journal of Linear Algebra 8 (2001), no. 1, 83-93.
1568. \qquad , The representation and approximation for the weighted Moore-Penrose inverse, Appl. Math. Comput. 121 (2001), no. 1, 17-28.
1569. \qquad , $(T-S)$ splitting methods for computing the generalized inverse $A_{T, S}^{(2)}$ and rectangular systems, International Journal of Computer Mathematics 77 (2001), no. 3, 401-424.
1570. H. -J. Werner, On the matrix monotonicity of generalized inversion, Linear Algebra and its Applications 27 (1979), 141-145.
1571. \qquad Die Bott-Duffin Inversen, Z. Angew. Math. Mech. 60 (1980), no. 7, T275-T277.
1572. \qquad , Zur Darstellung traditioneller BLUSchätzer im singulären linearen Modell, Proceedings of the Annual Meeting of the Gesellschaft für Angewandte Mathematik und Mechanik, Würzburg 1981, Part II (Würzburg, 1981), vol. 62, 1982, pp. T389-T390.
1573. \qquad , Charakterisierungen von monotonen Matrizen, Linear Algebra and its Applications 60 (1984), 79-90.
1574. _, More on BLIMB-estimation, Contributions to operations research and mathematical economics, Vol. II, Athenäum/Hain/Hanstein, Königstein, 1984, pp. 629-638.
1575. \qquad , On extensions of Cramer's rule for solutions of restricted linear systems, Linear and Multilinear Algebra 15 (1984), no. 3-4, 319-330.
1576. \qquad , Drazin-monotonicity characterizations for property-n matrices, Linear Algebra and its Applications 71 (1985), 327-337.
1577. \qquad , More on BLU estimation in regression models with possibly singular covariances, Linear Algebra and its Applications 67 (1985), 207-214.
1578. __, Generalized inversion and weak bicomplementarity, Linear and Multilinear Algebra 19 (1986), no. 4, 357-372.
1579. \qquad , C. R. Rao's IPM method: a geometric approach, New perspectives in theoretical and applied statistics (Bilbao, 1986), Wiley, New York, 1987, pp. 367-382.
1580. __, On weak r-monotonicity, Linear Algebra and its Applications 86 (1987), 199-209.
1581. \qquad , Some recent results on Drazin-monotonicity of property-n matrices, Linear and Multilinear Algebra 21 (1987), no. 3, 243-251.
1582. \qquad , A closed form formula for the intersection of two complex matrices under the star order, Linear Algebra and its Applications 140 (1990), 13-30.
1583. \qquad _, On inequality constrained generalized least-squares estimation, Linear Algebra and its Applications 127 (1990), 379-392.
1584. \qquad , Some further results on matrix monotonicity, Linear Algebra and its Applications 150 (1991), 371-392.
1585. \qquad , Characterizations of minimal semipositivity, Linear and Multilinear Algebra 37 (1994), no. 4, 273-278.
1586. \qquad , When is $B^{-} A^{-}$a generalized inverse of $A B$?, Linear Algebra and its Applications 210 (1994), 255-263.
1587. H. -J. Werner and C. Yapar, A BLUE decomposition in the general linear regression model, Linear Algebra and its Applications 237/238 (1996), 395-404.
1588. \qquad , On inequality constrained generalized least squares selections in the general possibly singular Gauss-Markov model: a projector theoretical approach, Linear Algebra and its Applications 237/238 (1996), 359-393.
1589. H. Weyl, Repartición de corriente en una red conductora, Revista Matemática Hispano-Americana 5 (1923), 153-164.
1590._, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408-411.
1591. T. M. Whitney and R. K. Meany, Two algorithms related to the method of steepest descent, SIAM J. Numer. Anal. 4 (1967), 109-118.
1592. E. A. Wibker, R. B. Howe, and J. D. Gilbert, Explicit solutions to the reverse order law $(A B)^{+}=$ $B_{m r}^{-} A_{l r}^{-}$, Linear Algebra and its Applications 25 (1979), 107-114.
1593. N. A. Wiegmann, Some analogs of the generalized principal axis transformation, Bull. Amer. Math. Soc. 54 (1948), 905-908.
1594. H. S. Wilf and F. Harary (eds.), Mathematical Aspects of Electrical Network Analysis, SIAM-AMS Proc., vol. III, Providence, RI, Amer. Math. Soc., 1971.
1595. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford Univertsity Press, London, 1965.
1596. \qquad The solution of ill-conditioned linear equations, In Ralston and Wilf [1238], pp. 65-93, Vol. II.
1597. \qquad , Note on the practical significance of the Drazin inverse, In Campbell [267], pp. 82-99.
1598. J. H. Wilkinson and C. Reinsch (eds.), Handbook for Automatic Computation, Vol. II: Linear Algebra, Springer-Verlag, Berlin, 1971.
1599. J. Williamson, A polar representation of singular matrices, Bull. Amer. Math. Soc. 41 (1935), 118123.
1600. \qquad , Note on a principal axis transformation for non-Hermitian matrices, Bull. Amer. Math. Soc. 45 (1939), 920-922.
1601. L. B. Willner, An elimination method for computing the generalized inverse, Math. Comput. 21 (1967), 227-229.
1602. H. K. Wimmer, Linear matrix equations, controllability and observability, and the rank of solutions, SIAM J. Matrix Anal. Appl. 9 (1988), no. 4, 570578.
1603. \qquad , Bezoutians of polynomial matrices and their generalized inverses, Linear Algebra and its Applications 122/123/124 (1989), 475-487.
1604. \qquad , Generalized singular values and interlacing inequalities, J. Math. Anal. Appl. 137 (1989), no. 1, 181-184.
1605. \qquad , Explicit solutions of the matrix equation $\sum A^{i} X D_{i}=C$, SIAM J. Matrix Anal. Appl. 13 (1992), no. 4, 1123-1130.
1606. __, Canonical angles of unitary spaces and perturbations of direct complements, Linear Algebra and its Applications 287 (1999), no. 1-3, 373379.
1607. \qquad , Lipschitz continuity of oblique projections, Proc. Amer. Math. Soc. 128 (2000), no. 3, 873-876.
1608. H. K. Wimmer and A. D. Ziebur, Solving the matrix equation $\sum_{\rho=1}^{r} f_{\rho}(A) X g_{\rho}(B)=C$, SIAM Rev. 14 (1972), 318-323.
1609. \qquad , Blockmatrizen und lineare Matrizengleichungen, Math. Nachr. 59 (1974), 213-219.
1610. H. Wolkowicz, Explicit solutions for interval semidefinite linear programs, Linear Algebra and its Applications 236 (1996), 95-104.
1611. H. Wolkowicz and S. Zlobec, Calculating the best approximate solution of an operator equation, Math. Comp. 32 (1978), no. 144, 1183-1213.
1612. Chi Song Wong, Hua Cheng, and J. Masaro, Multivariate versions of Cochran theorems, Linear Algebra and its Applications 291 (1999), no. 1-3, 227234.
1613. Edward T. Wong, Polygons, circulant matrices, and Moore-Penrose inverses, Amer. Math. Monthly 88 (1981), no. 7, 509-515.
1614. \qquad Involutory functions and Moore-Penrose inverses of matrices in an arbitrary field, Linear Algebra and its Applications 48 (1982), 283-291.
1615. James S. W. Wong, Remarks on a result of Gram determinants and generalized Schwartz inequality, Matrix Tensor Quart. 14 (1963/1964), 77-80.
1616. Chuan-Kun Wu and E. Dawson, Existence of generalized inverse of linear transformations over finite fields, Finite Fields Appl. 4 (1998), no. 4, 307315.
1617. \qquad , Generalised inverses in public key cryptosystem design, IEEE Proceedings: Computers and Digital Techniques 145 (1998), no. 5, 321-326.
1618. O. Wyler, Green's operators, Ann. Mat. Pura Appl. (4) 66 (1964), 252-263, (see [1662]).
1619. \qquad , On two-point boundary-value problems, Ann. Mat. Pura Appl. (4) 67 (1965), 127-142.
1620. P. Wynn, Upon the generalised inverse of a formal power series with vector valued coefficients, Compositio Math. 23 (1971), 453-460.
1621. H. Yanai and S. Puntanen, Partial canonical correlations associated with the inverse and some generalized inverses of a partitioned dispersion matrix, Statistical sciences and data analysis (Tokyo, 1991), VSP, Utrecht, 1993, pp. 253-264.
1622. H. Ying, A canonical form for pencils of matrices with applications to asymptotic linear programs, Linear Algebra and its Applications 234 (1996), 97-123.
1623. K. Yosida, Functional Analysis, 2nd ed., SpringerVerlag, Berlin-New York, 1958.
1624. S. Zacks, Generalized least squares estimators for randomized replication designs, Ann. Math. Statist. 35 (1964), 696-704.
1625. L. A. Zadeh and C. A. Desoer, Linear Syetem Theory, McGraw-Hill Book Co., New York, 1963.
1626. E. H. Zarantonello, Differentoids, Advances in Math. 2 (1968), 187-306.
1627. H. Zassenhaus, 'Angles of inclination' in correllation theory, Amer. Math. Monthly 71 (1964), 218219.
1628. A. Zellner, An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, J. Amer. Statist. Assoc. 57 (1962), 348-368.
1629. \qquad , Estimators for seemingly unrelated equations: Some exact finite sample results, J. Amer. Statist. Assoc. 58 (1963), 977-992.
1630. Bao-Xue Zhang and Xian-Hai Zhu, Gauss-markov and weighted least-squares estimation under a general growth curve model, Linear Algebra and its Applications 321 (2000), 387-398.
1631. Yao Ting Zhang, The exact distribution of the Moore-Penrose inverse of X with a density, Multivariate analysis VI (Pittsburgh, Pa., 1983), NorthHolland, Amsterdam, 1985, (see [1152]), pp. 633635.
1632. Dao-Sheng Zheng, Further study and generalization of Kahan's matrix extension theorem, SIAM J. Matrix Anal. Appl. 17 (1996), no. 3, 621-631, (See [1633]).
1633. \qquad , Note on: "Further study and generalization of Kahan's matrix extension theorem" [SIAM J. Matrix Anal. Appl. 17 (1996), no. 3, 621-631; MR 97f:15008], SIAM J. Matrix Anal. Appl. 19 (1998), no. 1, 277 (electronic).
1634. P. Zieliński and K. Ziẹtak, The polar decompositionproperties, applications and algorithms, Mat. Stos. 38 (1995), 23-49.
1635. G. Zielke, Numerische Berechnung von benachbarten inversen Matrizen und linearen Gleichungssystemen, Friedr. Vieweg \& Sohn, Braunschweig, 1970.
1636. \qquad rallgemeinerten inversen Matrizen, Wiss. Z.

Martin-Luther-Univ. Halle-Wittenberg Math.- 1655. Natur. Reihe 27 (1978), no. 4, 109-118.
1637. \qquad , Motivation und Darstellung von verallgemeinerten Matrixinversen, Beiträge Numer. Math. 7 (1979), 177-218.
1638. __, Die Aufösung beliebiger linearer algebraischer Gleichungssysteme durch Blockzerlegung, Beiträge Numer. Math. 8 (1980), 181-199.
1639. __, Die Aufösung linearer Gleichungssysteme mittels verallgemeinerter inverser Matrizen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.Natur. Reihe 29 (1980), no. 1, 5-15.
1640. \qquad , Verallgemeinerungen einer Testmatrix von Rutishauser mit exakten Moore Penrose-Inversen, Z. Angew. Math. Mech. 61 (1981), no. 12, 662-663.
1641. \qquad , Verallgemeinerte inverse Matrizen, Yearbook: Surveys of mathematics 1983, Bibliographisches Inst., Mannheim, 1983, pp. 95-116.
1642. \qquad , Report on test matrices for generalized inverses, Computing 36 (1986), no. 1-2, 105-162.
1643. \qquad Some remarks on matrix norms, condition numbers, and error estimates for linear equations, Linear Algebra and its Applications 110 (1988), 29-41.
1644. \qquad Lineare Gleichungssysteme und verallgemeinerte Inversen: Grundlagen und numerische Verfahren, Wiss. Z. Martin-Luther-Univ. HalleWittenberg Math.-Natur. Reihe 40 (1991), no. 1, 45-59.
1645. K. Ziẹtak, On a particular case of the inconsistent linear matrix equation $A X+Y B=C$, Linear Algebra and its Applications 66 (1985), 249-258.
1646. __, Properties of the approximate generalized inverses of a class of matrices, Linear Algebra and its Applications 92 (1987), 259-272.
1647. \qquad , Properties of the approximations of a matrix which lower its rank, IMA J. Numer. Anal. 9 (1989), no. 4, 545-554.
1648. \qquad Subdifferentials, faces, and dual matrices, Linear Algebra and its Applications 185 (1993), 125-141.
1649. \qquad , Orthant-monotonic norms and overdetermined linear systems, J. Approx. Theory 88 (1997), no. 2, 209-227.
1650. S. Zlobec, On computing the generalized inverse of a linear operator, Glasnik Mat. Ser. III 2 (22) (1967), 265-271.
1651. \qquad , Contributions to mathematical programming and generalized inversion, Applied math., Northwestern Univ., Evanston, IL, 1970.
1652. \qquad An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix, SIAM Rev. 12 (1970), 132-134.
1653. \qquad , On computing the best least squares solutions in Hilbert space, Rend. Circ. Mat. Palermo (2) 25 (1976), no. 3, 256-270 (1977).
1654. S. Zlobec and A. Ben-Israel, On explicit solutions of interval linear programs, Israel J. Math. 8 (1970), 265-271.
\qquad , Explicit solutions of interval linear programs, Operations Res. 21 (1973), 390-393.
1656. V. M. Zubov, Certain properties of the generalized Green's matrices of linear differential operators, Differencialnye Uravnenija 10 (1974), 9961002, 1147.
1657. \qquad , On the question of generalized Green's matrices, Mat. Zametki 15 (1974), 113-120.
1658. \qquad , The closedness of the generalized Green matrices of linear differential operators, Mat. Zametki 24 (1978), no. 2, 217-229, 302, (English translation: Math. Notes 24 (1978), no. 1-2, 617624 (1979)).
1659. , On the theory of a nonclosed generalized Green matrix, Izv. Vyssh. Uchebn. Zaved. Mat. (1979), no. 1, 21-26, (English translation: Soviet Math. (Iz. VUZ) 23 (1979), no. 1, 16-21).
1660. \qquad , On the theory of the generalized Green function, Izv. Vyssh. Uchebn. Zaved. Mat. (1981), no. 9, 69-73.
1661. \qquad , Generalized inverse for a Fredholm operator, Izv. Vyssh. Uchebn. Zaved. Mat. (1982), no. 5, 76-78, (English translation: Soviet Math. (Iz. VUZ) 26 (1982), no. 5, 100-103).
1662. \qquad , Some properties of a generalized inverse operator in a vector space, Izv. Vyssh. Uchebn. Zaved. Mat. (1983), no. 12, 67-69.
1663. \qquad , A generalized inverse operator and a class of ill-posed problems, Izv. Vyssh. Uchebn. Zaved. Mat. (1987), no. 6, 77-79, 91, (English translation: Soviet Math. (Iz. VUZ) 31 (1987), no. 6, 100-103).
1664. \qquad , A method for the approximate reconstruction of an operator, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk (1989), no. 3, 39-43, 124.
1665. E. L. Žukovskiĭ, The generalized solution of systems of linear algebraic equations, Dokl. Akad. Nauk SSSR 232 (1977), no. 2, 269-272, (English translation: Soviet Math. Dokl. 18 (1977), no. 1, 49-53).
1666. \qquad , The method of least squares for degenerate and ill-conditioned systems of linear algebraic equations, Ž. Vyčisl. Mat. i Mat. Fiz. 17 (1977), no. 4, 814-827, 1091.
1667. E. L. Žukovskiĭ and R. Š. Lipcer, A recurrence method for computing the normal solutions of linear algebraic equations, Ž. Vyčisl. Mat. i Mat. Fiz. 12 (1972), 843-857, 1084.
1668. \qquad The computation of pseudoinverse matrices, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975), no. 2, 489-492, 542.
1669. G. Zyskind, On canonical forms, nonnegative covariance matrices and best and simple least squares linear estimators in linear models, Ann. Math. Statist. 38 (1967), 1092-1109.
1670. G. Zyskind and F. B. Martin, On best linear estimation and a general Gauss-Markov theorem in linear models with arbitrary nonnegative covariance structure, SIAM J. Appl. Math. 17 (1969), 11901202.

