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1. I N T R O D U C T I O N  

This paper  is devoted to the inverses of 2 x 2 block matrices. First, we give explicit inverse 
formulae for a 2 x 2 block matr ix  

D ' (1.1) 

with three different partitions. Then these results are applied to obtain inverses of block tr iangular  
matrices and various structured matrices such as bisymmetric, Hamiltonian, per-Hermitian,  and 
centro-Hermitian matrices. In the end, we briefly discuss the completion problems of a 2 x 2 
block matr ix  and its inverse, which generalizes this problem. 

The  inverse formula (1.1) of a 2 x 2 block matr ix  appears  frequently in many  subjects and has 
long been studied. I ts  inverse in terms of A -1 or D -1 can be found in s tandard textbooks on 
linear algebra, e.g., [1-3]. However, we give a complete t rea tment  here. Some papers, e.g., [4,5], 
deal with its inverse in terms of the generalized inverse of A. Needless to say, a lot of research is 
devoted to the generalized inverse of the 2 x 2 block matrix, e.g., [6-8]. But  this paper  is not in 

this direction. 
There are many  related papers on the 2 x 2 block matrix. The Schur complement D - C A - 1 B  

of A in (1.1) has been studied by several mathematicians,  e.g., [9-11]. Lazutkin [12] studies the 
signature of a symmetr ic  2 x 2 block matrix. Bapat  and Kwong [13] obtain an inequality for the 
Schur product  of positive definite 2 x 2 block matrices. 

This work was supported by the National Science Council of the Republic of China under Contract NSC86-2815- 
C- 110-022. 
The authors would like to thank the referee for his helpful comments in revising this paper. 
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This paper has three objectives. First, we completely list all the relevant formulae for a 2 x 2 
block matrix and its inverse. Although it is nothing but a mechanical exercise, some of the results 
do not appear in the literature. Second, we explore matrices with symmetric structures related 
to a 2 × 2 block matrix. 

We present this paper in the traditional way, though our formulae can also be proved using 
computer algebra systems. In fact, the package NCAlgebra [14] for noncommutative algebra has 
been used to solve certain 2 x 2 and 3 x 3 block matrix completion problems. The methodology 
of the solution procedure is explained in [15]. So our final objective is to indicate this fact and 
encourage further study of these techniques. 

Only complex matrices will be considered in this paper, but most of our results can be extended 
to matrices with elements in an arbitrary field. This paper is organized as follows. In Section 2, 
we derive several formulae for the inverse of a 2 × 2 block matrix with three different partitions. 
In Section 3, we apply these results to get the inverses of 2 × 2 block triangular matrices. In 
Section 4, we apply our formulae to matrices with certain structures. In the last section, we 
indicate the related completion problems of a 2 x 2 block matrix and its inverse, and the possible 
computer theorem proving of matrix theory. 

2 .  I N V E R S E  F O R M U L A E  

A nonsingular square matrix R and its inverse R -1 can be partitioned into 2 x 2 blocks as 

B R_ 1 . R =  [A  D ]  and = [ E  FH] (2.1) 

To make the multiplication of R by R -1 and R -1 by R possible, the sizes of all blocks cannot 
be arbitrary. Assume A, B, C, and D have sizes k × m, k × n, l × m, and 1 × n, respectively, 
with k + l = m + n; then the sizes of E,  F , G ,  and H must be m x k, m × l , n × k ,  a n d n × l ,  
respectively. In other words, R -1 is in the transposed partition of R. 

In this section, we shall write down the formulae for E,  F,  G, and H in terms of A, B, C, 
and D. We assume one of the blocks A, B, C, or D is a nonsingular square matrix to avoid 
generalized inverses. Thus, we have only three possible partitions: 

* square diagonal partition: k = m and I -- n, 
• square off-diagonal partition: k = n and l = m, 
• all-square partition: k = l = m = n. 

The original matrix R and its inverse R -1, of course, must have even dimension in the all-square 

partition. 
First, we consider the square diagonal partition of R and R - I  . In this case, A, D, E,  H are 

square matrices, A and E have the same size, and so do D and H.  The following theorem is well 
known and can be found in [3, Problem 1.6.7]. 

THEOREM 2.1. 

(i) Assume A is nonsingular; then the matr /x R in (2.1) is invertible i f  and only i f  the Schur 
complement D - C A - 1 B  of A is invertible, and 

R_ 1 [ A - I + A - I B ( D - C A - 1 B ) - I C A  -1 - A - 1 B ( D - C A - 1 B )  -1] 

= - (D - C A - 1 B )  -1 C A  -1 (D - C A - ' B ) - I  . (2.2) 

(ii) Assume D is nonsingular; then the matrix R is invertible if  and only if  the Schur comple- 
ment A - B D - 1 C  o l D  is invertible, and 

[ (A- BD-~C) -~ - (A- BD-'C) -~ B D  -~ ] 
R-I 

= [ - D - 1 C  (A - B D - 1 C ) - I  D_ 1 + D_IC  (A - B D - 1 C )  -1 BD_I  j . (2.3) 
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It  is clear that  these two set of formulae axe used in different situations, and they are equiv- 
alent if both A and D are nonsingular. References [1, Theorem 8.2.1] and [2, 0.7.3] give mixed 
expressions for R-1  by combining these two sets of formulae. 

There are several ways to prove this theorem, but it is rather trivial in view of the block 
Gaussian elimination of R [16, Exercise 2.6.15]. More precisely, 

[ O][o o ][o R =  CA_ 1 I D - C A - 1 B  

for the first part of Theorem 2.1, and 

for the second part. 

On the other hand, consider the square off-diagonal partit ion of R and R -1. In this case B, 
C, F,  G are square matrices, B and C have the same size, and so do C and F.  With suitable 
permutat ion of rows and columns, we can transform R and R -1 to the square diagonal partition. 
For example, let J be the matrix with 1 in the secondary diagonal and 0 elsewhere. Then RJ  
reverses the order of columns of R and becomes the square diagonal partition. Hence, we can 
use Theorem 2.1 on 

to get 
R -  1 = J(RJ)- 1. 

But for the completeness and later use, we include their formulae here. 

THEOREM 2.2. 

(i) Assume B is nonsingular; then the matrix R in (2.1) is invertible if and only if the Schur 
complement C - DB-XA orb is invertible and 

R - l :  [ B _  1 - ( C - D B - 1 A ) - I D B - 1  ( C - D B - 1 A )  -1 
+ B _ I A ( C _ D B _ I A ) _ I D B _ I  _ B _ I A ( C _ D B _ I A ) _ I ] .  (2.4) 

(i;) Assume C is nonsingular; then the matrix R is invertible if and only if the Schur comple- 
ment B - AC-XD of C is invertible and 

R _ I =  [ - C - 1 D ( B - A C - 1 D )  - '  C-I  + C - I D ( B _ A C - 1 D ) - I A C - *  
( B - A C - I D )  -1 _ ( B _ A C - 1 D ) - I A C  -1 ]" (2.5) 

Similarly, these two sets of formulae are used in different situations, and they are equivalent if 
both B and C are nonsingular. 

Finally, we consider the all-square partition; i.e., all blocks in R and R -1 are square. In this 
case, R and R -1 must be of even size. Since this partition can be regarded as the square diagonal 
parti t ion and the square off-diagonal partition, the previous two theorems are applicable, but  used 
under different assumptions. In some special cases, these formulae are identical: 

• (2.2) and (2.4) are equivalent if A and B are invertible; 
• (2.2) and (2.5) are equivalent if A and C are invertible; 
• (2.3) and (2.4) are equivalent if B and D are invertible; 
• (2.3) and (2.4) are equivalent if C and D are invertible. 
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We remark that  for a nonsingular matrix R, it is possible that  all its blocks A, B, C, and D 
are singular. So all the above formulae fail to compute R-1.  A typical example is the all-square 
partit ion of permutation matrix 0 ]1 

0 0 

0 0 

In fact, all of its square diagonal partitions fail to have nonsingular A or D. However, the square 
off-diagonal partition with m = 1 and n = 3 can be applied to get its inverse. Therefore, different 
partitions give us more choices to find the desired inverse when other methods break down, and 
each one has its own value as we shall see in the next two sections. 

3 .  B L O C K  T R I A N G U L A R  M A T R I C E S  

In this section, we apply our main theorems to 2 × 2 block diagonal and block triangular 
matrices. First, we have the trivial consequence for the inverses of block diagonal and block 
secondary diagonal matrices. 

COROLLARY 3.1. 
[A (i) For the square diagonal partition, o invertible, are  
L 

For the square off-diagonal partition, |o B_| is ingertible if and only if  B and C Oi) a r e  [ C o J  

Notice that  the inverse of a block diagonal matrix is also block diagonal. Similarly, the inverse 
of a block secondary diagonal matrix is block secondary diagonal too, but in transposed parti t ion 
so that  there is a switch between B and C. This corollary is also easy to extend to n x n block 
diagonal and secondary diagonal matrices. 

In the rest of this section, we will study the inverses of block triangular matrices. By Theo- 
rems 2.1 and 2.2, we have the following corollary. 

(i) For the square diagonal partition, it is invertible if and only if A and D are invertible, 
and it has inverse 

[ ~ 1  - A - 1 B D - 1  
D_ 1 ] .  (3.1) 

(ii) For the square off-diagonal partition with B nonsingular, it is invertible i f  and only 
if D B - 1 A  is invertible, and it has inverse 

(DB-1A) -  1DB-1 _ ( D B - ' A )  -1 ] 

B _ I _ B _ I A ( D B _ I A ) _ I  DB_I B _ I A ( D B _ , A ) _ , j .  (3.2) 

Clearly, the inverse of a block upper triangular matrix is block upper triangular only in the 
square diagonal partition. In general this is not true for the square off-diagonal partition. More- 
over, if the partit ion is in fact an all-square partition and A, B, and D are all invertible, then (3.2) 
is equivalent to (3.1). 

Similarly, for the block lower triangular matrix in the square diagonal partition, 

= [_D_ICA_  1 0 D - l ]  • 
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For the square off-diagonal partition, 

[c OD]-I [C-ID(AC-1D)-~ C-1-C-~D(AC-'D)-'AC-1] 
= [ - ( A C - 1 D )  -1 ( A C - ' D ) - I A c  -1 • 

There are two more possibilities, namely, A -- O or D -- O. For the former case, Theorems 2.1 
and 2.2 are reduced to the following corollary. 

[o;] 
(i) For the square off-diagonal partition, it is invertible if  and only if  B and C are also 

invertible, and it has inverse 

o ]" (3.3) 
(ii) For the square diagonal partition with D nonsingular, it is invertible if and only if B D - 1 C  

is also invertible, and it has inverse 

- (BD-IC)  -1 ( B D - ' C )  - 1 B D - '  ] 

D-1C (BD-1C) -1 D -1 - D-1C (BD-1C) - 1 B D - '  J" (3.4) 

In the first part of the theorem, its inverse is still sparse but in the transposed position. In 
the second half, the sparsity will be destroyed in general. Moreover, if the partition is in fact an 
all-square partition and B, C, D are all invertible, then (3.4) is equivalent to (3.3). 

Similar results hold for the square off-diagonal partition 

[A oB]-I [BO_I C -1 
_ B - 1 A C - I  ] , 

and for the square diagonal partition 

o'] (CA-1B) -1CA-1  _ (CA-1B) -1 ]" 

4.  S T R U C T U R E D  M A T R I C E S  

In this section, we will apply our main theorems to structured matrices, which includes bisym- 
metric, Hamiltonian, Hankel, Toeplitz, circulant, Hermitian, per-Hermitian, centro-Hermitian, 
and their skew Hermitian matrices. 

The natural partition for a Hermitian or symmetric matrix is the square diagonal partition, 
which preserves the symmetry of the diagonal blocks. On the contrary, the square off-diagonal 
partition will, in general, spoil the symmetry of Hermitian matrices. However, Theorem 2.1 or 
Theorem 2.2 is still applicable for a Hermitian matrix of even size in the all-square partition. In 
summary, we have the following corollary. 

COROLLARY 4.1. 

(i) A matrix is Hermitian if  and only if  it has the form [ B*A DB ] in the diagonal square partition, 
where A and D are Hermitian. Its inverse can be computed by 

A 1 + A - 1 B  (D - B*A-1B)  -1B*A  -1 

- ( D  - B ' A - I S ) - 1 B . A _  1 

o r  

( A _ B D _ I B , ) _ I  

- D - 1 B  * (A - BD- IB*)  -1 

/f  the required inverses exist. 

- A - 1 B ( D - B * A - 1 B ) - I ]  

( D - B * A - 1 B )  -1 J 

- (A - BD-1B*)  - 1 B D  -1 ] 

D -1 + D-1B * ( A -  BD-*B*)  - 1 B D  -1 j  ' 

(4.1) 

(4.2) 
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 he orm,t, m trix[A  ],othoo,,squ op t,t,oo  ,ovorso 
B_I  - ( B * - D B - 1 A )  - 1 D B - 1  ( B * _ D B - 1 A )  -1 ] 

+ B _ I A ( B . _ D B _ I A ) - I D B _ I  _ B _ I A ( B . _ D B _ I A ) _ I  J (4.3) 

- B - * D  (B - AB-*D)  -1 B-*  + B - * D  (B - AB-*D)  - 1 A B - *  ] 
= (B - AB-*D)  -1 - (B - AB-*D) - 1 A B - *  J '  (4.4) 

if  the required inverses exist. 

Here we use the notation B - *  = ( B - I )  * = (B*) -1. These results come directly from Theo- 
rems 2.1 and 2.2. Notice that  the inverses 

A -1, ( D - B * A - 1 B )  -1 , D -1, and ( A - B D - 1 B * )  -1 

in Part  (i) can also be calculated by the same partition method. Thus, we have a recursive 
method to obtain the inverses of Hermitian matrices, which is useful in practical and parallel 
computing. 

It is well known that  the inverse [~ F [  of a Hermitian matrix is also Hermitian. Hence, for the 
k - -  ~ j 

square diagonal partition, E and H are Hermitian, and G = F*. This fact can also be checked 
easily from the above inverse formulae. So it suffices to compute only one of G and F,  and half 
of the entries of E and H.  

As a special case, we consider the positive definite matrix, which is Hermitian automatically [2, 

p. 397]. Let it be partitioned as B" D ; then its principal submatrices .4 and D are positive 

definite too. So both A and D are nonsingular. The inverse of such a matrix can be computed 
using the same formulae (4.1)-(4.4). Notice that  its inverse matrix is positive definite and so 
are the principal submatrices of this inverse. Therefore, all the diagonal blocks in (4.1)-(4.4) are 
all positive definite. Horn and Johnson [2, p. 472] point out the same fact, but only on ( A -  
BD-1B*)  -1 and ( D -  B*A-1B) -1. 

Now we turn to the skew-Hermitian or skew-symmetric matrix. The square diagonal parti t ion 
is the right choice in order to preserve skew-symmetry. In fact, we have the following corollary. 

COROLLARY 4.2. A matrix is skew-Hermitian if and only if it has the representation [ -B*A ~ ] 

in the square diagonal partition, with A and D skew-Hermitian. Its inverse can be computed 
k J 

by (2.2) and (2.3). For the all-square partition, in addition (2.4) and (2.5) can be used. 

It is easy to see that  the derived inverse matrix is skew-Hermitian too. We remark that  it 
suffices to consider the inverse of a skew-symmetric matrix of even order, since a skew-symmetric 
matrix of odd order must be singular and has no inverse. 

A bisymmetric matrix is a real matrix of the form 

[A 
- B  n- D ' 

such that  its diagonal blocks A and D are symmetric negative semidefinite of the same size, and 

the remaining matrix /_OT ~ / i s  skew-symmetric. It is straightforward to show that  a bisym- 

metric matrix is negative semidefinite as well. Such matrices occur in the linear complementarity 
problems of quadratic programming; for example, see [17]. 

Since a bisymmetric matrix is in the all-square partition, we can get its inverse / E F~ by GH 
Theorem 2.1 as well as Theorem 2.2. 

L J 

COROLLARY 4.3. The inverse of the bisymmetric matr/x (4.5) can be computed eceording 
to (2.2)-(2.5). 

Notice that  equations (2.2) and (2.3) hold even though A and D have different sizes. The 
inverse of a bisymmetric matrix is bisymmetric too. To see this, we first cheek tha t  G = - F  "r , E 
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and H are symmetric. Since this bisymmetric matrix has an inverse, it must be negative definite, 
and so must its inverse and corresponding principal submatrices E and H.  

A matrix R = (rij) is called per-Hermitian if rij = r n + l - j , n ÷ l - i  for all i and j [18]. In short, 
R -= JR*J,  where J is the matrix defined in Section 2. A real per-Hermitian matr ix is called 
persymmetric,  or secondary symmetric in [19,20], which elements are symmetric with respect 
to its secondary diagonal. The natural partition for a per-Hermitian matr ix is the square off- 
diagonal partition, which preserves the symmetry of the off-diagonal blocks. On the contrary, the 
square diagonal partition, except the all-square one, will spoil the symmetry of the per-Hermitian 
matrix in general. 

° 
COROLLARY 4.4. A matrix is per-Hermitian if and only if it has the form JA*J 

square off-diagonal partition, where B and C are per-Hermitian. Its inverse can be computed by 
using (2.4) and (2.5). In particular, if its partition is the all-square one, then in addition both 
(2.2) and (2.3) can be used. 

Similarly, the inverses 

B -1  , ( C - J A * J B - 1 A )  -1  , C -1  and ( B - A C - 1 J A * J )  -1 

in (2.4) and (2.5) can be calculated recursively by the same partition method. 

It is trivial to see that  the inverse [~  F [  o f a  per-Hermitian matrix R is also per-Hermitian, 

since 
R - 1  = ( j R * j )  -1 = J (R- l )  * J. 

Hence, for the square off-diagonal partition, F and G are per-Hermitian, and H = JE*J.  This 
fact can also be checked easily from all its inverse formulae. So it suffices to compute only one 
of' E and H,  and half of the entries of F and G. 

Similarly, a matrix R is called skew-per-Hermitian if R = - J R * J  [18]. Like per-Hermitian ma- 
trices, the square off-diagonal partit ion is the right choice in order to preserve skew-persymmetry 
of such matrices. It is also easy to see that  the derived inverse matrix is skew-per-Hermitian too. 

COROLLARY 4.5. A matrix is skew-per-Hermitian ifand only i f i t  has the form [A -JA*jB ] in the 

square off-diagonal partition, with B and C skew-per-Hermitian. Its inverse can be computed 
by (2.4) and (2.5). For such a matrix in the all-square partition, (2.2) and (2.3) can also be used. 

A real skew-per-Hermitian matrix is usually called skew-persymmetric matrix, or secondary 
skew-symmetric in [19,20]. We remark that  every skew-persymmetric matrix of odd order is 
singular and has no inverse. This can be easily verified as follows. We first notice tha t  the 
determinant of the matrix J is either 1 or -1 .  Then an n x n skew-persymmetric matr ix  R 
satisfies 

det R = ( -1 )  n det J .  det R T • det J = ( -1 )  n det R. 

Hence, det R vanishes when n is odd. 
A Hamiltonian matrix is a matrix of the form 

where B and C are symmetric of the same size. Such a matrix is related to the algebraic Riccati 
equation in control theory [21]. Since it is in the all-square partition, both Theorems 2.1 and 2.2 
are applicable. 

COROLLARY 4.6. The inverse of the Hamiltonian matrix (4.6) can be computed by (2.2)-(2.5). 

Notice that  (2.4) and (2.5) hold even when B and C are of different sizes. Let its inverse 

be /~  ~]"  It is easy to show, from our inverse formulae, that  F and G 
r 

are symmetric well a s  
L 

as H = - E  n-. Hence, the inverse of a Hamiltonian matrix is also Hamiltonian. 
A matr ix R = (rij) is called centro-Hermitian if r~ i = f ,~+l-i ,n+l-j  for all i and j [22,23]. In 

other words, R = J R J .  In fact, we have the following corollary. 
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COROLLARY 4.7. A matrix is centro-Hermitian of even order if and only if it has the form 

I  ovo partition, 
L J 

all formulae (2.2)-(2.5) can be used to compute its inverse. 

Since 
R-1 = j - 1 / ~ - i j - 1  = j R _ l  j, 

the inverse [E F ]  ofacentro-Hermit ian  matr ixis  also centro-Hermitian. Soi t  suffices to compute 

only one of E and H,  and only one of F and G. A real centro-Hermitian matrix is called 
centrosymmetric, which entries are symmetric with respect to the center of the matrix. Every 
centrosymmetric matrix of even order is similar to a block diagonal matrix [24,25], i.e., 

where 

JB J A J  0 A -  B 

1[:, 
K = ~  j . 

In addition to Corollary 4.7, its inverse, if it exists, can be computed by 

0 A - B  K = K - i  (A + B ) - i  O (A ) - I  K, 

in view of Corollary 3.1(i). This leads to the result obtained by Good [26]. 
For a centrosymmetric matrix of odd 

can be represented as 

R = 

where A and B are matrices of the same 

K = 

then 

R = K - 1  

and, again by Corollary 3.1(i), 

R-1 - K - 1  

order, we have a similar result [24,25]. Such a matrix 

A x B J ]  
yT r y T j  , 

JB Jx  J A J  

size, x and y are column vectors, and r is a scalar. Let 

1 ; 

A + B  2x O ] 

YO r O K, 
0 A - B  

yT 0 K. 

0 (A - B) -1 

where p = 2(A + B ) - l x  and qT = yT(A + B ) - l .  On the other hand, by Theorem 2.1(ii), if 
r ¢ 0 and M = (A + B) - (2/r)  x y  T is nonsingular, then 

yT = r --~ L- - ryTM -1 r + 2 y T M - l x  " 

Similarly, a matrix R is skew-centro-Hermitian if R = - J / ~ J  [22,23]. For such matrices, we 
have the following corollary. 

The upper left inverse of the 2 x 2 block 
according to Theorem 2.1(i), if A + B is invertible and 

t = r -  2yT(A + B ) - l x  ¢ 0, 

then 

yT = ~ _qT  

matrix can be calculated as before. To be more precise, 
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COROLLARY 4.8. A matrix is skew-centro-Hermitian of even order ff and only if  it has the 
[ A BJ ] in the all-square partition. Therefore, (2.2)-(2.5) can be used to compute its form -JB - j f i j  
L 

inverse. 

Since its inverse is skew-centro-Hermitian too, only two blocks of its inverse need to be com- 

puted. 
A real skew-centro-Hermitian matrix is also called skew-centrosymmetric. An even-order skew- 

centrosymmetric matr ix has the following decomposition [24]: 

- J B  - J A J  A + B 0 

where K is defined by (4.7). According to Corollary 3.1(ii), its inverse is 

A + B ,,  ( A -  )-1 0 

For a skew-centrosymmetric matrix R of odd order n, it is always singular and has no inverse. 
This can be seen by 

det R = ( -1 )  n det J .  det R .  det J -- - det R. 

Our formulae are also useful for the other structured matrices. For example, all Hankel matrices 
are symmetric, and it is natural to use the square diagonal partition and Corollary 4.1 to compute 
their inverses. For a Hankel matrix of even order, the all-square partition is the best choice, with 

respect to which it has the form [ A DB]. In this case, all (2.2)-(2.5) can be used. Even in the 

square off-diagonal partition, off-diagonal blocks of every Hankel matrix are strongly related. In 
fact, one is a submatrix of the other. 

Toeplitz and circulant matrices are persymmetric automatically, so the square off-diagonal 
part i t ion and Corollary 4.4 are the first choice. For these two types of matrices of even order, the 

all-square parti t ion is the best to use. In this case, every Toeplitz matrix has the form [GAS], 

can be simplified to ] A B A B ] . The square diagonal partit ion can be used as 
P 

and a circulant matrix 

well for these matrices, where one of the diagonal blocks is the submatrix of the other. 
Ray [27] considers the inverse of a symmetric Toeplitz matrix. Such a matrix is symmetric, 

persymmetric,  and centrosymmetric. Therefore, all our methods, in the three kinds of partitions, 
in this section can be applied. Ray actually gives three formulae to compute the inverse of such 
matr ix in the all-square partition. All of them can be obtained from our methods, and there are 
other formulae we can obtain which are not listed in [27]. 

5. C O M P L E T I O N  P R O B L E M S  

In this final section, we give a brief introduction to a more general problem, i.e., the completion 
problem of a 2 × 2 block matrix and its inverse. This problem determines if there exists a 
nonsingular matrix with some known entries so that  its inverse has specified elements. To be 
more precise, supposing 

and four of A through G are given, our goal is to find all the other block matrices in (5.1). When 
four of the given blocks are all on the same side of (5.1), it becomes a simple problem to find the 
inverse matrix,  which we have done in Section 2. Thus, it is more interesting when the four given 
blocks are on different sides of (5.1). It  can be three blocks on one side and one on the other, or 
each side has exactly two blocks known. 

Many works can be found on this type of matrix completion problem. Fiedler and Markham [28] 
s tudy the block completion problem (5.1) where A, B, C, and H are known. For the general 
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t ransposed  part i t ion,  they  give the necessary and sufficient conditions such tha t  the  problem 

has a solution. Hua  [29] completely solves the same completion problem but  with a symmetr ic  

assumption:  given A, B,  C, and H,  find D, E,  F ,  and G satisfying (5.1) such tha t  bo th  blocked 

matr ices  in (5.1) are symmetric .  As a special case, he solves the  same complet ion problem with 

the  symmetr ic  positive definite constraint .  

Bar re t t  et al. [30] consider (5.1) in a general t ransposed par t i t ion wi th  A, D,  F ,  and G known, 

and give several necessary and sufficient conditions such tha t  it is solvable. This problem is 

more difficult since it is related to a quadrat ic  matr ix  equation. Helton et al. repeatedly  solve 

this exact  problem using the  noncommuta t ive  software package NCAlgebra  [14]. Assisted by the  

same package, Kronewit ter  solves a specific 3 x 3 block matr ix  complet ion problem and amazingly  

obtains  31,000 new theorems. The  methodology,  programs,  and other  applications can be found 

in [15] as well as in their website h t t p : / / m a t h . u c s d ,  edu/ , ,~ncalg.  

I t  is very probable  tha t  all the formulae in this paper  can be proved by computer  techniques 

independent  of  t radi t ional  human  manipulat ion.  One can assert t ha t  proper  use of  a modern  

compute r  will dramat ica l ly  increase the power of theorem proving. In  this final remark,  we 

would like to encourage further  explorat ion of  this subject.  
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