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SOME APPLICATIONS OF THE PSEUDOINVERSE OF A MATRIX

T. N. E. GREVlILE:

1. INTRODUCTION

IN A PREVIOUS NOTE [1] attention was called to the notion of the pseudoinverse
of a rectangular or singular matrix introduced by E. H. Moore [2, 3] and later
rediscovered independently by Bjerhammar [4, 5] and Penrose [6]. It is the
purpose of the present note to point out two specific applications of the pseudo-
inverse. Among other possible uses not discussed here is its application to
bivariate interpolation.
As a preliminary it will be useful to redefine the pseudoinverse. An m X n

matrix A of rank r > 0 can be expressed as a product

(1) A Be,
where B is m X r and C is r X n, and both are of rank r. Then the pseudo-
inverse of A is given by

(2) At= Cr(Cer)-l(BrB)-lB r,
where the superscript T denotes the transpose. To complete the definition., we
define the pseudoinverse of a zero matrix as equal to its transpose.

It will be noted that, for the particular cases n r and m r, (1) reduces
to A BI and A IC, respectively, and (2) therefore reduces to (1) and
(2) of [1]. Equation (2) can therefore be written in the form

At CtBt.
The various properties of the pseudoinverse as given in. [1] are now easily derived.
In particular it will be convenient to recall three of these: (i) the pseudoinverse
is unique, (ii) for a nonsingular matrix it reduces to the ordinary inverse, and
(iii) (At)t= A.

2. POLYNOMIALS ORTHOGONAL OVER DISCRETE DOMAINS

In a recent note [8] Dent and Newhouse have described a recursive procedure
for obtaining orthogonal polynomials over a discrete doraain, making use of a
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A more elementary presentation of these applications (with a numerical, example)

was given in a paper [7] presented at the ll8th Annual Meeting of the American. Statistical
Association, Chicago, Ill., December 29, 1958.

This possibility was suggested to the writer by William Hodgkinson, Jr., of the Amer-
ican Telephone and Telegraph Co.

To prove this choose B as a matrix whose columns form a basis for the column-space
of A. It follows that B is m r, and that there exists an r X n matrix C such that A
BC. Both B and C are of rank r since the rank of a product does not exceed the rank of
any factor.

This definition was suggested to the author by A. S. Householder. It represents an
improvement on that given in [1], which was essentially Moore’s.

The same general problem has also been treated by Forsythe [9] and Barker [10].
15
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method of matrix inversion by means of submatrices given by Fraser, Duncan,
and Collar [11]. We shall point out certain advantages that result from a modifi-
cation of their procedure involving the introduction of the pseudoinverse.
Given n distinct abscissas x, i 1, 2, n, let y denote a given ordinate

corresponding to x, and consider the problem of fitting a polynomial of degree
/c < n. It can be shown [9] that there is a unique polynomial f(x) of the required
degree which provides the best fit to the given ordinates in the sense of least
squares. Let qj(x), j 0, 1, n, be a sequence of known polynomials such
that q(z) is of proper degree j. In general, we shall be interested in the ease
qj(z) xj. It is evident that f(z) has a unique representation in the form

f(x) cq(x),

where the coefficients c. are to be determined. Let y denote the vector whose
elements are the given ordinates, and let Qk, / 0, 1,.-. n, denote the
n X (] -t- 1) matrix (q-l(xi)). Parenthetically we remark that the matrix
Sk+l of Dent and Newhouse is QrQk. The least-square fitting problem may now
be restated as the problem of finding the vector d which is the "best" solution
of the matrix equation

Qd y

in the sense that the length of y Q dk is a minimum. Bjerhammar [4, 5] and
Penrose [12] have shown that this solution is

d Qty.
Since/c < n, the columns of Q are linearly independent. Thus, taking B Q
and C Ik+l, the identity matrix of order/c -1- 1, in (2) gives

(3) Q] QrQk)-IQT.
We note that Q*Q I+, while M QkQ* is the smoothing matrix [13]

which gives the fitted ordinates in terms of the given ones, since

My Q dk
We note also that the sum of the squared differences between the given ordinates
and the fitted ones, which Forsythe denotes by i, is given by

y’r(I- M)y.

Now, let qk denote the last column of Q and consider the vector p q
Mk_q. Since Qk_rp 0 by (3), we see that pk is orthogonal to every column
of Qa-i Moreover, its elements are ordinates (corresponding to the abscissas x)
of a polynomial p(x) of proper degree lc. For lc < n, p(x) is uniquely deter-
mined by these n ordinates, while q is necessarily a linear combination of the
columns of Q,_, so that p 0, and therefore

p(x) h I (x x),
i----1

See [9] for explanation of the use of these quantities in judging the degree of polynomial
best suited to the given data.
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where h is arbitrary. The polynomials p(x), k O, 1, n, are an orthogonal
set over the discrete domain xl, x2, z. If the q(x) are monie polynomials
(in particular, if qk(x) x, the p(x) are the same polynomials found by
Dent and Newhouse. Otherwise, they differ at most by a constant factor.
We have

where

p q Q_la

a Qk_]q
is the same as the Ak of Dent and Newhouse. Thus, if aki, i 0, 1, ,/ 1,
are the elements of a1,

(4) p(x) q(x) aiq(x)
i=O

as given by them.
To recapitulate, if we can find a convenient method of obtaining the pseudo-

inverses Qt for/c 0, 1, n, then the problem is practically solved, for"
d Q]y gives the coefficients by which the fitted polynomial of

degree/ is expresse,d in terms of the known polynomials q(x).
My Q dk gives the ordinates of the fitted polynomial correspond-

ing to the given ordinates.
T Ty (I M)y y (y Q d) gives the sum of the squared residuals

when a polynomial of degree/c is fitted by least squares.
a Q_i?q, gives the coefficients by which pk(x), the orthogonal poly-

nomial of degree k, is expressed in terms of the known polynomials
qi(x) in accordance with (4).
p q Q_lae gives the ordinates of p(x) corresponding to the

given abscissas.

3. MULTILINEAR REGRESSION COEFFICIENTS

Let a variate y depend on n variates X(1), x (2), x("), and let it be required
to determine the coefficients a. in the regression equation

y = ax().

Xi
(j)It is assumed that corresponding numerical values y are given for i 1,

2, m. If y denotes the column-vector whose ith component is y, a the
column-vector whose jth component is a- and X the matrix (xi()), the regression
coefficients are given by

(5) a Xy.
If the columns of X are linearly independent, as will usually be the case, the

least squares regression equation is unique. Otherwise, there will be many
solutions which yield the minimum value for the sum of the squared residuals.

Linear dependence would indicate that at least one of the variates x(i) is completely
determined by the remaining ones, and therefore redundant.
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Of these possible solutions, (5) then gives the one for which the sum of the
squares of the coefficients a is smallest.
From (5) it follows that the vector

yr__ Xa-" XXTy

gives the values of the variate y predicted by the regression equation, while

yr(y y,) yr(I XXr)y

is the sum of the squares of the residuals.

4. RECURSIVE ALGORITHM FOR THE PSEUDOINVERSE

Let ak denote the ]cth column of a given matrix A, and let Ak denote the sub-
matrix consisting of the first/c columns. As previously pointed out by Dent and
Newhouse, there are substantial advantages in using a recursive procedure for
obtaining Ak from A_It. In fitting a polynomial this makes it unnecessary to
decide in advance the degree of polynomial to be fitted, or to start over from
scratch if an unfortunate choice is made. Instead, one fits polynomials of suc-
cessively higher degree and can stop when it appears that the most suitable
degree has been reached. Though the advantage is less clear-cut in the regression
application, one can attempt to arrange the variables in decreasing order of their
probable importance in the regression equation, and can note how much the
coefficients change as the less significant variables are introduced, and, if desired,
the reduction at each step in the standard error of estimate.

In order to derive the desired recursive procedure, let us consider A in the
partitioned form

(6) (A_I a),

and similarly partition Ak in the form

Akt b

Multiplication then gives

(7) AAk A_IB akb.

As shown in [1], AAk is symmetric, and also, when used as a left multiplier,
it leaves unchanged any matrix with columns in the column-space of A. It
follows that, as a right multiplier, it leaves unchanged any matrix with rows in
the transposed column-space of A. Now [1, p. 40], Ak_l has rows in the trans-
posed column-space of A_I (which is contained in that of A). Therefore

A_AA Ak_I.
By similar reasoning, A_IA_ as a left multiplier leaves unchanged any

matrix with columns in the transposed row-space of A_. Now, since A has
columns in the transposed row-spce of Ak, a moment’s reflection will convince
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the reader that Bk (as a submatrix of Akt) has columns in the transposed row-
space of Aj_l (submatrix of A). Therefore,

A-1 A_IB Bk.

It follows that multiplying (7) on the left by Ak_l gives

Thus we may write

(8) A

where

(9)

and b remains to be determined.
From (6) and (8) we obtain

d
bk

d Ak_l ak

(10) A,A, Ak_IA_I A-I d,b, z7 a.b, A_IA,_I -t- cb

where

(11 c a Ak-i dk

Multiplying (11) on the left by A_I and making use of (9) and the relations
given in [1], we obtain

(12) A,_itc, O.

Now the rows of A_ are in the transposed column-space of A_, and, in fact,
they span that space (since the equation Ak_A_iA_ A,_ shows that
A_ is not of lower rank than A_). Therefore (12) shows that ck is orthogonal
to the column-space of A_.

It is necessary now to consider two cases, according to whether ck 0 or not.
From (11) we see that c 0 implies that a is in the column-space of A_I"
in other words, Ak and A_ have the same rank. Let us first deal with the case
c 0, and let us consider the matrix

(13) P A,_lA,_l + cck.
Now, (11) shows that c is in the column-space of A, and it follows that c is
in the transposed column-space of A. It follows from (13) that the rows of Pk
are in the transposed column-space of A. From (2), taking B c and C as
the identity matrix of order one, it is easily verified that ck is a scalar multiple

r and thatof ck

cc 1.

Further, multiplying (11) on the left by c and making use of the fact that c
is orthogonal to the column-space of Ak_l gives

Ck’iak 1,



20 T. N. E. GREVILLE

and it follows from (13) that

Pkak Ak-1 dk ck ak

by (11), while we observe also that

PA_I A_I
Thus, (6) shows that

PA Ak.

We see then that P has both the properties which uniquely determine the
left identity matrix [1, p. 39] of A, and therefore

(14) P AAkt.
From (13), (14) and (10) we see that

(15)

since both are equal to AA
ck gives

(16)

C,C Cbk

Multiplying (15) on the left by

bk ct.
Turning now to the case c 0, (11) shows that we then have

(17) a Ak_l d.

Let G1 denote the submatrix of AkAk obtained by deleting the last row and the
last column. Then it follows from (8) and (6) that

Gk A_IA_I dbA_.

The first term of the right member is symmetric [1, p. 39], as is also G, being a
principal minor of a symmetric matrix. It follows that dbAk_l is symmetric.
Since bA_ is a one-rowed matrix, this implies that

(18) bkA_ h dr,
where h is some scalar.
From (8), (6), (17) and (18) we have

[A_ItA_ - hd d)(19) AAk \ hd
(I d).

Now, (9) shows that d is in the column-space of A_, which is the transposed
row-space of A_. It follows that

Ak_A_ dk d

Thus (19) becomes

(A A hd. dr_ _
d hd dk dkAt A hdr h&, d

0 If d 0, then (since c 0), (11) implies a 0. Equating the last row of AA
to the transpose of its last column gives bkA_ O, so that the conclusion still holds.
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In view of the symmetry of this matrix and the fact that dk r dk is a scalar, we
have

(hdkr)r hdk d- h(drd)d,
and solving for h gives11

(20) h (1

Since the rows of Ak are in the transposed column-space of A, b is in that
space, which, in this case is identical with the transposed column-space of A_I.
Thus bA_lAk_ b, and therefore multiplying (18) on the right by A_
gives

(21) b h drA_t.
On substituting (20) this gives

(22) b (1

The desired recursive procedure for obtMning A from A_ then consists in
pplying formulas (9), (11), (16) or (22), nd (8), in that order. In order to
initiate the process, we note that A is zero vector if a is zero vector; other-
wise it can be computed from (2).

5. STREAMLINED ALGORITHM FOR STATISTICAL APPLICATIONS

For the purpose of statistical pplictions, some "streamlining" of the al-
gorithm can be effected by noting that in these situations it is unnecessary to
obtain the pseudoinverse explicitly. Rther, wht is wnted is the "best" (in the
sense of least squres) solution x Aa of an inconsistent system Ax . The
ulgorithm can be modified to give Aa for k 1, 2, successively. To this end
it is convenient to define mtrix A’ obtMned by enlarging A through the
addition of two columns on the right" (i) the vector a nd (ii) totM column,
which is the sum of ll the preceding column vectors. Then (8) gives

(23) A’ A’ (A-A’ d(bA’))b A’

The penultimate column of this mtrix is Aa, while the finM column should be
the sum of the preceding column vectors if the rithmetic hs been correctly
performed. Moreover, (9) shows that d is the kth column of A_A’.

In order to obtMn bA’ for use in (23) we must first compute the right member
of (11). If this vector vnishes, (22) shows that

(24) bA’ (1 + dr d)- drA_A’.
If (11) does not vunish, it gives c, nd, in view of (16) nd (2), we hve

(25) bA cc)-ic

c A we note that its th element is c a.If we first compute the vector
TMultiplying (11) on the left by c and noting, as previously shown, that c is

Provided d 0. If d 0, (21) shows that b 0, and (22) still holds.



22 T.N.E. GREVILLE

T Torthogonal to the column-space of Ak-1, we obtain ck c c ak. It follows from
(25) that bA’ is obtained from the computed vector ckTA upon "normalizing"
it by dividing by its/cth element. With these explanations, (11), (25) or (24),
and (23) constitute the recursive procedure desired.
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