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ABSTRACT

This paper is a thorough examination of the connections between the kernels of a
“bordered matrix”

a o* z*
H(z)=|v H, w
z w* b

and the kernels of the “largest” principal submatrices

_[a v* _[Hy, w
me(s ) melar 3)

and H,. (H,, H,, and H; will usually be not invertible.) These results on bordered
matrices may be used in order to construct invertibie “extensions” of certain types of
“band” matrices.

1. INTRODUCTION

This paper is a thorough examination of the connections between the
kernels of the four “largest” principal submatrices in a “bordered matrix.”
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Borperep Matrix Hypotheses. Let H, be an (r — 2) X (r — 2) hermi-
tian matrix. Let v and w be vectors in C""2, and let a and b be real
numbers. Set

_[a o* _[Hy w
H-(0 5] wa (M),

w*

and let H(z) be the bordered matrix

a o* z*
H(Z)= v H2 w |.
\z w* b

Let 8,, 8,, 8,, and 8(z) denote the dimensions of the kernels of H,, H,,
H,, and H(z). Let ¥, vy, v3, and #(z) denote the negativities of H,, H,, Hj,
and H(z).

NoraTion. The natural injection maps I;; Domain of H; —» Domain of
H(z)=C", i=1, 2 and 3, are I}(v)=(v,0), Iy(v)=(0,v,0) and Iy(v)=
(0, v). We associate earh Ker H; with its image space I,(Ker H,). Therefore
we will write Ker H,=KerH, as a shorthand notation for I(KerH,)=
I(Ker H,).

DeFINITION.  H(2) is called a one-step extension of H(0).
_ These bordered matrices have been much studied in [3], [4], [5], [6], and
[7] when H, and H, are invertible matrices. Those results were the basic tool
for constructing (in those papers) invertible hermitian extensions of “band”
matrices, often with special properties.

In this paper, H,, H,, and H; will usually be not invertible. In Section 3,
we will list many of the possibilities for 8(z). The common threads (and
results) of Section 3 are collected in the following two theorems.

THEOREM 1.1 (On bordered matrices). Given the Bordered Matrix Hy-
potheses, there is a number z such that

8(z) <max{8,,8,} and &(z)+v(z)=max{8;+»,8,+»;}. (1.1)
Furthermore, either Ker H, D Ker H(z) or Ker Hy D Ker H(z); also

8(z) <8, (1.2)
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When |6, — 65| =1, then

6(z)=min{4,,6;}.
When |8, — 85| =2, then
8(z) = average{ §,,8;}.
Also
3
8(z) =max{$,,8,} = KerH(z)= () KerH,.
i=1
Furthermore, all these results are valid for all complex numbers z in some

half plane P in the complex plane. Also, when H, and H, are both real
matrices, then this half plane P will include a half line of the real axis.

ReMaRrk. By collecting the hypotheses and conclusions of Lemmas 3.3
part (b), 3.5 and 3.6 part (c) the following theorem will be established.

THEOREM 1.2. Given the Bordered Matrix Hypotheses. If
8,<8, and §,<9;,
then there is a number z, such that
7(zo) =max{m,m} and y(z,)=max{»,,v3} and
8,<8(z,) and 8;<8(z).

Furthermore when H, and H, are real matrices, then the number z, may
be chosen to be a real number also.

DEFINITION. A matrix with all zeros off the main diagonal and the first
m pairs of superdiagonals is called a band matrix with bandwidth m. We say
that an nXn matrix R=(ry) is an m-band matrix if r,=0 for all
|k — j| > m, and an n X n hermitian matrix F =(f;;) is an extension of such
a matrix R if f; =, forall |k — jl<m.
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As simple consequences of Theorem 1.1, we will establish Theorem 1.4 on
extensions of band matrices. More results on how to construct invertible
extensions of band matrices will be presented in a sequel to this paper ([8]).

DeFiniTION. The inertia of a hermitian matrix H is a triple In H=
(w, v, 8) consisting of the numbers of positive, negative, and zero eigenvalues
of H. We let #(H), v(H), and 8(H) denote the three coordinates of In H.

DEFINITION. A maximal hermitian submatrix within an m-band n X n
matrix is a (hermitian) (m + 1) X(m + 1) submatrix that is within the band.
For an m-band n X n matrix R, let R, R,,...,R,_,,., denote the n —m +1
maximal hermitian submatrices ordered from the upper left corner.

TueoreM 1.3. ([8]) Let R be an m-band n X n hermitian matrix. Sup-
pose that the r'* maximal submatrix R, is invertible, for a positive integer r,
m +5 < 2r < n — m. Then R has an invertible hermitian completion.

DEFINITION. Suppose that a hermitian band matrix R has been filled in
to a hermitian extension F by a sequence of one-step extensions consistent
with Theorem 1.1 on bordered matrices. We shall say that F wes constructed
from R by the standard procedure.

THEOREM 1.4. Suppose that a hermitian matrix F was constructed from
a hermitian m-band n X n matrix R by the standard procedure. Then

v(F)+8(F)=max{»(R;)+8(R;),i=12,....n—m}. (1.3)

Also, there is an index j such that KerR ;D KerF.
If 2r +1=n—m then

8(F) < 8(R,.,). (14)

Furthermore, when the band matrix R is a real mairix, then the extension
F will also be real matrix.

This paper is organized as follows. In Section 2, we state Theorem 2.1
(from a companion paper [2]), which describes some aspects of the connec-
tions between the inertias of 2 hermitian matrix and a principal submatrix.
Theorem 2.1 is specialized as Corollary 3.2 on “semibordered” matrices,
which is then used as the main tool for establishing many specific properties
of bordered matrices (Lemmas 3.3-3.9). Theorem 1.4 is established in
Section 4, largely as a corollary of Theorem 1.1 on bordered matrices.
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2. BACKGROUND

We begin this section by stating part of our Theorem 1.2 of [2], namely:

Tueorem 2.1. Let H; be a principle (n — r)X(n — r) submatrix of a
hermitian n X n matrix H. We set
A = DimKer H, — Dim(Ker H; NKer H),
A* = DimKer H — Dim(Ker H, NKer H).
Then

(&) m(H)> n(H;)+ A and
(b) »(H)>v(H;)+ A.

Alse

(c) A+ A*<r.

Proof. Parts (a) and (b) are from Theorem 1.2 of [2]. Part (c) is an
immediate consequence of the inequalities (1.5) of [2]. [ ]

The major tool used in this paper will be Corollaries 3.1 and 3.2, which
are consequences of Theorem 2.1 when r =1.

ExaMpPLE 2.2. Let us examine the matrix

1 1 2*
H(z)=|1 1 2
z2 2 4
and its submatrices
_(1 1 _(1 2
Hl—(l 1) and H, (2 4).

We observe that 8(z) =0 when z # 2, and §(2) = 2. Also
KerH, = Span{(1, —1)"} ¢ R? X0 and KerH, =Span{(2, —1)"} cOXR®.

We observe that Ker H(2) = Ker H, + Ker H;, but Ker H(z)=0 for all
z # 2. Therefore either the choice of z will preserve both kernels of H; and
H; or both of these kernels will disappear. Thus the “fate” of these kernels is
linked. This is in contrast to the situation in [1], where we were able to freely
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pick and choose which parts of the kernels we wished to preserve and to
destroy. Afterwards, we were still able to choose any inertia for the hermitian
extension of a block diagonal hermitian matrix, which is consistent with
Theoscin 2.1. The result in [1] was:

TueoreM 2.3. Given s Hermitian matrices S, S,,...,S,, with inertias
(m.v,,8,). Let each n,=m,+v,+8,, and let n=Xn,. Let S be a block
diagonal matrix with S, S,,..., S, as the blocks on the main diagonal. Choose
any subspaces U, of KerS;, and let A; be the codimension of U, in KerS,.
Choose any nonnegative integers @, v, and 8 such that n==+ v + 8 and

m>max{m,+4;}, v>max{y,+4;}, and §>X(5,-A)).

Then there is a hermitian extension F of S with InF =(=,»,8), and each
U, = Ker F NKer$§,.

Additional results on hermitian extension of band matrices appear in [3],
[4]. [5], (6], and [7].

3. ON THE KERNELS OF BORDERED MATRICES

The organization of this section is this: First we specialize Theorem 2.1 to
the case r =1 as Corollaries 3.1 and 3.2. We then use these corollaries
repeatedly as we examine a collection of cases of bordered matrices. These
results are then collected (with the aid of Claim 3.10) in Theorem 1.1 on
bordered matrices. In turn, Theorem 1.1 is the basis for the proofs of
Theorem 1.4.

CoroLLaRryY 3.1. Let H, and H, be as in the Bordered Matrix Hypothe-
ses (stated in Section 1).

(a) Then either Ker H, 2 Ker H, or Ker H, 2 Ker H, or Ker H, = Ker H,.
Also |6, - 6,| < 1.

(b) If 8,=8,, then Ker H, = Ker H,.

(¢) If 8,> &,, then KerH, 2 KerH, and In H,=In H, +(0,0,1).

(d) If 8, < &,, then KerH, 2 KerH, and In H;=InH, +(1,1, — 1), and
v is not in the image space Hy(C™2).

(e) If 8, =08, or §,=08,+1, then v* € (KerH,)".

Proof. Theorem 2.1, part (c), tells us that A + A* < 1. Therefore, in
going from H, to H, the kernel can gain or lose a vector, but not both. This
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establiches (a). Except for the “also” part of (d), the next three results listed
are immediate consequences of (a). Then

This forces v to not be in the image space H,(C'2). Finally, (b) and (c)
imply (e). B

ReMark. Note that parts (b), (c), and (d) include all cases; therefore
they are all if-and-only-if statements. Hence:

CoroLLaRY 3.2 (On “semibordered” matrices). Let H, and H, be as in
the Bordered Matrix Hypotheses.

(a) Then |6,—d,|<1.

(b) 8,= 08, KerH,=KerH,.

(c) §,=08,+1 = KerH,DKerH, < InH,=InH,+(0,0,1).
(d) 8,=8,—1 « KerH,DKerH, ® InH,=InH,+(1,1, —1).

Thus, the connection between the dimensions of the kernels determines
the connection between the kernels. We will use this to show (in Lemmas
3.3-3.9) that the connections between §,, 8,, and &, almost determine 8(z).

OsservaTION. All the results of Corollaries 3.1 and 3.2 about { H, H,}
also are applicable to each of these ordered pairs of matrices: { H(z), H, },
{H(z), Hy}, and { Hj, H, }.

We will implicitly use this observation often in the proofs in this section.
The reader might review Example 2.2 now, because it is a specific
example of the next lemma.

Lemma 3.3.  Suppose that §,=8,+1 and 8, =25, or 8,. Then there is a
single number z, such that

(a) for all z+ z,, InH(z)=1Iu H,; +(1,1, —1); also 8(z)=08,=8,—-1,
»(z)=v,+1, and Ker H, D Ker H(z) = Ker Hy;
(b) In H(z,) = In H;+(0,0,1); also Ker H(z,) > Ker H; UKer H,.
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Proof. The hypotheses imply that Rank H, = Rank H,. Therefore, there
is a vector k such that

a v*
= k.
( v ) ( H, )
Actually, the general solution to the equation v = Hyk is k +KerH,.

Corollary 3.1, part (e), tells us that w*u=0=ov*u for all u€KerH,. we
may set

zo= w*k = w*(k +Ker H,).

We observe that

[{—1

Hl\ % )=O, but H(z)

Thus
H(z)(-1,k,0)"=(0,0, 2z, - 2z)". (3.1)

Thus KerH, is not contained in Ker H(z), and KerH, # Ker H(z) when
z # 2. This rules out parts (b) and (c) of Corollary 3.1. Therefore part (d)
must apply. This establishes part (a) of this lemma.

When 8, = §;, then the relationship between H; and H, is the same as
for H, and H, above. Therefore, there is a vector k, such that

The general solution to the equation w= Hyk, is ky,+Ker H,. Here
H(z)(0, k,, — 1)T = (v*k, — 2*,0,0). We calculate

v*ky = k*Hyk, = k*w.

Hence z, = w*k implies that z} = v*k,. Thus H(z,)( —1,%,0)"=0 and
H(z,)(0, ks, — 1)" =0. Thus the kernel of H(z,) has two linearly indepen-
dent vectors which are not in Ker H,. This and part (c) of Theorem 2.1 (with
r = 2) implies that 8(z,) =2+ §,. This and Corollary 3.2 will establish part
(b) of this lemma when §, = §,.
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When 8§, —1=§;=20,, then Ker H, = Ker H;. Equation (3.1) shows us
that (—1, k ,0)T € Ker H(z,). But this vector (— 1, k,0)T cannot alsc be in
Ker H;. Hence Corollary 3.2 will establish part (b) of this lemma when

LEmMA 3.4.  Suppose that 6; =6, +2. Then
InH(z)=InH,+(0,0,1)=InH,+(1,1,0)=InH; +(1,1, - 1).

Proof. Corollary 3.1, part (a), tells us that both §(z) and 8, must be
within 1 or both §, and §;. Therefore, the only choice is §(z) =8,=46,+1.
This plus Corollary 3.1, parts (c) and {d), wil! establish this lemma. =2

LEmMA 3.5. Suppose 8, =08,=0; and »,=vy,+1=v;+1. Then
InH(z)=InH,+(1,0,0)=InH,=(1,1,0) =In H; +(0,1,0),
and

KerH(z) =KerH,=KerH,=KerH,  forallz.

Proof. These hypotheses imply that H, and H; have only an additional
negative eigenvalue and positive eigenvalue, respectively. This together with
Cauchy’s interlacing theorem or Theorem 2.1, forces H(z) to have both an
additional negative eigenvalue and an additional positive eigenvalue. This
establishes the inertia equations of this lemma. Corollary 3.1, part (a), applied
three times, will establish the equations for the kernels. ]

LemMa 3.6.  Suppose 8, = 8, =8, and v, = v;. Then there is a circle C in
the complex plane such that

(@) 8(z)=8, and v(z)=v», and KerH(z)=KerH,=KerH,=KerH;
for all complex numbers z outside C;

(b) 8(z)=38,, n(z)=m,, and KerH(z)=KerH,=Ker H, =KerH; for
all complex numbers z inside C;

(c) 8(z)=1+ 8, for all complex numbers z on C.
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Proof. There is a unitary matrix U and an invertible matrix Hj such that
H, 0
U*HU=|"2 )

2 ( 0 0

Corollary 3.1, part (b), implies that Ker H, = Ker H, = Ker H.

We shall use the change-of-coordinate matrix U, =(1&U®1) on H(z) in
order to simultaneously separate out tne “zero” parts of the three H,’s.

Let (v’,0) = U*v and (w’,0) = U*w. Then

a v* 0 z¥
v Hy 0 w
U*H(z)U, = 0 02 0 o
z w* 0 b

We may drop the zero rows and columns in order to obtain a bordered matrix
of invertible matrices; we set

,_[a v™* ,_[Hy w
Hl"'(vl Hzr) al'ld Hs‘—(w’* b)

and let H'(z) be the bordered matrix

a v* z*
v Hy w'|,

z w* b

H'(z)=

The circle C for this bordered matrix H’(z) is provided by Ellis,
Gohberg, and Lay’s Theorem 1.1, part (b), of [4]. Since the unprimed H’s

are just direct sums of the H”’s with zero matrices, the circle C also works for
this lemma. ]

LemMa 3.7.  Suppose that {v,w} is a linearly independent set whose
span meets the image space H,(C"2) only at 0. Then

InH(z)=InH,+(2,2, —2)  forallz. (3.2)
Also
InH,=InH,=InH,+(1,1, —1)

and Ker H(z) = Ker H, NKer H,.
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Proof. Let M be the matrix such that M* = (v, H,, w). The hypotheses
imply that

Rank M = Rank M* = 2 + Rank H,.
Hence

2 = DimKer H, — DimKer M.

In the context of Theorem 2.1, considering H, as a submatrix of H(z), we
note that A = 2. Then Theorem 2.1 will establish Equation (3.2). The other
conclusion of this lemma is established in the same manner. B

LeEmMa 3.8. Suppose that 8,=6,=8;+ 1. Then, for all z,
KerH,DKerH(z) and InH(z)=InH,+(1,1,-1). (3.3)

Also v(2)+68(z)=vr;+ 8,2 v, + 8, =v;+ 8; and 8(z)=4,.

Proof. Corollary 3.1, part (d), provides
InH,=InH,+(1,1, - 1). (3.4)

This and Corollary 3.1, part (a), provide Ker H; = Ker H, D Ker H,.

Thus going from H, to H, results in the loss of some vector u from
Ker H,. But then this same vector must be lost from Ker H, in going from H,
to H(z). Therefore Corollary 3.2, parts (b) and (c), do not apply to H(z) and
H,. Only part (d) remains, which implies Equation (3.3). These Equations
(3.3) and (3.4), together with », > »,, will establish the remainder of this
lemma. &

LemMa 3.9.  Suppose that both v and w miss the image space Hy(C™2),
and that the Span{v, w} meets Hy(C'~2) in a line. Then there are two open
half planes P, and P_ whose closures meet in a line l, such that:

(@) InH(z)=InH,+(1,0,0) and KerH(z)=KerH, for all complex
numbers z in P,

(b) InH(z)=InH,+(0,1,0) and KerH(z)=KerH, for all complex
numbers z in P_, and

(c) InH(z)=InH,+(0,0,1) and KerH(z)>KerH, for all complex
numbers z on the line l.

Also, InH, =In H, + (1,1, — 1) and Ker H, C Ker H, ( for all z).
Furthermore, when H(0) is a real matrix, then this line | will meet the
real axis at a unique real number.
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Before proving this lemma, we will examine a specific example.

ExampLE. Let us consider the real matrix:

OO

H(z) =

S 0O et
i DO D
O =ON

I3}

We calculate that Det H(z) = — 4z +1 and Det H; = — 4. Since the deter-
minant equals the product of the eigenvalues, we see that In H,=(2,1,0).
Going from H, to H(z) will add a positive, negative, or zero eigenvalue
precisely when the determinants of H(z) and H, have the same sign, or
Det H(z) =0, or the d~*::minants of H(z) and H, have opposite signs,
respectively. These cases occur precisely when 4z >1, 42=1, or 4z <1,
respectively.

Proof. There is a unitary matrix U and an invertible matrix H, such that

H, 0 0
U*HU=|0 0 0
0 0 O

and such that U*v=(v’,x,0)" and U*w = (w',y,0)", where x and y are
complex numbers, x # 0 #y.

We shall use the change-of-coordinate matrix U, =(1®6U®1) on H(z) in
order to separate out the zero parts of the H,’s. We obtain this block matrix:

a o* x* 0 z*
v H, 0 0 w
U*H(z)Uj=|x 0 0 0 y
0O O 0O 0 ¢
z w* y* 0 b

We may drop the zero rows and columns in order to obtain these block
matrices:

a v* x* z*

v H, 0 w a o* x*
H'(z)= x 0 0 oy and H/{=|o H, 0

z w* y* b x 0 0
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We observe that

InH(z)=InH'(z)+(0,0,8,—1) (3.5)
and
In H,=In H{ +(0,0,8,-1)
Let
i (g o)

be the block that is bordered in H’(z). Clearly DimKer H; =1, and this
kernel will not be “preserved” in H{ [or in H'(z)], because of the x
element. Corollary 3.2(d) tells us that

8(H{)=8(H{)—1=0 and InH;+(1,1, -1)=InH;.

Hence Det H{ # 0. This, together with Cauchy’s interlacing theorem or
Theorem 2.1, implies that In H'(z) > In H{ and that the signs of all but one
of the eigenvalues of H'(z) are the same as for H{. The remaining sign can
be determined from the sign of its determinant. Therefore, we note that

InH'(z)=InH] +(1,0,0) =In H; +(2,1, —1) (3.6)

when Det H’(z) and Det H{ have the same sign.
We calculate that, as a function of z,

Det H'(z) = Re(a,z) + b,

where a; = 2yx*Det H, # 0 and b, is a real number. There is no zz* term.
Therefore, the equation of the desired line ! is 0 = Re(a;2)+ b;. The two
half planes P, and P_ are chosen so that Det H'(z) and Det H{ have the
same sign for all z€ P, and opposite signs for all z€ P_. We calculate
further that when x and y are real numbers, this line ! will meet the real axis
at a unique real number. This and Equations (3.5) and (3.6) will establish the
lemma. ]
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Cramv 3.10.  All the cases when 8, > 8, and 8, > 8; have been covered.

Proof. By Corollary 3.1, parts (b) and (d), Ker H, 2 Ker H, UKer H;. As
in the proof of Lemma 3.9, a change of coordinates will separate out the
kernei of H,. The result is this block matrix:

a of o 2*
0 w

v, 0 0 w]

z wf wF b

where v, and w, are vectors in C! or C%, and H, is an invertible matrix. We
note that here there are the following four cases:

(i) DimSpan{v,, w,} =2. This case is the same as Lemma 3.7.
(ii) Uy = 0= Wy,

SuscLaim 3.11.  This case is covered by Lemmas 3.5 and 3.6.

Proof. The hypotheses v, =0 = w, and H, invertible imply that §, <&,
and 8, < 8;. This and the hypotheses 8,> 8, and 8, > §; of Claim 3.10
provide &, = §, = 6,.

We will now show that all the possibilities when 8, = 8, = §; have been
covered. Cauchy’s interlacing theorem or Theorem 2.1 implies that only these
three possibi’ - exist: (a) »; =, or (b)y,=v,+1=p;+1lor(c) v;=v,+1
= », + 1. Switching », and »; turns (b) into (c). Hence Lemmas 3.5 and 3.6
cover all the possibilities when 8, = 8, = §5. [ ]

(iii) wy,=cv, #0. This case is the same as Lemma 3.9.
(iv) vy=0+ w,.

SuscrLamM 3.12. This case is covered by Lemma 3.5.

Proof. Corollary 3.2, together with these hypotheses v, =0 # w, and
H, invertible, imply that 8, > 8, and 8, =J;+1. This and the hypotheses
8,>98, of Claim 3.10 provide §,=8,=20;+1. Thus the hypotheses of
Lemma 3.8 are satisfied. @

These four cases establish Claim 3.10. i |
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Proof of Theorem 1.1 on bordered matrices. Claim 3.10 and Lemmas 3.3
and 3.4 establish Theorem 1.4. B

4. SIMPLE DIAGONAL EXTENSIONS

In this section, we will use Theorem 1.1 on bordered matrices in order to
establish Theorem 1.4.

DEFINITION. A simple diagonal extension of a given m-band matrix R is
a hermitian extension of R which is an (m + 1)-band matrix.

When 27 + 1 = n — m, the central matrix of a m-band n X r matrix is the
(r +1)*® maximal submatrix R, ,.

Proof of Equation (1.4). Let R be an in-band matrix with central
submatrix C,. Let R” be the simple diagonal completion of the simple
diagonal completion of R. Let C ue the central submatrix of R”. The crucial
observation is that C is to C, as H(z) is to H, since C is the matrix C,
together with a “border”. Therefore Equation (1.2) tells us that 8(C) < 8(C,).
Thus, the dimensions of the kernels of the central submatrices cannot
increase if we construct all the successive simple diagonal completions
according to Theorem 1.1. In this manner, Equation (1.4) is established.

NoraTion. For a band matrix &, let
8*(R) =max{8(R,), i=1,2,...,n—m},
and let »*(R) be such that
»*(R) + 8*(R) = max{»(R,)+ 8(R,), i=1,2,...,n—m }.

LEmMA 4.1.  Given a band matrix R, there is a simple diagonal extension
R’ of R such that

§*(R’) <8*(R) and v*(R’)+8*(R’)=v*(R)+8*(R).

Proof. The new band R’ is constructed as the result of a sequence of
one-step extensions going down the additional diagonal. We simply use
Theorem 1.1 on bordered matrices, including Equation (1.1), at each step. &
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Proof of Thenrem 1.4. Equation (1.4) has already been established.
Equation (1.3) may be established by simply using the last lemma repeatedly,
as one adds pairs of additional diagonals to “fill in” R. The conclusion
KerR = Ker F, for some index §, follows from repeated use of the conclusion
Ker H, D Ker H(z) or Ker H; O Ker H(z) of Theorem 1.1 on bordered matri-
ces. |
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