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ABSTRACT 

This paper is a thorough examination of the connections between the kernels of a 
“ bordered matrix” 

H(z) = 
a 0’ z* 
v H, w 

z w* b 

and the kernels of the “largest” principal submatrice 

. (H,, H,, and HI3 will usually be mt invertible.) 
may be used in order to construct invertible “expc 

“ band” matrices. 
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ATRIX YPOTHESES. bt bean@-2)x@--2)hermi- 
0 an td, be vectors in -2, and let a and b be real 

numbers: I Set 

and let H(x) be the bordered matrix 

8,, &, and 5(z) denote the dimensions of the kernels of H,, H,, 
(2). I-& “p, 2, 3, v v and v(x) denote the negativities of H,, H,, H,, 

NOTATION. The natural injection maps Ii: Domain of Hi + Domain of 
= 1, 2 and 3, are Z,(v) = (v,O), Z,(v) = (0, v,O) and Z3(v) = 

KerH, with its image space Zi(KerHi). Therefore 
= Ker Hz as a shorthand notation for Zr(Ker H,) = 

EFINITION. H(z) is called a one-step extension of H(0). 

ordered matrices have been much studied in [3], [4], [S], [6], and 
and H2 are invertible matrices. Those results were the basic tool 

ruiting (in those papers) invertible hermitian extensions of “band” 
en with special properties. 

er, H,, H,, and H3 will usually be not invertible. In Section 3, 
any of the possibilities for 6(z). The common threads (and 
ion 3 are collected in the following two theorems. 

HEOREM 1.1 ( n bordered matrices). Given the Bordered Matrix Hy- 
pot es, there is a number x such that 

6(z)<max{6,,6,1 and S(,)+v(z)=max(6,+v,,6,+v3}. (1.1) 

, either 2); also 
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When 18, - s,l = 1, then 

When 18, - S,l = 2, then 

6(z)=average(6&}. 

Also 

S(z) = m=( &J3} * KerH(z)= h KerHi. 
i=l 

FurtWe, all these results are valid for all complex numbers z in some 
half plune P in the complex plime. Also, when Hl and H3 are both real 
matrices, then this hdf phw P will h&de a half line of the real axis. 

REMARK.. By collecting the hypotheses and conclusions of Lemmas 3.3 
part (b), 3.5 and 3.6 part (c) the following theorem will be established. 

THEOREM 1.2. Giuen the Bordered Matrix Hypotheses. If 

then there is a number zO such that 

n(z,)=max(n,,w~) and y(z,)=max(v,,v,) and 

~~~6(2,) and s,68(2,). 

Fzrrthemwre when 3 are real matrices, then the number z. mu 
be chosen to be a real number also. 

m pairs of superdiagonals is 
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As simple consequences of eorem 1.1, we will establish Theorem 1.4 on 
extensions of band matrices. ore results on how to construct invertible 
extensions of band matrices will be presented in a sequel to this paper ([8]). 

DEFINITION. The irwr&z of a hermitian matrix H is a triple In H = 
(n, v, 6) consisting of the numbers of positive, negative, and zero eigenvalues 
of let 700, v(H), and 6(H) denote the three coordinates of In H. 

EFINITION. A maximal hermitian submatrix within an m-band n x n 
matrix is a (hermitian) (m + 1) x (m + 1) submatrix that is within the band. 
Foranm-bandnxnmatrixR,letR,,R,,...,R,_,+~denotethen-m+l 
maximal hermitian submatrices ordered from the upper left comer. 

THEOREM 1.3. ([S]) Let R be an m-band n X n hermitian matrix. Sup- 
pose thut the rth maximal submutrix R, is inuertible, .fm a positive integer r, 
m+5<2r<n- m. Then R has an invertible hermitian completion. 

DEFINITION. Suppose that a hermitian band matrix R has been filled in 
to a hermitian extension F by a sequence of one-step extensions consistent 
with Theorem 1.1 on bordered matrices. We shall say that F WPS constructed 
from R by the standard procedure. 

a 
HEOREM 1.4. Suppose that 

hermitian m-band n x n matrix 
a hermitian matrix F was constructed 
R by the standard procedure. Then 

v(F)+S(F)= mU(v(Ri)+S(Ri), i=1,2 ,..., n-m}. (13) . 

Also, there is an index j such that 
If 2r + 1 = n - m then 

erR+erF. 

rthmrc, when the 
F will also be real matrix. 

band matrix R is a real matrix, then the extension 

n Section 2, we state Theorem 2.1 
es some aspects of the connec- 

as of a hermitian matrix and a principal submatrix. 
“semibordered” matrices, 
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2. BACKCROUND 

We begin this section by stating part of our Theorem 1.2 of [2], namely: 

THEOREM 2.1. Let H, be a principle (n-r)x(n-r) subnuztrix of a 
hermitian n X n m&ix H. We set 

A = DimKerH, - Dim(KerH, nKerH), 

A* = DimKerH - Dim(KerH, nKerH). 

(a) v(H) 2 ?I(H+ A and 
(b) v(H) >, u(H7)+ A. 

A&? 

(c) A + A” \< r. 

Proof. Parts (a) and (b) are from Theorem 1.2 of [2]. Part (c) is an 
immediate consequence of the inequalities (1.5) of [2]. 

The major tool used in this paper will be Corollaries 3.1 and 3.2, which 
are consequences of Theorem 2.1 when r = 1. 

EIUMPLE 2.2. Let us examine the matrix 

H(x) = ( z 1 1 2 1 1 2” 2 4 I 
and its submatrices 

and H3 = 

We observe that 6(n) = 0 when z # 2, and 6(2) = 2. Also 

erH, = Span{ (1, -1)‘) cR2x0 and = span{ (2, -1)‘) cOxR2. 
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oose which parts the kernels we wished to preserve and to 
erwards, we were s able to choose any inertia for the hermitian 

extension of a block diagonal hermitian matrix, which is consistent with 
Theolen 2.1. The result in [ 13 was: 

THEOREM 2.3. Given s Hemi tiun matrices S 1, S,, . . . , S,, with inert& 
(~ii, vim Si). Let 4~ch ni =?ri+vi+6i, and let n=Cni. Let S be a block 
diagonul matrix with S,& . . . , S, as the blocks on the main diagonal. Choose 
any subspaces Vi of Ker Si, and let Ai be the codimension of Vi in Ker Si. 
Choose any nonnegative integers ?T, v, and 6 such that n = ?T -t- v + 8 and 

n>,max(ri+Ai), v>,ma.x{vi+Ai}, and SaC(Si-Ai). 

Then there is a hermitian extension F of S with In F = (TT, v, S), and each 
q= erF nKerSi. 

Additional results on hermitian extension of band matrices appear in [3], 
[4], 151, 161, and 171. 

E KERNELS OF BORDERED MATRICES 

The organization of this section is this: First we specialize Theorem 2.1 to 
the case r = 1 as Corollaries 3.1 and 3.2. We then use these corollaries 

eatedly as we examine a collection of cases of bordered matrices. These 
results are then collected (with the aid of Claim 3.10) in Theorem 1.1 on 
bordered matrices. In turn, Theorem 1.1 is the basis for the proofs of 
Theorem 1.4. 

COROLLARY 3.1. Let H, and H, be as in the Bordered Matrix Hypothe- 
ses (stated in Section 1). 

and In H, = In Hz + (O,O, 1). 
and InH1=InHZ+(l,l, -l), and 
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establishes (a). Except for the “also” part of (d), the next three results listed 
are immediate consequences of (a). Then 

InH,=InHz+(l,l, -1) = RankH,=2+RankHs. 

This forces o to not be in the image space Hz(Crw2). Finally, @) and (c) 
imply (e). 

REMARK. Note that parts (b), (c), and (d) include all cases; therefore 
they are all if-andonly-if statements. Hence: 

COROLLARY 3.2 (On “semibordered” matrices). Let H, and H, be as in 
the Bordered Matrix Hypotheses. 

(a) Then IS, - 821 < 1. 
(b) 8, = 6, e=, Ker H, = Ker H,. 
(c) 6,=S,+l c=) KerH,DKerhl, = InH,=InH2+(0,0,1). 
(d) 4=82-l = KerH,DKerH, = InH,=InH,+(l,l, -1). 

Thus, the connection between the dimensions of the kernels determines 
the connection between the kernels. We will use this to show (in Lemmas 
3.3-3.9) that the connections between 8,, S,, and 8a almost determine 6(z). 

OBSERVATION. AU the reds of Corollaries 3.1 and 3.2 about ( H,, H,) 
also are applicable to each of these ordered pairs of matrices: ( H(x), H, ), 
(H(G, Ha}, and ( H3, H2}. 

We will implicitly use this observation often in the proofs in this section. 
The reader might review Example 2.2 now, because it is a specific 

example of the next lemma. 

EMMA 3.3. Suppose that 6, = 6,+1 and i& = 6, or 6,. 
single number zO such thut 

there is a 

(a) for all x # 
V(X 

-1); also &z)=S,=S,-L 

0)’ 
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Proof. The hypotheses imply that 
is a vector k such that 

Actually, the general solution to the equation o = H,k is k + Ker H,. 
Corollary 3.1, part (e), tells us that w*u - - 0 = U*U for all u E Ker&. we 
may set 

x0= w*k = w*(k +KerZSJ. 

observe that 

-1 0 
=0, but H(z) k 

I i 

= 0 
0 - x+w*‘k 

H(z)( - 1, k,Oy = (o,o, xg - zy. (3 1) . 

1 is not contained in Ker H( x), and Ker H, # Ker H( x) when 
IS rules out parts (b) and (c) of Corollary 3.1. Therefore part (d) 

is establishes part (a) of this lemma. 
= I&, then the relationship between Z& and H, is the same as 

above. Therefore, there is a vector k, such that 

(;)=(32* 

e general solution to the equation w = k12k2 is k, + Ker H,. Here 
- 1y = (O*kg - z*,o,oy. calculate 

v*k2 = k*H,k, = k”w. 

two linearly indepen- 
of Theorem 2.1 (with 
3.2 will establish part 
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When S,- 1 = & = S,, then Ker Ha = Ker H3. Equation (3.1) shows us 
that ( - 1, k,O)T E Ker H( 2,). But this vector ( - 1, k,O)r cannot also be in 
Ker H,. Hence Corollary 3.2 will establish part (b) of this lemma when 
8, - 1 = 83. 

LEMMA 3.4. Suppose that i$ = 6, +2. Z%en 

InH(z)=InH,+(O,O,l)=In~~+(l,I,O)-InH,+(l,l, -1). 

Also 6(z)=&-1=6,=8,+1. 

Proof. Corollary 3.1, part (a), tells us that both S(x) and & must be 
within 1 or both 8, and &. Therefore, the only choice is 8(z) = 8, = S, + 1. 
This plus Corollary 3.1, parts (c) and (d), v&I esM.ish this lemma. 

LEMMA 3.5. Suppose 6, = 62 = 8a and p)1 = v2 + 1 = v3 + 1. Z&n 

and 

KerH(z)=KerH,=KerH,=KerH, fmaZlz. 

Proof. These hypotheses imply that HI and H3 have only an additional 
negative eigenvalue and positive eigenvalue, respectively. This together with 
Cauchy’s interlacing theorem or Theorem 2.1, forces H(x) to have both an 
additional negative eigenvalue and an additional positive eigenvalue. This 
establishes the inertia equations of this lemma. Corollary 3.1, part (a), applied 
three times, will establish the equations for the kernels. 

LEMMA 3.6. Suppose i& = 6, = S3 and vl = v3. Then there is a ctde C in 
the complex plane such that 

(a) 6(z)= 6, and v(z)= vi and 
for all complex numbers x outside C; 

(b) 6(z)=6,, 77(n)=q, and 
all complex numbers x inside 6; 

(c) 8(z)=l+S, ford ers 2 on C. 
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of* ere is a unit such that 

= r H,. 
=mw@l) on 

taneously separate out tie ‘“zero”’ parts df the three Hi’s, 
2) in 

= U*v and (w’,O) = VW. Then 

columns in order to obtain a bordered matrix 

is 
ince 
e circle C also 
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Pro05 et M be the matrix such that theses 

Rank =RankM*=2+ 

ence 

n the context of Theorem 2.1, considering as a submatrix o 
note that A - 2. Then Theorem 2.1 will estab Equation (3.2). 
conclusion of this lemma is established in the same manner. 

LEMU 3.8. Suppose that 6, = S, = 4& + 1. lkn, f&r all z, 

KerH, 2 MerW(z) and In 

Also v(z)+S(Z)=V~+S~~V~+~~=V~+~~ and &)=6,. 

Proof. Corollary 3.1, part (d), provides 

InH,=InH,+(1,1, -1). (3 4) . 

This and Corollary 3.1, part (a), provide 
rhus going from k12 to Z’& results 

er H,. But then this same vector must b 
). Therefore Corollary 3.2, parts (b) 

(3X3) 
nly part (d) remains, which implies 
and (3.4), together with vr > vz, 

lemma. 

EMMA 3.9. Suppose that both o and w miss the image space 
and that the Span{ v, w> meets r-2) in a line. 

b t 1 1 

0 a 2)” 
numbers x in 

meet in a line I, s t: 

1 all c x 

er 2)’ 1 

n em 2 on e line 1. 
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Before proving this lemma, we will examine a specific example. 

2cAMPLE. t us consider the real matrix: 

I 
0 1 0 z 

H(z) 1 1 2 0 = 
0 2 4 1 
2 0 1 0 

We calculate that Det H(x) = - 4x + 1 and Det H, = - 4. Since the deter- 
minant equals the product of the eigenvahres, we see that In H, = (2, I,O). 
Going from H, to H(z) will add a positive, negative, or zero eigenvalue 
precisely when the determinants of H(z) and Hr have the same sign, or 
DetH(z)=O, or the &.*L lminants of H(z) and H, have opposite signs, 
respectively. These cases occur precisely when 4 x > 1, 4 2 = 1, or 4 x < 1, 
respectively. 

Proof. There is a unitary matrix U and an invertible matrix H4 such that 

H(j 0 0 

u*‘h” 
2 u= 

i 

0 00 

0 00 I 
and such that U*v = (~9, x,O)~ and U*w = (w’, Y,O)~, where x and y are 
comI9ex numbers, x # 0 # y. 

shall use the change-of-coordinate matrix Ur = (1 @U@ 1) on H(x) in 
order to separate out the zero parts of the W2’s. We ob ain this block matrix: 

U,*N(x)U,= 

a v’* x* 0 n*\ 
v1 El, 0 0 WI 

x 0 0 0 y. 

0 0 0 0 0 
x w’* y* 0 b 

may drop the zero rows and columns in order to obtain these block 
matrices: 

a 2” 

‘(2) = 
VP WI 

x 

z t 
! 

a v’* x* 
0’ 0 

x I . 
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We observe that 

and 

Let 

In H, = In H{ + (O,O, 62 - 1) 

(3 5) . 

Hz' = 

be the block that is bordered in H’(x). Clearly DimKer Hg = 1, and this 
kernel will not be “preserved” in H[ [or in H’(x)], because of the x 
element. Corollary 3.2(d) tells us that 

8(&)=8(H,‘)-l=O and InHi+(l,l, -l)=InH[. \ 

Hence et Hi # 0. This, together with Cauchy’s interlacing theorem or 
Theorem 2.1, implies that In H’(z) >, In Hi and that the signs of all but one 
of the eigenvalues of H’(z) are the same as for Hi. The remaining sign can 
be determined from the sign of its determinant. Therefore, we note that 

InH’(x)=InH~+(l,O,O)=InH,‘+(2,1, -1) (3 6) . 

when Det H’(x) and Det Hi have the same sign. 
We calculate that, as a function of x, 
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CLAIM 3.110. AIE the when 8, 8, and >, 6, been covered. 

Corollary 3.1, (b) and r H, Ker H, Ker Ha. 
mma 3.9, change of ates will separate out the 

kemei of &. The result is this block matrix: 

I a vl* vz” x* \ 

where v2 and w2 are vectors in ’ or C2, and H, is an invertible matrix. We 
note that here there are the following four cases: 

(i) Dir&pan{ v2, w,} = 2. This case is the same as Lemma 3.7. 

( ) ii v2 =o=w,. 

SUBCLA~~W 3.11. This case is covered by Lemmas 3.5 and 3.6. 

Proof. The hypotheses v2 = = w2 and H, invertible imply that 6, < S, 
and 6, < aa. This and the hypotheses S, >, 6, and 6, >, I& of Claim 3.10 

e 8r = 8, = &. 
e will now show that all the possibilities when 6, = 6, = &a have been 

covered. Cauchy’s interlacing theorem or Theorem 2.1 implies that only these 
three possib?: ’ exist: (a) vr = v2 or (b)v, = v2 + 1 = v3 + 1 or (c) v3 = v2 + 1 
= vr + 1. Switching vr and v3 turns (b) into (c). Hence Lemmas 3.5 and 3.6 

ossibilities when 6, = 6, = a3. 

..a 

( ) 111 w2 = cv2 + 0. This case is the same as Lemma 3.9. 

( ) iv v2 =O# WCJ. 

2. 771is ccLse is covered by Lmnma 3.8. 

Proof. Corollary 3.2, together with these hypotheses v2 = 0 # w2 and 
invertible, imply that 6, >, 6, and a2 = S3 + 1. is and the hypotheses 

of Claim 3.10 provide 8r = 8, = $ + 1. Thus the hypotheses 
a 3.8 are satisfied. 

ese es est 
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Proof of I%eorem 1.1 on bon&red matrices. Claim 3.10 and Lemmas 3.3 
and 3.4 establish Theorem 1.4. 

4. SIMPLE DIAGONAL EXTENSIONS 

In this section, we will use Theorem 1.1 on bordered matrices in order to 
establish Theorem 1.4. 

DEFINITION. A simple diagonal e&n&on ob a given m-band matrix R is 
a hermitian extension of R which is an (m + Q-band matrix. 

When 2r + 1 = n - m, the central m&ix of a m-band n x R matrix is the 
(T + l)st maximal submatrix R,,,. 

Proof of Equation (le4). Let R be gp~ iaa-band matrix with central 
submatrix Cz. Let R” be the simple diagonal completion of the simple 
diagonal completion of R. Let C be the central submatrix of R”. The crucial 
observation is that C is to Cz as H(z) is to Hg since C is the matrix Cz 
together with a “border”. Therefore Equation (1.2) tells us that 6(C) < S(C,). 
Thus, the dimensions of the kernels of the central submatrices cannot 
increase if we construct all the successive simple diagonal completions 
according to Theorem 1.1. In this manner, Equation (1.4) is established. 

NOTATION. For a band matrix i?, let 

~*(R)=IIMx(S(R,),~=~,~ ,..., n-m}, 

and let v*(R) be such that 

v*(R)+a*(R) =mm(v(Ri)+S(Ri), i=1,2,...,n-m). 

LEMMA 4.1. Given a band matrix R, there is a simple diagonal extension 
R’ of R such that 

iS*(R’)<S*(R) and u*(R’)+S*( ‘) = v*(R)+ a*(R). 
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dy been established. 
t lemma repeatedly, 

The conclusion 
ws from repeated use of the conclusion 
x) of Theorem 1.1 on bordered matri- 
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