# Introduction to Bordered Matrices 

Jan Brandts<br>brandts@science.uva.nl

Korteweg-De Vries Institute for Mathematics, University of Amsterdam




- Introduction

Definition and Interest

- Introduction


## Definition and Interest

- Bordering a Given Matrix
- Introduction

Definition and Interest

- Bordering a Given Matrix
- Singular values of Bordered Matrices

The Singular Value Decomposition
Singular Value Inequalities

Oyerview

- Introduction

Definition and Interest

- Bordering a Given Matrix
- Singular values of Bordered Matrices

The Singular Value Decomposition Singular Value Inequalities

- Defining Systems
- Introduction

Definition and Interest

- Bordering a Given Matrix
- Singular values of Bordered Matrices

The Singular Value Decomposition
Singular Value Inequalities

- Defining Systems
- Numerical Methods for Bordered Systems

BEC, BED, BEM, and BEMW



A bordered matrix is a block matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

## Introduction

A bordered matrix is a block matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

where

- $A$ is $p \times q$
- $B$ is $p \times(n-q)$
- $C$ is $q \times(n-p)$
- $D$ is $(n-p) \times(n-q)$

Introduction

A bordered matrix is a block matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

such that $M$ is an $n \times n$ extension of the $p \times q$ matrix $A$

## Introduction

A bordered matrix is a block matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

such that $M$ is an $n \times n$ extension of the $p \times q$ matrix $A$
Cleverly chosen extensions $M$ can reveal rank-deficiency of $A$ in a computationally attractive way:

## Introduction

A bordered matrix is a block matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

such that $M$ is an $n \times n$ extension of the $p \times q$ matrix $A$
Cleverly chosen extensions $M$ can reveal rank-deficiency of $A$ in a computationally attractive way:

That is, with $M$ itself being nonsingular


Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



## Sonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



## Sonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



## Sonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



## Sonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



Nonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$



## Nonsingular Bordering

Any $p \times q$ matrix $A$ can be bordered into a nonsingular $n \times n$ matrix $M$ by choosing $n$ large enough

The smallest $n$ for which this is possible, depends on the rank $r$ of $A$ as follows:

$$
n=p+q-r
$$

Moreover, for all extensions $M$ of $A$ we have

$$
\|M\| \geq\|A\|, \quad\left\|M^{-1}\right\| \geq\left\|A^{\dagger}\right\|, \quad \kappa(M) \geq \kappa^{\dagger}(A)
$$

Equality holds if $D=0$ and $B, C$ contain orthonormal bases for the kernel and range of $A$


Recall: Each hermitian matrix $A=A^{*}$ is diagonal on a basis $V=\left(v_{1}, \ldots, v_{n}\right)$ with $V^{*} V=I$

$$
A V=V \Lambda
$$

## Singular Values

Recall: Each hermitian matrix $A=A^{*}$ is diagonal on a basis $V=\left(v_{1}, \ldots, v_{n}\right)$ with $V^{*} V=I$

$$
A V=V \Lambda
$$

Generalizations of this result for non-hermitian $A$ are the

- Schur decomposition $A Q=Q R$ ( $R$ upper triangular)
- Singular Value decomposition $A V=U \Sigma\left(U^{*} U=I\right)$


## Singular Values

Recall: Each hermitian matrix $A=A^{*}$ is diagonal on a basis $V=\left(v_{1}, \ldots, v_{n}\right)$ with $V^{*} V=I$

$$
A V=V \Lambda
$$

Generalizations of this result for non-hermitian $A$ are the

- Schur decomposition $A Q=Q R$ ( $R$ upper triangular)
- Singular Value decomposition $A V=U \Sigma\left(U^{*} U=I\right)$

Both imply the above eigendecomposition, but are very different in character

