Introduction to Bordered Matrices

Jan Brandts

brandts@science.uva.nl

Korteweg-De Vries Institute for Mathematics, University of Amsterdam

Overview

2/5

Definition and Interest

- Introduction
 - **Definition and Interest**
- Bordering a Given Matrix

- Introduction
 - **Definition and Interest**
- Bordering a Given Matrix
- Singular values of Bordered Matrices
 The Singular Value Decomposition
 Singular Value Inequalities

- Introduction
 - **Definition and Interest**
- Bordering a Given Matrix
- Singular values of Bordered Matrices
 The Singular Value Decomposition
 Singular Value Inequalities
- Defining Systems

- Introduction
 - **Definition and Interest**
- Bordering a Given Matrix
- Singular values of Bordered Matrices
 The Singular Value Decomposition
 Singular Value Inequalities
- Defining Systems
- Numerical Methods for Bordered Systems BEC, BED, BEM, and BEMW

A bordered matrix is a block matrix of the form

$$M = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

A bordered matrix is a block matrix of the form

$$M = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

where

- A is $p \times q$
- B is $p \times (n-q)$
- C is $q \times (n-p)$
- D is $(n-p) \times (n-q)$

A bordered matrix is a block matrix of the form

$$M = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

such that M is an $n \times n$ extension of the $p \times q$ matrix A

A bordered matrix is a block matrix of the form

$$M = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

such that M is an $n \times n$ extension of the $p \times q$ matrix A

Cleverly chosen extensions M can reveal rank-deficiency of A in a computationally attractive way:

A bordered matrix is a block matrix of the form

$$M = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

such that M is an $n \times n$ extension of the $p \times q$ matrix A

Cleverly chosen extensions M can reveal rank-deficiency of A in a computationally attractive way:

That is, with M itself being nonsingular

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

$$n = p + q - r$$

Any $p \times q$ matrix A can be bordered into a nonsingular $n \times n$ matrix M by choosing n large enough

The smallest n for which this is possible, depends on the rank r of A as follows:

$$n = p + q - r$$

Moreover, for all extensions M of A we have

 $||M|| \ge ||A||, ||M^{-1}|| \ge ||A^{\dagger}||, \kappa(M) \ge \kappa^{\dagger}(A)$

Equality holds if D = 0 and B, C contain orthonormal bases for the kernel and range of A

Singular Values

Singular Values

Recall: Each hermitian matrix $A = A^*$ is diagonal on a basis $V = (v_1, \ldots, v_n)$ with $V^*V = I$

 $AV = V\Lambda$

Recall: Each hermitian matrix $A = A^*$ is diagonal on a basis $V = (v_1, \ldots, v_n)$ with $V^*V = I$

 $AV = V\Lambda$

Generalizations of this result for non-hermitian A are the

- Schur decomposition AQ = QR (*R* upper triangular)
- Singular Value decomposition $AV = U\Sigma (U^*U = I)$

Singular Values

Recall: Each hermitian matrix $A = A^*$ is diagonal on a basis $V = (v_1, \ldots, v_n)$ with $V^*V = I$

 $AV = V\Lambda$

Generalizations of this result for non-hermitian A are the

- Schur decomposition AQ = QR (*R* upper triangular)
- Singular Value decomposition $AV = U\Sigma (U^*U = I)$

Both imply the above eigendecomposition, but are very different in character