
ELA

GENERALIZED INVERSES OF BORDERED MATRICES∗

R. B. BAPAT† AND BING ZHENG‡

Abstract. Several authors have considered nonsingular borderings A =

(
B C
D X

)
of B and

investigated the properties of submatrices of A−1. Under specific conditions on the bordering, one
can recover any g-inverse of B as a submatrix of A−1. Borderings A of B are considered, where
A might be singular, or even rectangular. If A is m × n and if B is an r × s submatrix of A, the
consequences of the equality m + n − rank(A) = r + s − rank(B) with reference to the g-inverses
of A are studied. It is shown that under this condition many properties enjoyed by nonsingular
borderings have analogs for singular (or rectangular) borderings as well. We also consider g-inverses
of the bordered matrix when certain rank additivity conditions are satisfied. It is shown that any
g-inverse of B can be realized as a submatrix of a suitable g-inverse of A, under certain conditions.
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1. Introduction. Let A be an m × n matrix over the complex field and let A∗

denote the conjugate transpose of A. We recall that a generalized inverse G of A is
an n × m matrix which satisfies the first of the four Penrose equations:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

For a subset {i, j, . . .} of the set {1, 2, 3, 4}, the set of n × m matrices satisfying the
equations indexed by {i, j, . . .} is denoted by A{i, j, . . .}. A matrix in A{i, j, . . .} is
called an {i, j, . . .}-inverse of A and is denoted by A(i,j,...). In particular, the matrix
G is called a {1}-inverse or a g-inverse of A if it satisfies (1). As usual, a g-inverse of
A is denoted by A−. If G satisfies (1) and (2) then it is called a reflexive inverse or a
{1, 2}-inverse of A. Similarly, G is called a {1, 2, 3}-inverse of A if it satisfies (1),(2)
and (3). The Moore-Penrose inverse of A is the matrix G satisfying (1)-(4). Any
matrix A admits a unique Moore-Penrose inverse, denoted A†. If A is n×n then G is
called the group inverse of A if it satisfies (1), (2) and AG = GA. The matrix A has
group inverse, which is unique and denoted by A�, if and only if rank(A) = rank(A2).
We refer to [4], [6] for basic results on g-inverses.

Suppose

A =
( q1 q2

p1 B C
p2 D X

)
(1.1)
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is a partitioned matrix. We say that A is obtained by bordering B. We will generally
partition a g-inverse A− of A as

A− =
( p1 p2

q1 E F
q2 G Y

)
,(1.2)

which is in conformity with A∗.
We say that the g-inverses of A have the “block independence property” if for

any g-inverses

A−
i =

(
Ei Fi

Gi Yi

)
, i = 1, 2

of A,
(

E1 F1

G1 Y2

)
,

(
E1 F1

G2 Y1

)
etc. are also g-inverses of A.

If A is an m × n matrix, then the following function will play an important role
in this paper:

ψ(A) = m + n − rank(A).

An elementary result is given next. For completeness, we include a proof.
Lemma 1.1. If B is a submatrix of A, then ψ(B) ≤ ψ(A).
Proof. Let

A =
( q1 q2

p1 B C
p2 D X

)
.

Then

rank(A) ≤ rank ( B C ) + rank (D X )
≤ rank(B) + rank(C) + p2

≤ rank(B) + q2 + p2.

From this inequality, we get ψ(B) ≤ ψ(A).
Note that a matrix B with rank(B) = r can be completed to a nonsingular matrix

A of order n if and only if ψ(B) ≤ n [10, Theorem 5]. As another example of a result
concerning ψ, if

A =
( q1 q2

p1 B C
p2 D O

)

is a nonsingular matrix of order n, n = p1 + p2 = q1 + q2, then A−1 is of the form

A−1 =
( p1 p2

q1 E F
q2 G O

)
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if and only if ψ(B) = ψ(A). This will follow from Theorem 3.1.
Several authors ([4], [5], [8], [10], [11], [12]) have considered nonsingular border-

ings A of B and investigated the properties of submatrices of A−1. Under specific
conditions on the bordering, one can recover a special g-inverse of B as a subma-
trix of A−1. It turns out that in all such cases the condition ψ(B) = ψ(A) holds.
The main theme of the present paper is to investigate borderings A of B, where A
might be singular, or even rectangular. We show that if ψ(A) = ψ(B) is satisfied
then many properties enjoyed by nonsingular borderings have analogs for singular (or
rectangular) borderings as well. For example, any g-inverse of B can be obtained
as a submatrix of A− where A is a bordering of B with ψ(A) = ψ(B). This will be
shown in Section 4. In Section 5 we show how to obtain the Moore-Penrose inverse
and the group inverse by a general, not necessarily nonsingular, bordering. In the
next two sections we consider general borderings A of B and obtain some results
concerning A−.

We say that rank additivity holds in the matrix equation A = A1 + · · · + Ak if
rank(A) = rank(A1)+ · · ·+rank(Ak). Let R(A) and N(A) denote the range space of
A and the null space of A respectively. We will need the following well-known result.

Lemma 1.2. [2] Let A, B be m × n matrices. Then the following conditions are
equivalent:
(i) rank(B) = rank(A) + rank(B − A).
(ii) Every B− is a g-inverse of A.
(iii) AB−(B − A) = O, (B − A)B−A = O for any B−.
(iv) There exists a B− that is a g-inverse of both A and B − A.

It follows from the proof of Lemma 1.1 that if ψ(B) = ψ(A) then rank additivity
holds in (

B C
D X

)
=

(
B O
O O

)
+

(
O C
O O

)
+

(
O O
D X

)
(1.3)

and in (
B C
D X

)
=

(
B O
O O

)
+

(
O O
D O

)
+

(
O C
O X

)
.(1.4)

In Section 2 we discuss necessary and sufficient conditions for the block matrix(
E F
G Y

)
to be a g-inverse of

(
B C
D X

)
under the assumption of rank additivity

in (1.3) and (1.4). In section 3, necessary and sufficient conditions for the block

matrix
(

E F
G Y

)
to be a g-inverse of

(
B C
D X

)
are considered under the assumption

ψ(A) = ψ(B). Certain related results are also proved. Some additional references on
g-inverses of bordered matrices as well as generalizations of Cramer’s rule are [1], [14],
[16], [17].

2. G-inverses of a bordered matrix . Let A =
(

B C
D X

)
be a block matrix

which is a bordering of B. In this section we will study some necessary and sufficient
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conditions for a partitioned matrix
(

E F
G Y

)
, conformal with A∗, to be a g-inverse

of A.

Theorem 2.1. Let A =
(

B C
D X

)
. Then rank additivity holds in (1.3) and

(1.4) and H =
(

E F
G Y

)
is a g-inverse of A if and only if the following conditions

hold.
(i) BEB = B, CGC = C, DFD = D, XGC = DFX = −DEC, X = XY X − DEC.
(ii) CY D, BFX, CY X, XGB, XY D, BEC, DEB, CGB, BFD are null matrices.
Furthermore, if EBE = E, then X = XY X.

Proof. “Only if” part: Assume rank additivity in (1.3) and (1.4) and that H is
a g-inverse of A. Then by (ii) of Lemma 1.2, H is also a g-inverse of each summand
matrix in (1.3) and (1.4). Using the definition of g-inverse, we easily get BEB =
B, CGC = C, DFD = D, XY D = O, CY X = O, and

DFX + XY X = X, XGC + XY X = X.(2.1)

On the other hand, by (iii) of Lemma 1.2, we have(
B O
O O

) (
E F
G Y

) (
O C
O O

)
=

(
O O
O O

)
⇒ BEC = O,

(
O C
O O

) (
E F
G Y

) (
B O
O O

)
=

(
O O
O O

)
⇒ CGB = O,

(
B O
O O

) (
E F
G Y

) (
O O
D X

)
=

(
O O
O O

)
⇒ BFD = O, BFX = O,

(
O C
O O

) (
E F
G Y

) (
O O
D X

)
=

(
O O
O O

)
⇒ CY D = O, CY X = O,

(
O C
O X

)(
E F
G Y

) (
O O
D O

)
=

(
O O
O O

)
⇒ CY D = O, XY D = O.

(
O O
D X

) (
E F
G Y

) (
B O
O O

)
=

(
O O
O O

)
(

O C
O X

) (
E F
G Y

) (
B O
O O

)
=

(
O O
O O

)
⎫⎪⎪⎬
⎪⎪⎭

⇒ XGB = O, DEB = O,

(
O O
D X

) (
E F
G Y

) (
O C
O O

)
=

(
O O
O O

)
(

O O
D O

) (
E F
G Y

) (
O C
O X

)
=

(
O O
O O

)
⎫⎪⎪⎬
⎪⎪⎭

⇒ XGC = DFX = −DEC.(2.2)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 16-30, January 2003

http://math.technion.ac.il/iic/ela



ELA

20 R.B. Bapat and Bing Zheng

Also, (2.1) and (2.2) imply X = XY X − DEC.

“If” part: If the conditions (i) and (ii) hold, then it is easy to verify that H is
a g-inverse of each summand matrix in (1.3) and (1.4). By (iv) in Lemma 1.2, rank
additivity holds in (1.3) and (1.4). It is also easily verified that H is a g-inverse of A.

If EBE = E, then DEC = O and so X = XY X.

We note certain consequences of Theorem 2.1.

Corollary 2.2. Let A =
(

B C
D X

)
. Then rank additivity holds in (1.3) and

(1.4) and the matrix H =
(

E F
G O

)
is a g-inverse of A if and only if the following

conditions hold.
(i) BEB = B, CGC = C, DFD = D, DEC = −X.
(ii) BEC, DEB, CGB, BFD are null matrices.
Furthermore if EBE = E, then X = O.

Corollary 2.3. Let A =
(

B C
D O

)
. Then R(B) ∩ R(C) = {0}, R(B∗) ∩

R(D∗) = {0} and H =
(

E F
G Y

)
is a g-inverse of A if and only if the following

conditions hold.
(i) BEB = B, CGC = C, DFD = D.
(ii) CY D, DEC, BEC, DEB, CGB, BFD are null matrices.
In this case, the g-inverses of A have the block independence property.

Remark 2.4. As the conditions R(B) ∩ R(C) = {0}, R(B∗) ∩ R(D∗) = {0}
together with X = O imply rank additivity in (1.3) and (1.4), Corollary 2.3 is a
direct consequence of Theorem 2.1. In particular, conditions (i) and (ii) indicate that

the block matrices in
(

E F
G Y

)
can be independently chosen if it is a g-inverse of

A. In other words, the g-inverses of A =
(

B C
D O

)
have the block independence

property. Thus Corollary 2.3 complements the known result (see Theorem 3.1 in
[15] and Lemma 5(1.2e) in [7]) that the g-inverses of A have the block independence
property if and only if

rank(A) = rank

(
B
D

)
+ rank(C)

= rank (B C ) + rank(D).

The next result can also be viewed as a generalization of Corollary 2.3. This type
of rank additivity has been considered, for example, in [13].

Theorem 2.5. Let A =
(

B C
D X

)
and suppose

rank(A) = rank(B) + rank(C) + rank(D) + rank(X).
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Then H =
(

E F
G Y

)
is a g-inverse of A if and only if the following conditions hold.

(i) BEB = B, CGC = C, DFD = D, XY X = X.
(ii) BFX, CY D, CY X, DFX, XGB, XGC, XY D, BEC, BFD, CGB, DEB,
DEC are null matrices.

Proof. Note that the condition rank(A) = rank(B) + rank(C) + rank(D) +
rank(X) implies rank additivity in

A =
(

B O
O O

)
+

(
O C
O O

)
+

(
O O
D O

)
+

(
O O
O X

)
.

Now the proof is similar to that of Theorem 2.1.
A generalization of Theorem 2.5 is stated next; the proof is omitted.
Theorem 2.6. Let A = (Ai,j ) , i = 1, 2, · · · , m, j = 1, 2, · · · , n be an m × n

block matrix. If rank(A) =
m∑

i=1

n∑
j=1

rank(Ai,j), then G = (Gl,s ) , l = 1, 2, · · · , n, s =

1, 2, · · · , m is a g-inverse of A if and only if the following equations hold.

Ai,jGj,lAl,s =
{

Ai,j (i, j) = (l, s)
O (i, j) �= (l, s) .

3. G-inverses of a block matrix A with ψ(A) = ψ(B). Let A and H be
matrices of order m × n and n × m respectively, partitioned as follows:

A =
( q1 q2

p1 B C
p2 D X

)
and H =

( p1 p2

q1 E F
q2 G Y

)
,(3.1)

where p1 + p2 = m and q1 + q2 = n. By η(A) we denote the row nullity of A, which
by definition is the number of rows minus the rank of A. If m = n, A is nonsingular,
H = A−1 and if A and H are partitioned as in (3.1) then it was proved by Fiedler
and Markham [10], and independently by Gustafson [9], that

η(B) = η(Y ).(3.2)

The following result, proved in [3], will be used in the sequel. We include an alternative
simple proof for completeness.

Lemma 3.1. Let A and H be matrices of order m × n and n × m respectively,
partitioned as in (3.1). Assume rank(A) = r and rank(H) = k. Then the following
assertions are true.
(i) If AHA = A, then

−(m − r) ≤ η(Y ) − η(B) ≤ n − r.

(ii) If HAH = H, then

−(n − k) ≤ η(B) − η(Y ) ≤ m − k.
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Proof. (i) According to a result on bordered matrices and g-inverses [11, Theorem
1], there exist matrices P , Q and Z of order m×(m−r), (n−r)×n and (n−r)×(m−r)
respectively, such that the matrix

S =
(

A P
Q Z

)

is nonsingular and the submatrix formed by the first n rows and the first m columns
of T = S−1 is W . Thus we may write

S =

⎛
⎝

q1 q2 m − r

p1 B C P1

p2 D X P2

n − r Q1 Q2 Z

⎞
⎠ and T =

⎛
⎝

p1 p2 n − r

q1 E F U1

q2 G Y U2

m − r V1 V2 W

⎞
⎠.

Since S is nonsingular, we have, using (3.2),

η(B) = η(
(

Y U2

V2 W

)
) = q2 + m − r − rank

(
Y U2

V2 W

)
.

Now by Lemma 1.1

rank(Y ) ≤ rank

(
Y U2

V2 W

)
≤ rank(Y ) + m + n − 2r,

and hence

−(m − r) ≤ η(Y ) − η(B) ≤ n − r.

The result (ii) follows from (i).
The following result, proved using Lemma 3.1, will be used in the sequel.

Theorem 3.2. Let A =
(

B C
D X

)
with ψ(A) = ψ(B). Then for any g-inverse

A− =
(

E F
G Y

)
of A, Y = O.

Proof. Assume the sizes of the block matrices in A to be as in (3.1). By Lemma
3.1 we have

−(m − r) ≤ η(Y ) − η(B) ≤ n − r.

It follows that

−m + r ≤ q2 − rank(Y ) − p1 + rank(B).

Using ψ(A) = ψ(B) and the inequality above, rank(Y ) = 0 and hence Y = O.

Theorem 3.3. Let A =
(

B C
D X

)
. Then ψ(A) = ψ(B) and H =

(
E F
G Y

)
is

a g-inverse of A if and only if the following equations hold.
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(i) Y = O, BEB = B, GC = I, DF = I.
(ii) DEC = −X.
(iii) BEC = O, DEB = O, BF = O, GB = O.
Furthermore, if EBE = E, then X = O.

Proof. If H is a g-inverse of A with ψ(A) = ψ(B), then by Theorem 3.2, we know
Y = O. From the proof of Lemma 1.1, the condition ψ(A) = ψ(B) also indicates
rank additivity in (1.3) and (1.4). Note that C and D are also of full column rank
and of full row rank respectively under the condition ψ(A) = ψ(B). Then the proof
of the theorem is similar to that of Theorem 2.1.

The proof of the following result is also similar and is omitted.

Theorem 3.4. Let A =
(

B C
D X

)
, H =

(
E F
G Y

)
and consider the statements:

(i) Y = O, BEB = B, GC = I, DF = I, BF = O, GB = O.
(ii) EB + FD is hermitian.
(iii) BE + CG is hermitian.
(iv) EBE + FDE = E (v) EBE + ECG = E.
Then
(a) ψ(A) = ψ(B) and H ∈ A{1, 2, 3} if and only if (i), (ii), (iv) hold, DEC =
−X, EC = FDEC and DEB = O.
(b) ψ(A) = ψ(B) and H ∈ A{1, 2, 4} if and only if (i), (iii), (v) hold, DEC = −X,
DE = DECG and BEC = O.
(c) ψ(A) = ψ(B) and H = A† if and only if (i)-(v) hold, DE + XG = O and
EC + FX = O.

The two previous results will be used in the proof of the next result.

Theorem 3.5. let A =
(

B C
D X

)
. Then the following conditions are equivalent:

(1) ψ(A) = ψ(B) and
(

B C
D X

)†
=

(
B† D†

C† X†

)
.

(2) ψ(A) = ψ(B) and
(

B† D†

C† X†

)
is a g-inverse of A.

(3) X = O, C†C = I, DD† = I, BD† = O, C†B = O.
(4) X = O, C†C = I, DD† = I, BD∗ = O, C∗B = O.

(5) ψ(A) = ψ(B) and
(

E D†

C† X†

)
is a g-inverse of A for some E ∈ B{1,2}.

(6) ψ(A) = ψ(B) and
(

E D†

C† X†

)
is a g-inverse of A for some E.

(7) ψ(A) = ψ(B) and
(

B C
D X

)†
=

(
B† F
G Y

)
for some matrices F, G, Y.

(8) ψ(A) = ψ(B) and
(

B† F
C† Y

)
is a {1, 2, 3}-inverse of A for some F, Y.

(9) ψ(A) = ψ(B) and
(

B† D†

G Y

)
is a {1, 2, 4}-inverse of A for some G, Y.

Proof. Clearly, (1) ⇒ (2).
(2 ⇒ (3): This follows from Theorem 3.3.
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(3) ⇔ (4): Since BD† = O and C†B = O are equivalent to BD∗ = O and
C∗B = O respectively, we have this implication.

(3) ⇒ (1): Note that BD† = O and C†B = O imply DB† = O and B†C = O.

Then it is easy to verify that
(

B† D†

C† X†

)
is A† thus (1) holds.

Clearly, (1) ⇒ (5) ⇒ (6).

(6) ⇒ (3): By Theorem 3.3, if
(

E D†

C† X†

)
is a g-inverse of A for some matrix

E, then we have X† = O, C†C = I, DD† = I, BD† = O and C†B = O. Note that
X† = O ⇔ X = O, thus (3) holds.

(6) ⇒ (1): This follows from (6) ⇒ (3) and (3) ⇒ (1).
Obviously, (1) ⇒ (7), (1) ⇒ (8) and (1) ⇒ (9).
(7) ⇒ (1): By Theorem 3.3, we have X = O, Y = O, GC = I, DF = I, BF = O

and GB = O. Clearly, G ∈ C{1, 2, 4} and F ∈ D{1, 2, 3}. Using the hermitian

property of the matrices
(

B C
D X

)
,

(
B† F
G Y

)
,

(
B† F
G Y

) (
B C
D X

)
, BB† and

B†B, it is easy to conclude that CG and FD are also hermitian. Thus F = D† and
G = C†. Note that Y = X† = O and (1) is proved.

Similarly, using Theorem 3.4 we can show (8) ⇒ (1) and (9) ⇒ (1) and the proof
is complete.

4. Obtaining any g-inverse by bordering. By Theorem 3.3 if A =
(

B C
D X

)

with ψ(A) = ψ(B) and if H =
(

E F
G O

)
is a g-inverse of A, then E is a g-inverse of B

which also satisfies DEC = −X, BEC = O and DEB = O. Such an E, hereafter, will
be denoted by E(C,D,X). Note that E(C,D,X) is not uniquely determined by C, D, X,
since A− is not unique. In this section we will investigate the converse problem, that

is: for a given g-inverse E of B, how to construct C, D and X so that H =
(

E F
G O

)

is a g-inverse of A =
(

B C
D X

)
with ψ(A) = ψ(B) for some matrices of proper sizes.

We first state some well-known lemmas to be used later; see, for example, [4], [6].
Lemma 4.1. The following three statements are equivalent: (i) E is a g-inverse

of B, (ii) BE is an idempotent matrix and rank(BE) = rank(B), and (iii) EB is an
idempotent matrix and rank(EB) = rank(B).

Lemma 4.2. E is a {1, 2}-inverse of B if and only if E is a g-inverse of B and
rank(E) = rank(B).

Lemma 4.3. Let H = UV be a rank factorization of a square matrix. Then the
following three statements are equivalent: (i) H is an idempotent matrix, (ii) I − H
is an idempotent matrix, and (iii) V U = I.

Theorem 4.4. (i) Let E be a g-inverse of the p1 × q1 matrix B with rank(B) =
r. Then there exist C, D, and X such that E = E(C,D,X), where rank(C) ≤ p1 −
r and rank(D) ≤ q1 − r.
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(ii) If E = E(C,D,X), then there exist matrices U , V , Ū and V̄ such that

I − BE = (C U )
(

G
V

)
and I − EB = (F Ū )

(
D
V̄

)

are the rank factorizations of I − BE and I − EB respectively.
(iii) rank(E(C,D,X)) = rank(B) + rank(R), where

R =
( −X DEU

V̄ EC V̄ EU

)
(4.1)

for some matrices U and V̄ as in (ii).
Proof. For a given g-inverse E of B, we use rank factorizations of I − BE and

I−EB, by which there exist C, D, X, F, G, U, Ū , V, and V̄ satisfying the following
identities

I − BE = (C U )
(

G
V

)
,(4.2)

I − EB = (F Ū )
(

D
V̄

)
,(4.3)

X = −DEC.

To prove (i), we only need to show that these C, D, X, F and G along with
Y = O satisfy the conditions (i),(ii) and (iii) in Theorem 3.3. In fact, from (4.2) and

(4.3), we have, in view of Lemma 4.3, that
(

G
V

)
(C U ) = I and

(
D
V̄

)
(F Ū ) = I,

implying

GC = I and DF = I.

Again from (4.2) and (4.3), we have, by (I − BE)B = O and B(I − EB) = O,
(

G
V

)
B = O and B (F Ū ) = O,(4.4)

and by BE(I − BE) = O and (I − EB)EB = O,

BE (C U ) = O and
(

D
V̄

)
EB = O.(4.5)

Now by (4.4), GB = O and BF = O, and by (4.5), BEC = O and DEB = O.
(ii) Let E = E(C,D,X). By Theorem 3.3, BEC = O, which means R(C) ⊆

N(BE) = R(I − BE). Note that C is of full column rank under the condition
ψ(A) = ψ(B). Thus there exists a matrix U so that R((C U )) = R(I − BE)
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and the matrix (C U ) is of full column rank. Hence, there exists a matrix of full

row rank which can be partitioned as
(

G
V

)
such that

I − BE = (C U )
(

G
V

)
.

On the other hand, DEB = O implies N(I − EB) = R(EB) ⊆ N(D). So there

exists a matrix V̄ such that
(

D
V̄

)
is of full row rank and

N(I − EB) = N(
(

D
V̄

)
).

From this we conclude that there exists a matrix of full column rank which can be
partitioned as (F Ū ) such that

I − EB = (F Ū )
(

D
V̄

)
.

Now we prove (iii). If E = E(C,D,X), then from the proof of (ii) there exist
matrices U, V, Ū and V̄ such that (4.2) and (4.3) hold. Hence BE (C U ) = O and(

D
V̄

)
EB = O. Therefore we have

⎛
⎝ B

D
V̄

⎞
⎠E (B C U ) =

⎛
⎝ B O O

O DEC DEU
O V̄ EC V̄ EU

⎞
⎠

=
(

B O
O R

)
,

where R =
(

D
V̄

)
E (C U ) .

On the other hand,

(E F Ū )
(

B O
O R

) ⎛
⎝ E

G
V

⎞
⎠ = EBE + (F Ū )R

(
G
V

)

= EBE + (I − EB)E(I − BE)
= E.

Thus we have rank(E(C,D,R)) = rank(B) + rank(R).
Theorem 4.4(i) and its proof show that for a given matrix B and its g-inverse

E we can find matrices C of full column rank with R(C) ⊆ N(BE) and D of full
row rank with R(EB) ⊆ N(D), as well as X = −DEC, F and G such that matrix
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(

E F
G O

)
is a g-inverse of A =

(
B C
D O

)
with ψ(A) = ψ(B). Furthermore, we have

the following.
Corollary 4.5. Let B and its g-inverse E be given. Then the matrix A =(

B C
D X

)
satisfies ψ(A) = ψ(B) and has a g-inverse of the form

(
E F
G O

)
if and

only if C is of full column rank with R(C) ⊆ N(BE) and D of full row rank with
R(EB) ⊆ N(D). In this case, X = −DEC, F ∈ D{1, 3}, G ∈ C{1, 4}, BF = O and
GB = O.

Proof. Necessity: This follows from Theorem 3.3.
Sufficiency: The proof of sufficiency is similar to that of Theorem 4.4(i), (ii).
As a special case we recover the following known result.
Corollary 4.6. [11, Theorem 1] Let E be a g-inverse of B. Then for any

matrix C of full column rank with R(C) = N(BE) and any matrix D of full row rank
with N(D) = R(EB), the matrix

A =
(

B C
D −DEC

)

is nonsingular and

A−1 =
(

E F
G O

)
,

where F ∈ D{1, 3}, BF = O, G ∈ C{1, 4} and GB = O.

5. Moore-Penrose inverse and group inverse by bordering. For a given g-
inverse E of B, Corollary 4.5 shows that C and D can be chosen with the conditions

R(C) ⊆ N(BE) and R(D∗) ⊆ N((EB)∗) so that A =
(

B C
D −DEC

)
satisfies

ψ(A) = ψ(B) and has a g-inverse of the form
(

E F
G O

)
. Further, Corollary 4.6

provides an approach to border the matrix B into a nonsingular matrix such that
in its inverse, the block matrix on the upper left corner is E. We now show how to
border the matrix if E is the Moore-Penrose inverse or the group inverse of B.

Theorem 5.1. Let B be given. Then the matrix A =
(

B C
D X

)
satisfies ψ(A) =

ψ(B) and has a g-inverse of the form
(

B† F
G O

)
if and only if C has full column

rank with R(C) ⊆ N(B∗) and D has full row rank with R(D∗) ⊆ N(B). In this case,
X = −DB†C = O and

A† =
(

B† D†

C† O

)
.

Proof. Note that N(BB†) = N(B∗) and N((EB)∗) = N(B†) = N(B), and the
necessity and sufficiency follow from Corollary 4.5.
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It is easy to verify that
(

B† D†

C† O

)
is a g-inverse of A. Thus by Corollary 3.5(2),

we have

A† =
(

B† D†

C† O

)
,

where X = −DB†C = O.
Combining Corollary 4.6 with Theorem 5.1, we have
Corollary 5.2. [5] Let B be a p1 × q1 matrix with rank(B) = r. Suppose the

columns of C ∈ C
p1×(p1−r)
p1−r are a basis of N(B∗) and the columns of D∗ ∈ C

q1×(q1−r)
q1−r

are a basis for N(B). Then the matrix

A =
(

B C
D O

)

is nonsingular and its inverse is

A−1 =
(

B† D†

C† O

)
.

If B is square and has group inverse, we can get a bordering
(

B ∗
∗ O

)
of B

such that it has a g-inverse in the form
(

B� ∗
∗ O

)
. Part (ii) of the following result

is known. We generalize it to any bordering, not necessarily nonsingular, in part (i).
Theorem 5.3. Let B be n × n and with index 1. Then

(i) there exist matrices C of full column rank with R(C) ⊆ N(B) and D of full row

rank with R(B) ⊆ N(D) which satisfy DC = I such that
(

B� C
D O

)
is a g-inverse

of
(

B C
D O

)
with ψ(A) = ψ(B);

(ii) ([8], [14], [17]) for any matrix C of full column rank with R(C) = N(B) and any
matrix D of full row rank with R(B) = N(D), the matrix

A =
(

B C
D O

)

is nonsingular and

A−1 =
(

B� C(DC)−1

(DC)−1D O

)
.

Proof. (i): Consider the rank factorization of I − BB� given by

I − BB� = (C U )
(

D
V

)
.
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Note that BB� = B�B, and we have

I − B�B = (C U )
(

D
V

)
.

Obviously R(C) ⊆ N(A) and R(B) ⊆ N(D). As in the proof of Theorem 4.4(i),

we conclude that
(

B� C
D O

)
is a g-inverse of

(
B C
D O

)
with ψ(A) = ψ(B), since

X = −DB�C = O.

(ii): By Corollary 4.6, the nonsingularity of the matrix
(

B� C
D O

)
under the

conditions R(C) = N(A) and R(B) = N(D) can be easily seen. We now prove that
for any matrix C of full column rank with R(C) = N(B) and any matrix D of full
row rank with R(B) = N(D), DC is nonsingular.

In fact, if DCx = O, then Cx ∈ R(C) and Cx ∈ N(D). Since R(C) = N(B),
N(D) = R(B) and R(B) ∩ N(B) = {0}, we have Cx = O and therefore x = 0. Thus
DC is nonsingular.

By Lemma 4.3, C(DC)−1D is an idempotent matrix and

I − BB� = I − B�B = C(DC)−1D

is a rank factorization. From Corollary 4.6, we know that(
B C(DC)−1

D O

)
and

(
B C

(DC)−1D O

)

are nonsingular and in fact
(

B C(DC)−1

D O

)−1

=
(

B� C(DC)−1

D O

)
.

Note that (
B C(DC)−1

D O

)
=

(
B C
D O

) (
I O
O (DC)−1

)
.

The result follows immediately from the two equations preceding the one above.
Remark 5.4. Theorem 5.3(ii) can be used to compute the group inverse of the

matrix (I −T )� which plays an important role in the theory of Markov chains, where
T is the transition matrix of a finite Markov chain. For an n-state ergodic chain, it is
well-known that the transition matrix T is irreducible and that rank(I −T ) = n−1
[6, Theorem 8.2.1]. Hence by Theorem 5.3(ii) we can compute the group inverse
(I − T )� of I − T by a bordered matrix.

Let c be a right eigenvector of T and d a left eigenvector, that is c and d satisfy

Tc = c and d∗T = d∗, respectively. Then the bordered matrix
(

I − T c
d∗ 0

)
is

nonsingular and
(

I − T c
d∗ 0

)−1

=
(

(I − T )� c
d∗c

d
d∗c o

)
.
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Thus the group inverse (I − T )� can be obtained by computing the inverse of a
nonsingular matrix.
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