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Abstract. Web information retrieval is significantly more challenging than traditional well-controlled,
small document collection information retrieval. One main difference between traditional
information retrieval and Web information retrieval is the Web’s hyperlink structure. This
structure has been exploited by several of today’s leading Web search engines, particularly
Google and Teoma. In this survey paper, we focus on Web information retrieval meth-
ods that use eigenvector computations, presenting the three popular methods of HITS,
PageRank, and SALSA.
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1. Introduction. The Information Age ushers in unparalleled possibilities and
convenience to information retrieval (IR) users along with unparalleled challenges for
IR researchers and developers. For example, many prognosticators predict no halt
to the information explosion in the near future. Yet, while users theoretically have a
vast amount of information at their fingertips, the accuracy of some IR systems leaves
some users frustrated and IR researchers forever working to improve their systems.
We begin this survey of modern linear algebra-based IR methods from a historical
perspective.

There are various IR methods in use today, ranging from Boolean to probabilistic
to vector space models. Of these, vector space models incorporate the most linear
algebra. The prevailing vector space method for small document collections is latent
semantic indexing (LSI) [24]. The 1999 SIAM Review article by Berry, Drmač, and
Jessup gives an excellent introduction and survey of vector space models, especially
LSI [3]. LSI uses the singular value decomposition (SVD) of the term-by-document
matrix to capture latent semantic associations. LSI became famous for its ability
to effectively handle generally troublesome query terms involving polysems and syn-
onyms. The SVD enables LSI methods to inherently (and almost magically) cluster
documents and terms into concepts. For example, the synonyms car, automobile,
and vehicle may be grouped into the same cluster, while the polysem bank may be
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136 AMY N. LANGVILLE AND CARL D. MEYER

divided according to its various meanings (financial institution, steep slope, billiards
shot, etc.). However, the discriminating power of LSI, derived from the SVD, is
the reason for its limitation to smaller document collections. The computation and
storage of the SVD of the term-by-document matrix is costly. Consider that this
term-by-document matrix has as many columns as there are documents in a particu-
lar collection. A huge collection like the World Wide Web’s webpages is dramatically
out of LSI’s scope.

It is not just the enormity of the Web that leaves traditional well-tested and
successful methods, like LSI, behind, but it is also the Web’s other peculiarities
that make it an especially challenging document collection to analyze. The docu-
ments on the Web are not subjected to an editorial review process. Therefore, the
Web contains redundant documents, broken links, and some very poor quality doc-
uments. The Web also is subject to frequent updates as pages are modified and/or
added to or deleted from the Web on an almost continual basis. The Web’s volatil-
ity leaves IR researchers with two choices: either incorporate updates and down-
dates on a frequent, regular basis or make updates infrequently, trading accuracy
for simplicity. The Web is also an interesting document collection in that some of
its users, aiming to exploit the mercantile potential of the Web, intentionally try to
deceive IR systems [43]. For example, there are papers instructing webpage authors
on the methods for “increasing one’s ranking” on various IR systems [55]. Ideally,
an IR system should be impervious to such spamming. The tendencies of Web users
also present additional challenges to Web IR systems. Web users generally input
very short queries, rarely make use of feedback to revise the search, seldom use
any advanced features of the system, and almost always view only the top 10–20
retrieved documents [4, 31]. Such user tendencies put high priority on the speed
and accuracy of the IR system. The final feature, and most important for this pa-
per, is the Web’s unique hyperlink structure. This inherent structure provides extra
and, as will become clear later, very valuable information that can be exploited to
improve IR methods.

This hyperlink structure is exploited by three of the most frequently cited Web
IR methods: HITS (Hypertext Induced Topic Search) [37], PageRank [13, 14], and
SALSA [42]. HITS was developed in 1997 by Jon Kleinberg. Soon after, Sergey
Brin and Larry Page developed their now famous PageRank method. SALSA was
developed in 2000 in reaction to the pros and cons of HITS and PageRank.

This paper is organized as follows. Sections 2–4 cover HITS and PageRank and
their connections, followed by SALSA in section 5. Other Web IR methods are briefly
overviewed in section 6, and section 7 contains predictions for the future of Web IR.

2. TwoTheses for Exploiting theHyperlink Structure of theWeb. Each page/
document on the Web is represented as a node in a very large graph. The directed
arcs connecting these nodes represent the hyperlinks between the documents. The
graph of a sample Web is depicted in Figure 1.

The HITS IR method defines authorities and hubs. An authority is a document
with several inlinks, while a hub has several outlinks. See Figure 2.

The HITS thesis is that good hubs point to good authorities and good authorities
are pointed to by good hubs. HITS assigns both a hub score and an authority score
to each webpage. For example, the higher the authority score of a particular page,
the more authoritative that document is.

On the other hand, PageRank uses the hyperlink structure of the Web to view
inlinks into a page as a recommendation of that page from the author of the inlinking
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Fig. 1 Hyperlink structure of a 6-node sample Web.

Auth
Hub

Fig. 2 An authority node and a hub node.

page. However, inlinks from good pages (highly revered authors) should carry much
more weight than inlinks from marginal pages. Each webpage can be assigned an
appropriate PageRank score, which measures the importance of that page. Figure 3
depicts the PageRank thesis. The bold lines show the extra weight given to links from
important pages.

These are two very similar and related, yet distinct, ideas for ranking the use-
fulness of webpages. In the next few sections, we analyze these two IR methods in
turn.

3. HITS. We repeat the HITS thesis: good authorities are pointed to by good
hubs and good hubs point to good authorities. Page i has both an authority score xi
and a hub score yi. Let E be the set of all directed edges in the Web graph and let eij
represent the directed edge from node i to node j. Given that each page has somehow
been assigned an initial authority score x(0)

i and hub score y(0)
i , HITS successively
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138 AMY N. LANGVILLE AND CARL D. MEYER

Weak
page

Good 
page

Fig. 3 The PageRank thesis. (The bold lines show the extra weight given to links from important
pages.)

refines these scores by computing

x
(k)
i =

∑
j:eji∈E

y
(k−1)
j and y

(k)
i =

∑
j:eij∈E

x
(k)
j for k = 1, 2, 3, . . . .(3.1)

These equations can be written in matrix form with the help of the adjacency
matrix L of the directed Web graph, where

Lij =
{
1 if there exists an edge from node i to node j,
0 otherwise.

For example, consider the small graph in Figure 4 with corresponding adjacency
matrix L:

L =




d1 d2 d3 d4

d1 0 1 1 0
d2 1 0 1 0
d3 0 1 0 1
d4 0 1 0 0


.

In matrix notation, the equations in (3.1) assume the form

x(k) = LTy(k−1) and y(k) = Lx(k).

This leads to the following iterative algorithm for computing the ultimate author-
ity and hub scores x and y:

1. Initialize: y(0) = e, where e is a column vector of all ones. Other positive
starting vectors may be used. (See section 3.2.)

2. Until convergence, do

x(k) = LTy(k−1),

y(k) = Lx(k),

k = k + 1,
normalize x(k) and y(k) (see section 3.2).
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EIGENVECTOR METHODS FOR WEB INFORMATION RETRIEVAL 139
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Fig. 4 Node-link graph for small 4-node Web.

Note that in step 2 of this algorithm, the two equations

x(k) = LTy(k−1),

y(k) = Lx(k)

can be simplified by substitution to

x(k) = LTLx(k−1),

y(k) = LLTy(k−1).

These two new equations define the iterative power method for computing the dom-
inant eigenvector for the matrices LTL and LLT . Since the matrix LTL determines
the authority scores, it is called the authority matrix and LLT is known as the hub
matrix. LTL and LLT are symmetric positive semidefinite matrices. Computing the
authority vector x and the hub vector y can be viewed as finding dominant right-hand
eigenvectors of LTL and LLT , respectively.

3.1. HITS Implementation. The implementation of HITS involves two main
steps. First, a neighborhood graph N related to the query terms is built. Second, the
authority and hub scores for each document in N are computed and two ranked lists
of the most authoritative documents and most “hubby” documents are presented to
the IR user. Since the second step was described in the previous section, we focus on
the first step. All documents containing references to the query terms are put into
the neighborhood graph N . There are various ways to determine these documents.
One simple method consults the inverted term-document file. This file might look
like:

• aardvark: term 1 - doc 3, doc 117, doc 3961
...

• aztec: term 10 - doc 15, doc 3, doc 101, doc 19, doc 1199, doc 673
• baby: term 11 - doc 56, doc 94, doc 31, doc 3

...
• zymurgy: term m - doc 223

For each term, the documents mentioning that term are stored in list form. Thus,
a query on terms 10 and 11 would pull documents 15, 3, 101, 19, 1199, 673, 56,
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140 AMY N. LANGVILLE AND CARL D. MEYER

94, and 31 into N . Next, the graph around the subset of nodes in N is expanded
by adding nodes that either point to nodes in N or are pointed to by nodes in N .
This expansion allows some latent semantic associations to be made. That is, for the
query term car, with the expansion about documents containing car, some documents
containing automobile may now be added to N , hopefully resolving the problem of
synonyms. However, the set N can become very large due to the expansion process;
a document containing the query terms may possess a huge indegree or outdegree.
Thus, in practice, the maximum number of inlinking nodes and outlinking nodes to
add for a particular node in N is fixed, say, at 100. For example, only the first 100
outlinking nodes of a document containing a query term are added to N . The process
of building the neighborhood graph is strongly related to building level sets in infor-
mation filtering, which reduces a sparse matrix to a much smaller more query-relevant
matrix [63].

Once the set N is built, the adjacency matrix L corresponding to the nodes in
N is formed. The order of L is much smaller than the total number of nodes/documents
on the Web. Therefore, computing authority and hub scores using the dominant
eigenvectors of LTL and LLT incurs a small cost, small in comparison to com-
puting authority and hub scores when all documents on the Web are placed
in N .

An additional cost reduction exists. Only one document eigenvector needs to be
computed: that of either LTL or LLT , but not both. For example, the authority
vector x can be obtained by computing the dominant eigenvector of LTL; then the
hub vector y can be obtained from the equation y = Lx. A similar statement applies
if the hub vector is computed first from the eigenvector problem.

3.2. HITS Convergence. The iterative algorithm for computing HITS vectors
is actually the power method applied to LTL and LLT . For a diagonalizable matrix
Bn×n whose distinct eigenvalues are {λ1, λ2, . . . , λk} such that |λ1| > |λ2| ≥ |λ3| ≥
· · · ≥ |λk|, the power method takes an initial vector x(0) and iteratively computes

x(k) = B x(k−1), x(k) ←− x(k)

m(x(k))
,

where m(x(k)) is a normalizing scalar derived from x(k). For example, it is common to
takem(x(k)) to be the (signed) component of maximal magnitude (use the first if there
are more than one), in which case m(x(k)) converges to the dominant eigenvalue λ1,
and x(k) converges to an associated normalized eigenvector [46]. If only a dominant
eigenvector is needed (but not λ1), then a normalization such as m(x(k)) = ‖x(k)‖
can be used. (If λ1 < 0, then m(x(k)) = ‖x(k)‖ can’t converge to λ1, but x(k) still
converges to a normalized eigenvector associated with λ1.)

The matrices LTL and LLT are symmetric, positive semidefinite, and nonnega-
tive, so their distinct eigenvalues {λ1, λ2, . . . , λk} are necessarily real and nonnegative
with λ1 > λ2 > · · · > λk ≥ 0. In other words, it is not possible to have multi-
ple eigenvalues on the spectral circle. Consequently, the HITS specialization of the
power method avoids most problematic convergence issues—HITS with normaliza-
tion always converges. However, there can be a problem with the uniqueness of the
limiting authority and hub vectors. While λ1 > λ2, the structure of L might allow
λ1 to be a repeated root of the characteristic polynomial, in which case the associ-
ated eigenspace would be multidimensional. This means that the different limiting
authority (and hub) vectors can be produced by different choices of the initial vector.
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EIGENVECTOR METHODS FOR WEB INFORMATION RETRIEVAL 141

A simple example from [27] demonstrates this problem. In this example,

L =



0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0


 and LTL =



2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 .

The authority matrix LTL (and the hub matrix LLT ) has two distinct eigenvalues,
λ1 = 2 and λ2 = 0, that are each repeated twice. For x(0) = ( 1/4 1/4 1/4 1/4 )T ,
the power method (with normalization by the 1-norm) converges to x(∞) =
( 1/3 1/3 1/3 0 )T . Yet for x(0) = ( 1/4 1/8 1/8 1/2 )T , the power method
converges to x(∞) = ( 1/2 1/4 1/4 0 )T . At the heart of this uniqueness problem
is the issue of reducibility.

A square matrix B is said to be reducible if there exists a permutation matrix Q
such that

QTBQ =
(

X Y
0 Z

)
, where X and Z are both square.

Otherwise, the matrix is irreducible. The Perron–Frobenius theorem [46] ensures that
an irreducible nonnegative matrix possesses a unique normalized positive dominant
eigenvector, called the Perron vector. Consequently, it’s the reducibility of LTL that
causes the HITS algorithm to converge to nonunique solutions. PageRank encounters
the same uniqueness problem, but the Google founders suggested a way to cheat and
alter the matrix, forcing irreducibility and hence guaranteeing existence and unique-
ness of the ranking vector—see section 4.3. A modification similar to the Google trick
can also be applied to HITS.

One final caveat regarding the power method concerns the starting vector x(0).
In general, regardless of whether the dominant eigenvalue λ1 of the iteration matrix
B is simple or repeated, convergence to a nonzero vector depends on the initial vector
x(0) not being in the range of (B− λ1I). If x(0) is randomly generated, then almost
certainly this condition will hold, so in practice this is rarely an issue [33]. Farahat
et al. [27] have developed a modification to HITS, called exponentiated input to HITS,
that remedies some of the convergence issues mentioned above.

3.3. HITS Example. We present a very small example to demonstrate the im-
plementation of the HITS algorithm. First, a user presents query terms to the HITS
IR system. There are several schemes that can be used to determine which nodes
“contain” query terms. For instance, one could take nodes using at least one query
term. Or to create a smaller sparse graph, one could take only nodes using all query
terms. For our example, suppose the subset of nodes containing the query terms is
{1, 6}. Thus, documents 1 and 6 contain the query terms. Next, we build the neigh-
borhood graph about nodes 1 and 6. Suppose this produces graph N , shown in Figure
5. From N , the adjacency matrix L is formed:

L =




1 2 3 5 6 10
1 0 0 1 0 1 0
2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1 1 0 0
10 0 0 0 0 1 0



.
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142 AMY N. LANGVILLE AND CARL D. MEYER

1
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3

2 6

Fig. 5 N : neighborhood graph about documents 1 and 6.

The authority and hub matrices are, respectively,

LTL =




1 2 3 5 6 10
1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 2 1 1 0
5 0 0 1 1 0 0
6 0 0 1 0 3 0
10 0 0 0 0 0 0



, LLT =




1 2 3 5 6 10
1 2 0 1 0 1 1
2 0 1 0 0 0 0
3 1 0 1 0 0 1
5 0 0 0 0 0 0
6 1 0 0 0 2 0
10 1 0 1 0 0 1



.

The normalized principal eigenvectors with the authority scores x and hub scores y
are

xT = ( 0 0 .3660 .1340 .5 0 ) ,
yT = ( .3660 0 .2113 0 .2113 .2113 ) .

For the much larger matrices that occur in practice, the existence of identical values
in the dominant eigenvectors is not likely. Nevertheless, ties may occur and can
be broken by any tie-breaking strategy. Using a “first come, first serve” tie-breaking
strategy, the authority and hub scores are sorted in decreasing order and the document
ID numbers are presented:

Auth. ranking = ( 6 3 5 1 2 10 ) ,
Hub ranking = ( 1 3 6 10 2 5 ) .

This means that document 6 is the most authoritative document for the query, while
document 1 is the best hub for this query.

3.4. Strengths andWeaknesses of HITS. One advantage of the HITS algorithm
for IR is its dual rankings. HITS presents two ranked lists to the user: one with
the most authoritative documents related to the query and the other with the most
“hubby” documents. A user may be more interested in one ranked list than another
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EIGENVECTOR METHODS FOR WEB INFORMATION RETRIEVAL 143

depending on the application. HITS also casts the overall Web IR problem as a
small problem, finding the dominant eigenvectors of small matrices. The size of these
matrices is very small relative to the total number of documents on the Web.

However, there are some clear disadvantages to the HITS IR algorithm. Most
troublesome is HITS’ query dependence. At query time, a neighborhood graph must
be built and at least one matrix eigenvector problem solved. This must be done for
each query. HITS’ susceptibility to spamming creates a second strong disadvantage.
By adding links to and from his webpage, a user can slightly influence the authority
and hub scores of his page. A slight change in these scores might be enough to move
that webpage a few notches up the ranked lists returned to the IR user. With banner
advertisements and financial opportunities, webpage owners have clear incentive to
improve their standings in the ranked lists. This is especially important as IR users
generally view only the top 20 pages returned in a ranked list. From the perspective
of a webpage owner, adding outlinks from a page is much easier than adding inlinks
to that page. So influencing one’s hub score is not difficult. Yet since hub scores
and authority scores share an interdependence and are computed interdependently,
an authority score will increase as a hub score increases. Also, since the neighborhood
graph is small in comparison to the entire Web, local changes to the link structure will
appear more drastic. However, Bharat and Henzinger have proposed a modification
to HITS that mitigates the problem of spam by using an L1 normalization step [5].

A final disadvantage of HITS is the problem of topic drift. In building the neigh-
borhood graph N for a query, it is possible that a very authoritative yet off-topic
document be linked to a document containing the query terms. This very author-
itative document can carry so much weight that it and its neighboring documents
dominate the relevant ranked list returned to the user, skewing the results towards
off-topic documents. Bharat and Henzinger suggest a solution to the problem of topic
drift, weighting the authority and hub scores of the nodes in N by a measure of rele-
vancy to the query [5]. In fact, to measure relevance of a node in N (i.e., a document)
to the query, they use the same cosine similarity measure that is often used by vector
space methods such as LSI [3, 24].

3.5. HITS’ Relationship to Bibliometrics. The HITS IR algorithm has strong
connections to the bibliometrics research. Bibliometrics is the study of written doc-
uments and their citation structure. Such research uses the citation structure of a
body of documents to produce numerical measures of the importance and impact of
papers. Ding et al. have noted the underlying connection between HITS and two
common bibliometrics concepts, cocitation and coreference [23, 22].

In bibliometrics, cocitation occurs when two documents are both cited by the same
third document. Coreference occurs when two documents both refer to the same third
document. In IR, cocitation occurs when two nodes share a common inlinking node,
while coreference means two nodes share a common outlinking node. Ding et al. have
shown that the authority matrix LTL of HITS has a direct relationship to the concept
of cocitation, while the hub matrix LLT is related to coreference [22, 23]. Suppose
the small hyperlink graph of Figure 4 is studied again. The adjacency matrix is

L =




d1 d2 d3 d4

d1 0 1 1 0
d2 1 0 1 0
d3 0 1 0 1
d4 0 1 0 0


.D
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144 AMY N. LANGVILLE AND CARL D. MEYER

Then the authority and hub matrices are

LTL =



1 0 1 0
0 3 1 1
1 1 2 0
0 1 0 1


 = Din +Ccit,

LLT =



2 1 1 1
1 2 0 0
1 0 2 1
1 0 1 1


 = Dout +Cref .

Ding et al. [22, 23] show that LTL = Din + Ccit, where Din is a diagonal matrix
with the indegree of each node along the diagonal and Ccit is the cocitation matrix.
For example, the (3, 3)-element of LTL means that node 3 has an indegree of 2. The
(1, 3)-element of LTL means that nodes 1 and 3 share only 1 common inlinking node:
node 2, as is apparent from Figure 4. The (4, 3)-element of LTL implies that nodes
3 and 4 do not share a common inlinking node, again, as is apparent from Figure
4. Similarly, the hub matrix is actually Dout + Cref , where Dout is the diagonal
matrix of outdegrees and Cref is the coreference matrix. The (1, 2)-element of LLT

means that nodes 1 and 2 share a common outlink node, node 3. The (4, 2)-element
implies that nodes 4 and 2 do not share a common outlink node. Ding et al. use these
relationships between authority and cocitation and hubs and coreference to claim that
simple inlink ranking provides a decent approximation to the HITS authority score
and simple outlink ranking provides a decent approximation to hub ranking [23, 22].

We close this section by noting that HITS has been incorporated into the CLEVER
project at IBM Almaden Research Center [32]. HITS is also part of the underlying
ranking technology used by the search engine Teoma.

4. PageRank. In 1998 (the same year that HITS was born), Google founders
Larry Page and Sergey Brin formulated their PageRank concept and made it the
basis for their search engine [14]. As stated on the Google website, “The heart of
our software is PageRankTM . . . [it] provides the basis for all of our web search tools.”
By avoiding the inherent weaknesses of HITS, PageRank has been responsible for
elevating Google to the position of the world’s preeminent search engine.

After webpages retrieved by robot crawlers are indexed and cataloged, PageRank
values are assigned prior to query time according to perceived importance so that
at query time a ranked list of pages related to the query terms can be presented
to the user almost instantaneously. PageRank importance is determined by “votes”
in the form of links from other pages on the Web. The idea is that votes (links)
from important sites should carry more weight than votes (links) from less important
sites, and the significance of a vote (link) from any source should be tempered (or
scaled) by the number of sites the source is voting for (linking to). These notions are
encapsulated by defining the rank r(P ) of a given page P to be

r(P ) =
∑
Q∈BP

r(Q)
|Q| , where

BP = {all pages pointing to P},
|Q| = number of out links from Q.

This is a recursive definition, so computation necessarily requires iteration. If there are
n pages, P1, P2, . . . , Pn, arbitrarily assign each page an initial ranking, say, r0(Pi) =
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EIGENVECTOR METHODS FOR WEB INFORMATION RETRIEVAL 145

1/n, then successively refine the ranking by computing

rj(Pi) =
∑
Q∈BPi

rj−1(Q)
|Q| for j = 1, 2, 3, . . . .

This is accomplished by setting πTj =
(
rj(P1), rj(P2), . . . , rj(Pn)

)
and iteratively

computing

πTj = π
T
j−1P, where P is the matrix with pij =

{
1/|Pi| if Pi links to Pj ,

0 otherwise.
(4.1)

The notation |Pi| is the number of outlinks from page Pi. Again, this is the power
method. If the limit exists, the PageRank vector is defined to be πT = limj→∞ πTj ,
and the ith component πi is the PageRank of Pi. This is the raw idea, but for both
theoretical and practical reasons (e.g., ensuring convergence, customizing rankings,
and adjusting convergence rates), the matrix P must be adjusted—how adjustments
are made is described in section 4.3.

4.1. Markov Model of the Web. The “raw” Google matrix P is nonnegative
with row sums equal to one or zero. Zero row sums correspond to pages that have no
outlinks—such pages are sometimes referred to as dangling nodes. If we are willing
to assume for a moment that there are no dangling nodes or that they are accounted
for by artificially adding appropriate links to make all row sums equal one, then P
is a row stochastic matrix, which in turn means that the PageRank iteration (4.1)
represents the evolution of a Markov chain [46, Chap. 8]. More precisely, this Markov
chain is a random walk on the graph defined by the link structure of the webpages in
Google’s database.

For example, consider the hyperlink structure of Tiny Web consisting of six web-
pages linked as in Figure 1. The Markov model represents Tiny Web’s directed graph
as a square transition probability matrix P whose element pij is the probability of
moving from state i (page i) to state j (page j) in one step (click). For example,
assume that, starting from any node (webpage), it is equally likely to follow any of
the outgoing links to arrive at another node. Thus,

P =




0 .5 .5 0 0 0
.5 0 .5 0 0 0
0 .5 0 .5 0 0
0 0 0 0 .5 .5
0 0 .5 .5 0 0
0 0 0 0 1 0



,

which is Tiny Web’s raw (unadjusted) “Google matrix” described in (4.1). However,
other suitable probability distributions may be used across the rows. For example, if
Web usage logs show that users accessing page 2 are twice as likely to jump to page
1 as they are to jump to page 3, then pT2 (the second row of P) might alternately be
defined as

pT2 = ( .6667 0 .3333 0 0 0 ) .

Other ideas for filling in the entries of P have been suggested [62, 53].
In general, the dominant eigenvalue for every stochastic matrix P is λ = 1.

Consequently, if the PageRank iteration (4.1) converges, it converges to the normalized
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146 AMY N. LANGVILLE AND CARL D. MEYER

left-hand eigenvector πT satisfying

πT = πTP, πTe = 1 (e is a column of ones),(4.2)

which is the stationary (or steady-state) distribution of the Markov chain [46, Chap.
8]. This is why Google intuitively characterizes the PageRank value of each site as
the long-run proportion of time spent at that site by a Web surfer eternally clicking
on links at random.1

4.2. Computing PageRank. Since the computation of PageRank boils down to
solving either the eigenvector problem (4.2) or, equivalently, solving the homogeneous
linear system πT (I−P) = 0 with πTe = 1, determining PageRank might seem like a
rather easy task. But quite to the contrary, the size of the problem (there are currently
over 8 billion pages in Google’s database) severely limits the choice of algorithms that
can be effectively used to compute πT . In fact, this computation has been called
“the world’s largest matrix computation” [48]. Direct methods (even those tuned for
sparsity) as well as eigensolvers can’t handle the overwhelming size, and variants of
the power method seem to be the only practical choices. The time required by Google
to compute the PageRank vector has been reported to be on the order of several days.

4.3. Adjusting P. There are a few problems with strictly using the hyperlink
structure of the Web to build a transition probability matrix that will adequately
define PageRank. First, as noted earlier, the raw Google matrix P can fail to be a
stochastic matrix because P has a row of all zeros for each node with zero outdegree.
This is easily remedied by replacing each zero row with eT /n, where n is the order of
P. Call this new matrix P̄. But this alone doesn’t fix all of the problems.

Another greater difficulty can (and usually does) arise: P̄ may be a reducible ma-
trix because the underlying chain is reducible. Reducible chains are those that contain
sets of states in which the chain eventually becomes trapped—i.e., by a reordering of
states the transition matrix of a reducible chain can be made to have the canonical
form

P =
( S1 S2

S1 T11 T12
S2 0 T22

)
.(4.3)

Once a state in set S2 has been reached, the chain never returns to the states of S1.
For example, if webpage Pi contains only a link to page Pj , and Pj contains only
a link to Pi, then Google’s random surfer who hits either Pi or Pj is trapped into
bouncing between these two pages endlessly, which is the essence of reducibility.

An irreducible Markov chain is one in which every state is eventually reachable
from every other state. That is, there exists a path from node i to node j for all i, j.
Irreducibility is a desirable property because it is precisely the feature that guarantees
that a Markov chain possesses a unique (and positive) stationary distribution vector
πT = πTP—it’s the Perron–Frobenius theorem at work [46, Chap. 8].

The modification of the raw Google matrix P leading to P̄ as described earlier
produces a stochastic matrix, but the structure of the World Wide Web is such that
P̄ is almost certainly reducible. Hence further adjustment is necessary in order to
ensure irreducibility. Brin and Page force irreducibility into the picture by making

1Clicking BACK or entering a URL on the command line is excluded in this model.
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EIGENVECTOR METHODS FOR WEB INFORMATION RETRIEVAL 147

every state directly reachable from every other state. They originally did so by adding
a perturbation matrix E = eeT /n to P̄ to form

¯̄P = αP̄+ (1− α)E,

where α is a scalar between 0 and 1. The Google reasoning was that this stochastic
matrix models a Web surfer’s “teleportation” tendency to randomly jump to a new
page by entering a URL on the command line, and it assumes that each URL has
an equal likelihood of being selected. Later Google adopted a more realistic and less
democratic stance by using a better (and more flexible) perturbation matrix,

E = evT ,

where the “personalization” vector vT > 0 is a probability vector that allows non-
uniform probabilities for teleporting to particular pages. More importantly, at least
from a business viewpoint, taking the perturbation to be of the form E = evT permits
“intervention” by fiddling with vT to adjust PageRank values up or down according to
commercial considerations [60]. Other perturbation terms may be used as well, but,
in any case, ¯̄P = αP̄+ (1− α)E is a convex combination of two stochastic matrices
P and E such that ¯̄P is stochastic and irreducible and hence ¯̄P possesses a unique
stationary distribution πT . It’s the matrix ¯̄P that is now generally called “the Google
matrix” and its stationary distribution πT is the real PageRank vector.

Forcing the irreducibility by adding direct connections between each node might
be overkill. To force irreducibility in a minimal sense, only one nonzero entry needs
to be added to the leading position in the (2, 1)-block of zeros in P once it has been
permuted to canonical form (4.3). In other words, if

¯̄̄P =
(

T11 T12
C T22

)
, where C =

(
ε 0T

0 0

)
,

then ¯̄̄P is irreducible. Several other ways of forcing irreducibility have been suggested
and analyzed [40, 9, 59], but Google seems to favor the E = evT approach.

A rather happy accident of Google’s approach is that the eigendistribution of
¯̄P = αP̄+ (1− α)E is affected in an advantageous manner. As pointed out earlier, the
asymptotic rate of convergence of the power method is governed by the degree of sep-
aration between the dominant and closest subdominant eigenvalues. For the Google
matrix it’s easy to show that if the respective spectrums are σ(P̄) = {1, µ2, . . . , µn}
and σ( ¯̄P) = {1, λ2, . . . , λn}, then

λk = αµk for k = 2, 3, . . . , n,(4.4)

regardless of the value of the personalization vector vT in E = evT [46, p. 502],
[40, 30]. Furthermore, the link structure of the Web makes it likely that µ2 = 1 (or at
least µ2 ≈ 1). Therefore, choosing α to be farther from 1 increases the gap between
1 and λ2 and thus speeds the convergence to PageRank. Google originally reported
using α = .85, which makes it likely that λ2 = .85. Since (λ2)114 = (.85)114 < 10−8, it
follows that roughly 114 iterations of the power method give an accuracy on the order
of 10−8 for Google’s PageRank measures, most likely a higher degree of accuracy than
they need in practical situations. However, on the con side, the maximally irreducible
approach clearly alters the true nature of the chain much more than the minimally
irreducible approach.
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148 AMY N. LANGVILLE AND CARL D. MEYER

We feel experimental comparisons between the minimally irreducible ¯̄̄P and the
maximally irreducible ¯̄P might yield interesting results about surfer behavior and the
sensitivity of PageRank to small additive perturbations. Reference [40] contains some
theoretical progress in this area.

4.4. PageRank Implementation. Note that PageRank actually gives an impor-
tance score for each webpage, not a relevancy score. PageRank is just one part of
Google’s ranking system. In fact, PageRank is combined with other scores to give
an overall ranking [10]. However, to simplify the examples, we present a basic model
for use of PageRank. In this model, the implementation of the PageRank IR system
involves two primary steps. In the first step, a full document scan determines the
subset of nodes containing the query terms. This subset is called the relevancy set
for the query. This is analogous to the first step of HITS, in which the neighborhood
graph is formed. In the second step, the relevancy set is sorted according to the
PageRank scores of each document in the set. Thus, PageRank does not depend on
the query. In fact, each document has a PageRank score that is independent of all
queries. It has been reported that Google computes PageRank once every few weeks
for all documents in its Web collection [56]. As mentioned earlier, the computation of
PageRank is a costly, time-consuming effort that involves finding the stationary vec-
tor of an irreducible stochastic matrix whose size is on the order of billions, and the
power method seems to have been Google’s method of choice [28, 14]. The algorithm
to compute the PageRank vector πT for the Google matrix ¯̄P = αP̄+ (1− α)E is
simply stated. After specifying a value for the tuning parameter α, set πT0 = eT /n,
where n is the size of P, and iterate

πTk+1 = απ
T
k P̄+ (1− α)vT(4.5)

until the desired degree of convergence is attained.
This implementation (4.5) has a couple of things going for it. First, the method

does not destroy the extreme sparsity that is inherent. Second, the main vector-
matrix multiplication of πTk P̄ requires only sparse inner products, and these sparse
inner products are easily implemented in parallel. Using parallelism is imperative
for a problem of this size. More advanced iterative system/eigensolver methods do
speed theoretical convergence, but in practice they fail to deliver due to immense
storage requirements and increased computational complexity. Brin and Page report
rather quick convergence with the simple power method—they claim useful results
are obtained with only 50 power iterations on a P of order n = 322,000,000.

There have been several recent advances in PageRank computation and imple-
mentation, proposed largely by researchers at Stanford. Arasu et al. [1] suggest using
the Gauss–Seidel method [57] in place of the simple power method. On one test
example, they report faster convergence, especially at the beginning of the iteration
history. Another group of researchers at Stanford, Kamvar et al., have developed sev-
eral modifications to the power method that accelerate convergence. One technique
uses quadratic extrapolation, similar to Aitken’s ∆2 method, to speed convergence to
the PageRank vector. The results show speedups of 50–300% over the basic power
method, with minimal additional overhead [36]. The same group of researchers have
also developed a BlockRank algorithm that uses aggregation methods to empirically
achieve speedups of a factor of 2 [35]. One final algorithm uses an adaptive method
to monitor the convergence of individual elements of the PageRank vector. As soon
as elements of this vector have converged, they are no longer computed. Empiri-
cal evidence shows speedier convergence by 17% as the work per iteration decreases
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throughout the iteration history [34]. Very recent work partitions the P matrix into
two groups according to dangling nodes (with no outlinks) and nondangling nodes
[41, 40, 38, 39]. Then, using exact aggregation, the problem is reduced by a factor
of 4 by lumping all the dangling nodes into one state. (Dangling nodes account for
one-fourth of the Web’s nodes.) The most exciting feature of all these algorithms is
that they do not compete with one another. In fact, it is possible to combine several
algorithms to achieve even greater speedups.

4.4.1. PageRank Convergence. Since the power method seems to be about the
only game in town as far as PageRank is concerned, a couple more comments are
in order. Because the iteration matrix P̄ is a stochastic matrix, the spectral radius
ρ(P̄) = 1. If this stochastic matrix is reducible, it may have several eigenvalues on the
unit circle, causing convergence problems for the power method. One such problem
was identified by Brin and Page as a rank sink, a node with no outlinks that keeps
accumulating more and more PageRank at each iteration. This rank sink is actually
an absorbing state of the Markov chain. More generally, a reducible matrix may
contain an absorbing class that eventually sucks all the PageRank into states in its
class. The Web graph may contain several such classes, and the long run probabilities
of the chain then depend greatly on the starting vector. Some states and classes may
have 0 rank in the long run, giving an undesirable solution and interpretation for the
PageRank problem. However, the situation is much nicer and the convergence much
cleaner for an irreducible matrix.

For an irreducible stochastic matrix, there is only one eigenvalue on the unit circle,
all other eigenvalues have modulus strictly less than one [46]. This means that the
power method applied to an irreducible stochastic matrix P is guaranteed to converge
to the unique dominant eigenvector—the stationary vector πT for the Markov matrix
and the PageRank vector for the Google matrix. This is one reason why Brin and
Page added the “fudge factor” matrix forcing irreducibility. Unlike HITS, there are
now no issues with uniqueness of the ranking vector, and any positive probability
vector can be used to start the iteration.

Even though the power method applied to the irreducible stochastic matrix ¯̄P
converges to a unique PageRank vector, the rate of convergence is a crucial issue,
especially considering the scope of the matrix-vector multiplications—on the order of
billions, since, unlike HITS, PageRank operates on Google’s version of the full Web.
As alluded to earlier, the asymptotic rate of convergence of (4.5) is governed by the
rate at which λk2 → 0, so, in light of (4.4), the asymptotic rate of convergence is the
rate at which (αµ2)k → 0, regardless of the value of the personalization vector vT

in E = evT . The structure of the Web forces µ2 = 1 (or at least µ2 ≈ 1) with very
high probability, so the rate of convergence of (4.5) boils down to how fast αk → 0. In
other words, Google engineers can dictate the rate of convergence according to how
small they choose α to be.

Consequently, Google engineers are forced to perform a delicate balancing act.
The smaller α is, the faster the convergence, but the smaller α is, the less the true
hyperlink structure of the Web is used to determine webpage importance. And slightly
different values for α can produce very different PageRanks. Moreover, as α → 1,
not only does convergence slow drastically, but sensitivity issues begin to surface as
well [40].

4.4.2. PageRank Accuracy. Another implementation issue is the accuracy of
PageRank computations. We do not know the accuracy with which Google works,
but it has to be at least high enough to differentiate between the often large list of
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ranked pages that Google commonly returns. Since πT is a probability vector, each
πi will be between 0 and 1. Suppose πT is a 1 by 4 billion vector. Since the PageRank
vector is known to follow a power law or Zipfian distribution [2, 51, 25],2 it is possible
that a small section of the tail of this vector, ranked in decreasing order, might look
like this:

πT = ( · · · .000001532 .0000015316 .0000015312 .0000015210 · · · ) .

Accuracy at least on the order of 10−9 is needed to distinguish among the elements
of this ranked subvector. However, comparisons are made only among a subset of
elements of this ranked vector. While the elements of the entire global PageRank
vector may be tightly packed in some sections of the (0, 1) interval, elements of the
subset related to a particular query are much less densely packed. Therefore, extreme
accuracy on the order of 10−12 is most likely unnecessary for this application.

The fact that Brin and Page report reasonable estimates for πT after only 50
iterations of the power method on a matrix of order 322,000,000 has one of two impli-
cations: either (1) their estimates of πT are not very accurate or (2) the subdominant
eigenvalue of the iteration matrix is far removed from λ1 = 1. The first statement is
a claim that outsiders not privy to inside information can never verify, as Google has
never published information about their convergence tests. The implication of the
second statement is that the “fudge factor” matrix E = eeT /n (or more generally,
E = evT ) must carry a good deal of weight, and perhaps α is lowered to .8 in order
to increase the eigengap and speed convergence. By decreasing α and simultaneously
increasing the weight of the fudge factor, the transition probability matrix moves fur-
ther from the Web’s original hyperlink structure. Observations (admittedly limited
by Google standards) suggest that the Web’s natural link structure tends to produce a
nearly completely decomposable3 (NCD) Markov chain or a Markov chain with NCD
subgraphs [46, 57]. For example, there is considerable evidence that portions of the
Web, like Africa’s Web, are indeed NCD [11].

NCDness may be masked by the increasing weight given to the fudge factor. If
NCDness is discovered, then a new avenue for IR research and implementation will be
opened because significant work has already been done on computing the stationary
vector for NCD systems [57, 58, 17, 47, 21]. References [1, 15, 11, 25, 51] contain
information about the graph structure of the Web and some suggestions for exploiting
this structure.

4.4.3. PageRank Updating. Updating PageRank is a significant concern. Since
the computation of πT is such an expensive endeavor, Google has reported that
PageRank is only updated once every few weeks. In the interim, however, signif-
icant changes to the Web’s structure occur, and this presents another dilemma to
Google engineers—how long can the huge effort of a complete update be put off be-
fore Google’s output becomes too stale. The updating bottleneck is exacerbated by
the fact that the PageRank vector from a prior period is nearly useless for the pur-
pose of initializing or somehow gaining an advantage to run the power method for the

2Kamvar, Haveliwala, and Golub have implemented an adaptive power method that exploits the
power law structure of the PageRank vector to reduce work per iteration and convergence times [34].

3A Markov chain is described as NCD if the state space can be partitioned into disjoint subsets,
with strong interactions among the states of a subset but with weak interactions among the subsets
themselves. The transition probability matrix of an NCD chain can be reordered to have a dense
block diagonal form with sparse off-diagonal blocks.
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1
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6 5
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Fig. 6 Six-node Web for PageRank example.

next period, so, at last report, Google starts more or less from scratch each time the
PageRank vector is updated.

Some research has recently been done on updating PageRank [16, 39, 50, 49] in
which the goal is to use the old PageRanks from the prior period plus the changes
to the Web’s structure to estimate the new PageRanks without total recomputation.
However, most of this work addresses only link updates and not node updates. A
link modification occurs when hyperlinks are added, deleted, or changed. A node
modification occurs when a webpage is added to or deleted from the Web. Node
updates affect the size of P and thus create a much more difficult problem.

Updating Markov chains is an old problem, and there are several exact algorithms
for doing so [39], but they don’t work well for the PageRank problem. Classical
updating techniques applied to PageRank generally require more effort and time than
total recomputation using the power method. Approximate updating algorithms that
require less effort than exact methods but produce reasonable estimates of PageRank
exist [16, 39].

Updating PageRank is an active area of research, and recent breakthroughs have
been made to simultaneously accommodate both link and node updates. The most
promising algorithms along these lines seem to be an iterative aggregation technique
[39] and an adaptive acceleration [34] of the power method. Both of these approaches
seem to decrease overall effort and cost of computing PageRank by a factor as great
as 10. And preliminary studies indicate that these two processes can be married to
produce a reduction of effort on an even more dramatic scale—details are forthcoming.

The PageRank implementation issues of convergence, accuracy, and updating are
just a few of the areas that numerical analysts and IR researchers have been studying
recently. Other active areas (not reported here) are clustering and parallelism.

4.5. PageRank Example. In this section, we present a very small and simple
example to solidify the PageRank ideas discussed above. Consider the tiny 6-node
Web of Figure 6.
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First create the raw Google matrix as shown below:

P =




d1 d2 d3 d4 d5 d6

d1 0 1/2 1/2 0 0 0
d2 0 0 0 0 0 0
d3 1/3 1/3 0 0 1/3 0
d4 0 0 0 0 1/2 1/2
d5 0 0 0 1/2 0 1/2
d6 0 0 0 1 0 0



.

The second row of P is entirely zero because there are no outlinks from the second
page, and consequently P is not a stochastic matrix. (Brin and Page refer to node 2
as a rank sink.) Add 1/6 to each entry in the second row to remedy this problem—the
result is

P̄ =




0 1/2 1/2 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0



.

This matrix is now stochastic, but it’s reducible, so it cannot have a unique positive
stationary distribution. To force irreducibility, choose α = .9 and form

¯̄P = αP̄+ (1− α)eeT /n =




1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6
19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60



.

This matrix is both stochastic and irreducible, and its stationary vector (and the
PageRank vector) is

πT = ( .03721 .05396 .04151 .3751 .206 .2862 )

(to four significant places). These PageRanks are query-independent. Suppose a
query is entered containing terms 1 and 2. The inverted term-document file below is
accessed:4

Inverted file storage of document content

term 1 → doc 1, doc 4, doc 6
term 2 → doc 1, doc 3
...

4Inverted file storage is similar to the index in the back of a book—it’s a table containing a row
for every term in a collection’s dictionary. Next to each term is a list of all documents that use that
term (or are related to that term).
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Thus, the relevancy set for a query on terms 1 and 2 is {1, 3, 4, 6}. The PageRanks
of these four documents are now compared to determine which of these four relevant
documents is most important by sorting their associated page ranks π1, π3, π4, π6 in
decreasing order, which gives

π4 = .3751,
π6 = .2862,
π3 = .04151,
π1 = .03721.

Consequently, document 4 is the most important of the relevant documents, followed
by documents 6, 3, and 1. Should another query be entered, the relevancy set is quickly
determined by consulting the inverted term-document file, and those documents in
the relevancy set are quickly sorted by their PageRanks. The power of PageRank’s
query independence cannot be understated.

4.6. PageRank’s Connection to HITS. Ding et al. have shown a very elegant
connection between PageRank and HITS [23, 22]. They point out PageRank’s sim-
ilarity to HITS’ authority score. Ding et al. have even extended this connection to
create a “hub score” for PageRank. In the paper, the authors claim that the num-
ber of inlinks into a document gives a good approximation to the PageRank of that
document. However, we and Pandurangan, Raghavan, and Upfal have found this ap-
proximation to be very rough [51]. A simple inlink count ignores the PageRank thesis
that nodes are important if they are linked to by other important nodes. The inlink
count measures only the quantity not the quality of these inlinks.

4.7. Strengths and Weaknesses of PageRank. We have already mentioned one
weakness of PageRank—the topic drift problem due to the importance of determin-
ing an accurate relevancy score. Much work, thought, and heuristics must be ap-
plied by Google engineers to determine the relevancy score, otherwise, no matter
how good PageRank is, the ranked list returned to the user is of little value if the
pages are off-topic. This invites the question, Why does importance serve as such a
good proxy to relevance? Or does it? By emphasizing the importance of documents,
are lesser-known, obscure, yet highly relevant documents being missed? Bharat and
Mihaila succinctly state this weakness of PageRank in [7]. “Since PageRank is query-
independent, it cannot by itself distinguish between pages that are authoritative in
general and pages that are authoritative on the query topic.” Some of these ques-
tions may be unanswerable due to the proprietary nature of Google, but they are still
worthy of consideration.

On the other hand, the use of importance, rather than relevance, is the key to
Google’s success and the source of its strength. By measuring importance, query
dependence, the main weakness of HITS, becomes a nonissue. Instead, the PageRank
measure of importance is a query-independent measure. At query time, only a quick
lookup into an inverted file storage is required to determine the relevancy set, which
is then sorted by the precomputed PageRanks.

Another strength of PageRank is its virtual imperviousness to spamming. As
mentioned during the HITS discussion, it is very hard for a webpage owner to add
inlinks into his page from other important pages. Chien et al. [16] have proven that
if the owner succeeds in doing this, the PageRank is guaranteed to increase. How-
ever, this increase will likely be inconsequential since PageRank is a global measure
[8, 49]. In contrast, HITS’ authority and hub scores are derived from a local neigh-
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borhood graph, and slight increases in the number of inlinks or outlinks will have a
greater relative impact. Thus, in summary, webpage owners have very little ability—
and are not very likely—to affect their PageRank scores. Nevertheless, there have
been some papers describing ways to both influence PageRank and recognize spam
attempts [9, 61].

And finally there is the flexibility of the “personalization” (or “intervention”)
vector vT that Google is free to choose in defining the fudge-factor term E = evT . The
choice of vT affects neither mathematical nor computational aspects, but it does alter
the ranks in a predictable manner. This can be a terrific advantage if Google wants to
intervene to push a site’s PageRank down or up, perhaps to punish a suspected “link
farmer” or to reward a favored client. The outside world is not privy to the extent
to which Google actually does this, but it is known that Google is quite vigilant and
sensitive concerning people who try to manipulate PageRank [60].

5. SALSA. We now move on to the third eigenvector Web IR method, the
stochastic approach for link structure analysis (SALSA). SALSA, developed by Lem-
pel and Moran in 2000, was spawned by the combination of ideas from both HITS and
PageRank [42]. Like HITS, both hub and authority scores for webpages are created,
and like PageRank, they are created through the use of Markov chains. In this intro-
duction to SALSA, we first walk through an example of the algorithm, then assess its
strengths and weaknesses.

5.1. Example. In a manner similar to HITS, the neighborhood graph N asso-
ciated with a particular query is formed. We use the same neighborhood graph N
from Figure 5. SALSA differs from HITS in the next step. Rather than forming
an adjacency matrix L for the neighborhood graph N , a bipartite undirected graph,
denoted G, is built. G is defined by three sets: Vh, Va, E, where Vh is the set of hub
nodes (all nodes in N with outdegree > 0), Va is the set of authority nodes (all nodes
in N with indegree > 0), and E is the set of directed edges in N . Note that a node
in N may be in both Vh and Va. For the example with neighborhood graph given by
Figure 5,

Vh = {1, 2, 3, 6, 10},
Va = {1, 3, 5, 6}.

The bipartite undirected graph G has a “hub side” and an “authority side” (see
Figure 7). Nodes in Vh are listed on the hub side and nodes in Va are on the authority
side. Every directed edge in E is represented by an undirected edge in G. Next, two
Markov chains are formed from G: a hub Markov chain with transition probability
matrix H, and an authority Markov chain with matrix A. Reference [42] contains
a formula for computing the elements of H and A, but we feel a more instructive
approach to building H and A clearly reveals SALSA’s connection to both HITS and
PageRank. Recall that L is the adjacency matrix of N used by HITS. HITS computes
authority and hub scores using the unweighted matrix L, while PageRank computes
a measure analogous to an authority score using a row-weighted matrix P. SALSA
uses both row and column weighting to compute its hub and authority scores. Let
Lr be L with each nonzero row divided by its row sum, and let Lc be L with each
nonzero column divided by its column sum. Then H, SALSA’s hub matrix, consists
of the nonzero rows and columns of LrLTc , and A is the nonzero rows and columns of
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1

2

1

6

10

3

3

5

6

side
authority

side
hub

Fig. 7 G: bipartite graph for SALSA.

LTc Lr. For our running example (from Figure 5),

L =




1 2 3 5 6 10
1 0 0 1 0 1 0
2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1 1 0 0
10 0 0 0 0 1 0



, Lr =




1 2 3 5 6 10
1 0 0 1

2 0 1
2 0

2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1

2
1
2 0 0

10 0 0 0 0 1 0



,

and

Lc =




1 2 3 5 6 10
1 0 0 1

2 0 1
3 0

2 1 0 0 0 0 0
3 0 0 0 0 1

3 0
5 0 0 0 0 0 0
6 0 0 1

2 1 0 0
10 0 0 0 0 1

3 0



.

Hence

LrLTc =




1 2 3 5 6 10
1 5

12 0 2
12 0 3

12
2
12

2 0 1 0 0 0 0
3 1

3 0 1
3 0 0 1

3

5 0 0 0 0 0 0
6 1

4 0 1 0 3
4 0

10 1
3 0 1

3 0 0 1
3



, LTc Lr =




1 2 3 5 6 10
1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 1

2
1
4

1
4 0

5 0 0 1
2

1
2 0 0

6 0 0 1
6 0 5

6 0

10 0 0 0 0 0 0



.
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Taking just the nonzero rows and columns of LrLTc to form H gives

H =




1 2 3 6 10
1 5

12 0 2
12

3
12

2
12

2 0 1 0 0 0
3 1

3 0 1
3 0 1

3

6 1
4 0 0 3

4 0

10 1
3

1
3 0 0 1

3



.

Similarly,

A =




1 3 5 6
1 1 0 0 0
3 0 1

2
1
4

1
4

5 0 1
2

1
2 0

6 0 1
6 0 5

6


.

If G is connected, then H and A are both irreducible Markov chains, and πTh ,
the stationary vector of H, gives the hub scores for the query with neighborhood
graph N and πTa gives the authority scores. If G is not connected, then H and A
contain multiple irreducible components. In this case, the global hub and authority
scores must be pasted together from the stationary vectors for each individual irre-
ducible component. (Reference [42] contains the justification for the above two if-then
statements.)

From the structure of the H and A matrices for our example, it is easy to see
that G is not connected. Thus, H and A contain multiple connected components.
H contains two connected components, C = {2} and D = {1, 3, 6, 10}, while A’s
connected components are E = {1} and F = {3, 5, 6}. Also clear from the structure
of H and A is the periodicity of the Markov chains. All irreducible components of
H and A contain self-loops, implying that the chains are aperiodic. The stationary
vectors for the two irreducible components of H are

πTh (C) =
( 2
1
)
, πTh (D) =

( 1 3 6 10
1
3

1
6

1
3

1
6

)
,

while the stationary vectors for the two irreducible components of A are

πTa (E) =
( 1
1
)
, πTa (F ) =

( 3 5 6
1
3

1
6

1
2

)
.

Proposition 6 of [42] contains the method for pasting the hub and authority scores for
the individual components into global scoring vectors. Their suggestion is simple and
intuitive. Since the hub component C contains only one of the five total hub nodes,
its stationary hub vector should be weighted by 1/5, while D, containing four of the
five hub nodes, has its stationary vector weighted by 4/5. Thus the global hub vector
is

πTh =
( 1 2 3 6 10

4
5 ·

1
3

1
5 · 1

4
5 ·

1
6

4
5 ·

1
3

4
5 ·

1
6

)

=
( 1 2 3 6 10
.2667 .2 .1333 .2667 .1333

)
.
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With similar weighting for authority nodes, the global authority vector can be con-
structed from the individual authority vectors as

πTh =
( 1 3 5 6

1
4 · 1

3
4 ·

1
3

3
4 ·

1
6

3
4 ·

1
2

)

=
( 1 3 5 6
.25 .25 .125 .375

)
.

Compare the SALSA hub and authority vectors with those of HITS in section 3.3.
They are quite different. Notice that the presence of multiple connected components
(which occurs when G is not connected) is actually a very good thing computationally,
because the Markov chains to be solved are much smaller. This can be contrasted
with PageRank’s correction for a disconnected Web graph, whereby irreducibility is
forced by adding direct connections between all nodes. Also, note that other weighting
schemes can be applied to paste the individual component scores together to create
global scores.

5.2. Strengths and Weaknesses of SALSA. As SALSA was developed by com-
bining some of the best features of both HITS and PageRank, it has many strengths.
Unlike HITS, SALSA is not victimized by the topic drift problem, related to the
“TKC” problem referenced by [42]. Recall that another problem of HITS was its
susceptibility to spamming due to the interdependence of hub and authority scores.
SALSA is less susceptible to spamming since the coupling between hub and author-
ity scores is much less strict. However, neither HITS nor SALSA are as impervious
to spamming as PageRank. SALSA, like HITS, also gives dual rankings, something
which PageRank does not supply. The presence of multiple connected components
in SALSA’s bipartite graph G, a common occurrence in practice, is computationally
welcomed. However, one major drawback to the widespread use of SALSA is its query
dependence. At query time, the neighborhood graph N for the query must be formed
and two Markov chains must be solved. Another problematic issue for SALSA is
convergence. The convergence of SALSA is similar to that of HITS. Because, both
HITS and SALSA, unlike PageRank, do not force irreducibility onto the graph, the
resulting vectors produced by their algorithms may not be unique (and may depend
on the starting vector) if the neighborhood graph is reducible. Nevertheless, a simple
solution is to adopt the PageRank fix and force irreducibility by altering the graph in
some small way.

Before moving on to other Web IR methods, we would like to refer the reader to an
excellent article by Farahat et al. on the existence and uniqueness of the eigenvectors
used by these three Web IR methods: HITS, PageRank, and SALSA [27].

6. Other Methods and Hybrids. This section contains suggestions for new and
hybrid methods that are related to the three ranking systems of HITS, PageRank,
and SALSA. Recall that the major drawback of HITS is its query dependence. At
query time, authority and hub scores must be computed for those documents in the
neighborhood graph N . One way to make HITS query-independent is to compute
the authority and hub scores once using the entire graph. This requires the dominant
eigenvector computation of the matrices LLT and LLT , where this time the order
of L is equal to the total number of documents in the collection. However, similar
to PageRank, this is a one-time computation, requiring recomputation on a monthly
basis to accommodate link changes. The question is whether these authority and hub
scores would give much more or different information than the PageRank scores.
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In an opposite fashion, researchers have experimented with forcing PageRank
to be query-dependent, thus circumventing the problem of topic drift [54, 5, 29].
Bharat and Henzinger have successfully resolved topic drift by incorporating both
content information and hyperlink information into the HITS matrices [5]. Since
Henzinger was once head of Google’s research division, one might guess that this
is how Google’s P matrix is created as well. Ding et al. have created some HITS-
PageRank hybrid algorithms [23]. They compare the original PageRank, the original
HITS, hub PageRank, and two other hybrid algorithms using several experimental
datasets. They conclude that, with respect to hub scores especially, the algorithms
select different sets of top-ranked hubs. Thus, in the future, perhaps medleys of IR
algorithms will provide the most relevant and precise documents to user queries [45].
Reference [12] contains an excellent summary of other IR methods built from HITS,
PageRank, and/or SALSA. These methods include PHITS [18], SALSA [42], pSALSA
[12], exponentiated HITS [26], and randomized HITS [50].

7. Future. HITS, PageRank, and SALSA all make extensive use of the Web’s
hyperlink structure to return relevant documents to IR users. Older methods like LSI
focus instead on the content of the documents. We feel that forthcoming methods will
combine both the hyperlink structure and content analysis as well as make accommo-
dations for latent semantic associations [20]. We also predict that more work will be
done on tailoring search engines to individual users [19, 52]. Some studies examining
the structure of the Web [12] have encouraged others to exploit properties of the Web’s
structure to partition the Web, in hopes of speeding matrix computations [1]. Finally,
other trends in IR lean toward creating additions to current, popular search engines,
like Google, Yahoo!, or AltaVista. For example, Mendelzon and Rafiei’s TOPIC sys-
tem [44] as well as the topic classification system of Bharat, Maghoul, and Stata [6]
annotate popular search engines with information on page topics. Such additions also
aim at user adaptability.

8. Conclusion. Web IR is a significantly different problem from traditional IR,
due in part to the Web’s massive scale and its unique hyperlink structure. Tradi-
tional IR methods like LSI fall short when applied to Web IR problems. Instead,
new methods, such as HITS, PageRank, and SALSA, have emerged. One common-
ality among these three Web IR methods is their use of and reliance on eigenvector
computation. Such computation opens new research doors for numerical analysts and
applied mathematicians in a field that has historically been dominated by computer
scientists and database engineers. Now is certainly an exciting time to be studying
Web IR methods and theory, as the very nature and conduct of science and research
is rapidly evolving and moving online. Addressing enormous information problems,
like Web IR, will have both an immediate impact and long-standing influence on the
future of science.
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