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Abstract

In this paper we describe how the accuracy of the least-squares approach of the method of fundamental solution can be improved by means

of an adaptive refinement scheme. A hierarchical data structure is used for spreading of the source points starting from an initial coarse

distribution. The correction indicator used in the refinement procedure is based on the relative influence of the source intensities obtained as

parameters in multiple regression analysis. Iterative solution of the linear system of equations is performed at each refinement step. The

results of applying the method to test problems from potential theory show that the method gives higher accuracy in the potential and normal

derivatives with a reduced number of sources.

q 2004 Published by Elsevier Ltd.

1. Introduction

The method of fundamental solution (MFS) is one of

the most intuitive approaches to solve numerically linear

elliptic partial differential equations. In this type of

approach an approximate solution is represented in the

form of a linear superposition of source functions

(fundamental solutions) located outside the problem

domain, V: As the fundamental solution satisfies the

differential equation at any point except at the source

point, it follows that this representation exactly satisfies

the governing equation and one seeks to satisfy the

imposed boundary conditions approximately at a set of

boundary points (collocation points). In Ref. [1] a

comprehensive review of the MFS is given, in which

this approach is related to a regular indirect single layer

boundary element approach (indirect-BEM). Some of the

most relevant features discussed in Ref. [1] will be

addressed in this work.

One of the pioneer works on the MFS was the work by

Kupradze and Aleksidze [2] where they prove the

completeness of the potentials in HðVÞ; the set of harmonics

functions in V: This work was latter expanded upon by

Bogomolny [3].

Although the MFS is useful for a large class of problems,

the discussion in this paper is restricted to the solution of the

three-dimensional (3D) the Laplace equation. In this type of

approach, the solution of the Laplace interior problem is

approximated by a linear combination of sources located

outside the problem domain [4]. The coefficients of the

fundamental solutions for given coordinates of the sources

are determined in general by solving a system of equations

that is obtained imposing the corresponding boundary

conditions of the problem. This can be done by means of

direct collocation, for which a system with a number of

linear equations with an equal number unknowns is solved.

In this approach, rules of thumb have been proposed in the

literature for the positions of the collocation and source

points [5]. Alternatively, the boundary conditions can be

satisfied in the least-squares sense with a number of sources

smaller than the number of points where the boundary

conditions are specified. This was the approach taken by

Bogomolny in Ref. [3] and there is some numerical

indication that this approach may be the most efficient [6].

In the present paper the least-squares approach is used,

focussing our attention on the sequential improvement of

the solution by an adaptive distribution of the source points.

The implementation of the MFS appears to be quite

straightforward. It is only necessary to specify the source

points outside the problem domain and the data or boundary
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points on the contour of the domain then solve the resulting

linear system of equations. However, in its numerical

application there are several issues that require special

attention. Of those some of the most relevant are: location

and number of sources and boundary points as well as

convergence and stability of the scheme.

Generally, there have been two approaches to choosing

the source points, fixed and adaptive. From practical

experience and some analytical works, in particular in

two-dimension (2D) [7–9], it has been observed that the

accuracy of the approximation improves as the sources are

moved farther away from S: When using the fixed approach,

it is recommended to distribute uniformly the source points

over a large circle enclosing the original problem domain, in

R2; or a large sphere, in R3 (for more details see Ref. [1]),

where the radius of the circle, R; or the sphere is chosen to

be five times the characteristic dimension of the problem

domain, when dealing with pure Dirichlet condition, or

smaller than five when dealing with Neumann cases. This

fixed value of R is recommended because the system of

equations coming from the MFS can become highly ill-

conditioned as R increased [10–12]. However, it has been

observed that despite the ill-conditioning, the accuracy of

the numerical solution is largely unaffected [3,10,13].

Golberg and Chen [1] reported that in these cases direct

solvers, as Gaussian elimination, can be used effectively,

even if the resulting condition number of the matrix is very

large, by ignoring the message of singular system of the

numerical routine.

Traditionally in numerical analysis the stability of the

scheme, i.e. the amplification of data errors, is measured by

the condition number of the matrix (the ratio between the

largest and the smallest singular values of the matrix).

Typically ill-conditioning is indicated by very small values

of the smallest singular value. It is known that in some cases

only the consideration of the condition number will results

in an under estimation of the stability. In Ref. [14] it is

shown that a full understanding of the numerical stability

requires knowledge of the complete singular values (SV) of

the matrix and not only it’s largest and smaller values. In

Refs. [11,12] Kitagawa showed that this is the case when

using the MFS.

While in a fixed algorithm the number and location of the

source points are defined at the beginning of the process, in

an adaptive approach these parameters will be considered as

part of the solution of the problem. Johnston, Fairweather

and Karageorghis [15,16] proposed an adaptive scheme, in

which the coefficients of the linear representation of the

potential as well as the position the sources, which are given

as a fixed number, are chosen by a non-linear least-squares

algorithm. This approach is a non-linear optimization

problem that only distribute a given fixed number of

sources and that can be quite time consuming to solve.

Convergence analysis of the MFS for the solution of the

Laplace equation in 2D were considered by Cheng [7],

Katsurada and Okamoto [8] and Katsurada [9]. In those

articles it is shown that when the boundary surface S and the

boundary conditions are smooth functions, the MFS

converges exponentially to the solution of the partial

differential problem. Although not equivalent theoretical

analysis are available for the corresponding 3D analogous

problems, Golberg and Chen [10] presented an heuristic

analysis, in which they suggest that similar convergent

behavior could be expect for 3D problems.

In the work on adaptive MFS presented herein we focus

on the improvement of the source distribution, and new

sources are added by using a correction indicator that is

related to sensitivity analysis of the solution. The proposed

refinement of the source distribution is based on an

approach borrowed from statistical concepts and not on

classical re-meshing adaptive procedures used in other

numerical techniques.

The basic idea of performing sensitivity analysis of the

previous solution to define a possible error estimator that

should give information on the global accuracy of the

numerical solution is used. However, the correction

criterion is expressed in terms of ‘significant parameters’

from multiple linear regression. Regression analysis inves-

tigates the relationship between several independent or

predictor variables and a dependent variable, which in our

case represent the unit intensity fields from the fundamental

solutions and the fields at the given boundary collocation

points, respectively. The solution is given in terms of

regression coefficients which are related to the correlation

of each predictor with the dependent variable, after

controlling for all other independent variables. High

correlation between such predictors can be reflected as

collinearity and ill-conditioning of the least-squares pro-

blem. Therefore, the sequential selection of predictors in the

refinement procedure must attempt to distribute the

contributions of the sources to the reduction of the errors

uniformly, and in some sense to minimize the effects of

interactions between neighboring sources on the solution of

the linear equations. In this paper we follow selection

concepts for best subset of predictors in regression for

guidance in sequential reduction of the global error starting

with a coarse initial distribution of sources.

2. The method of fundamental solutions

In this section the MFS is described for interior boundary

value problems of the Laplace equation. A domain V [ R3

is given, whose boundary S is a simple closed surface. An

unknown harmonic function FðPÞ must be found with

prescribed boundary values on S; i.e. the following

equations need to be satisfied:

72FðPÞ ¼ 0; P [ V ð1Þ

FðPÞ ¼ f ðPÞ; P [ S1: ð2Þ
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›F

›n
ðPÞ ¼ gðPÞ; P [ S2: ð3Þ

where S ¼ S1 < S2: Let Fpðx; jÞ be the fundamental solution

of the Laplace equation

FpðP;QÞ ¼
1

4p

1

lP 2 Ql
ð4Þ

A direct boundary integral equation method (BEM) gives

an integral equation for ›F=›n; the unknown normal

derivative on S1; and for the unknown potential F on S2:

The integral equation is solved numerically and F can be

evaluated in the interior of V: The principal advantage of

the boundary integral approach is that there is no need to

construct a mesh on V: A main disadvantage is the

computational expense to evaluate the required boundary

integrals on S:

Alternative to the direct BEM, the indirect regular BEM

approach represents the solution of an interior problem in

terms of the single layer potential with unknown density s :

FðPÞ ¼
ð

Ŝ
FpðP;QÞsðQÞdS ð5Þ

where Ŝ is the contour of a domain containing �V:

Representing the unknown density s in terms of a

complete set of function wjðQÞ on Ŝ; i.e.

sðQÞ ¼
Xn

j¼1

cjwjðQÞ; Q [ Ŝ ð6Þ

the above single layer can be approximated by:

FðPÞ ¼
Xn

j¼1

cj

ð
Ŝ
FpðP;QÞwjðQÞdS ð7Þ

In general, the integralsð
Ŝ
FpðP;QÞwjðQÞdS 1 # j # n ð8Þ

need to be evaluated numerically, but, since in this approach

the collocation points, P; are always different to the sources

points, Q; where P [ �V and Q [ Ŝ; the above integrals are

non-singular and therefore, can be evaluated by standard

quadrature rules,

ð
Ŝ
FpðP;QÞwjðQÞdS <

XN
l¼1

4lF
pðP;QlÞwjðQlÞ ð9Þ

And therefore, the above single layer potential can be

represented by

F̂ðPÞ ¼
XN
j¼1

bjF
pðP;QjÞ ð10Þ

where

bl ¼ 4l

Xn

j¼1

cjwjðQlÞ ð11Þ

The above superposition of fundamental solutions outside

the problem domain, Eq. (10), is known as the MFS. This

equation follows naturally from Eq. (5), however, usually it

is necessary to add a constant terms in particular in 2D

where it is required from completeness purposes.

F̂ðPÞ ¼ b0 þ
XN
j¼1

bjF
pðP;QjÞ ð12Þ

As can be observed a constant value is always a solution of

the Laplace’s equation.

From the above analysis, we can say that the MFS is a

technique pertaining to the class of boundary elements

methods, which is applicable when a fundamental solution

is known for the partial differential equation that is

desired to solve (for more details see Ref. [1]). Therefore,

the MFS is in a way similar to the method of boundary

elements, with additional advantages with respect to the

simplicity of its formulation and the fact that the

distribution of points is practically mesh-free. These

advantages make the method an ideal candidate for

moving boundary problems [17]. In view of the

advantages and applications of the method, in this work

we examine a way to improve its accuracy.

As the fundamental solutions satisfy the differential

equation, F̂ðPÞ will automatically be harmonic. A good

approximation to FðPÞ will then be obtained by imposing

the boundary conditions at M points Pi on S: The expression

of F̂ or its corresponding normal derivative ›F̂=›n are then

equated to the values given by the boundary conditions. In

this way, a system of M linear equations with N unknowns

bj is obtained. Once the system of equations is solved, the

potential and its directional derivatives at any point in �V can

be computed by replacing the intensities bj in the expression

for the potential F̂ðPÞ evaluated at the desired point.

After imposing the corresponding boundary conditions,

the resulting system of linear equations can be expressed in

matrix form as:

Xb ¼ y ð13Þ

where X is the matrix of coefficients of the unknown source

intensities b, i.e. values of FpðPi;QjÞ and ›FpðPi;QjÞ=›n;

and y is the right-hand-side known vector of potentials and

normal derivatives at the boundary points. To obtain the

estimate b0 in the case of Dirichlet conditions a column

vector x0 with its elements equal to 1 is added to the matrix

X. For the case of Neumann conditions, the corresponding

elements in x0 are equal to 0. The direct collocation MFS

corresponds to the case where M ¼ N; whereas, the

overdetermined system with M . N; gives rise to a least-

squares MFS.

For the interior Laplace problem with Dirichlet boundary

conditions, in the direct collocation method the potentials at

the boundary are forced to be exactly satisfied, but errors are

present in the computed values for internal points and are

easily identified in the normal derivatives at the boundary
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points. Errors arise in a reverse fashion when normal

derivatives are imposed. In addition, some positions of the

sources can give rise to non-physical oscillations in

the numerical solution. The error due to the solution of

the linear system basically depends on the routine used, and

it can be assumed to be negligible with respect to the

discretization error, which is caused by the inability of

the selected source locations to adequately represent the

boundary field. In this context, the selective and local

refinement of the discretization arises as a natural and

desirable feature in contrast with an initially fixed

discretization approach.

It is worth noticing that any given distribution of the

boundary points would allow unlimited possible locations of

the sources for the same the number of unknowns. The least-

squares solution allows flexibility in the error balance over

those boundary points by adjusting the intensities or

positions of the sources. These possibilities play a central

role in the formulation of the proposed refinement

procedure. In this paper emphasis is made on the refinement

strategy as the specific computation of the error and

threshold for refinement can be tailored for a given

implementation.

3. Formulation of the multiple linear regression problem

A regression model is a formal means of expressing the

two essential ingredients of a statistical relation: (1) a

tendency of the response variable Y to vary with the

predictor variables in a systematic fashion, and (2) a

scattering of points around the curve of statistical relation-

ship. In the proposed approach to solve the present boundary

value problem, the solution of the problem is viewed as a

parameter estimation scheme where the values of the

response variable are the potential fields or their normal

derivatives at the given boundary collocation points

(boundary conditions), the regression function is linear,

and the magnitude of the intensity of the fundamental

solutions are the predictors.

We consider a basic regression model where the

regression function is linear with N þ 1 predictor variables

bj; j ¼ 0;…;N (model parameters). The response variable

Y is viewed as a random variable, and the model can be

stated as follows:

Yi ¼ b0 þ
XN
j¼1

bjxij þ 1i ð14Þ

where i is an index for successive trials or points in a

sample, i ¼ 1;…;M; of the random variable Y correspond-

ing to the response in the ith trial, xij are known constants,

namely the j influence coefficient in the ith trial, and 1i is a

random error term with mean E{1i} ¼ 0 and variance

s2{1i} ¼ s2; 1i and 1j are uncorrelated so that their

covariance is zero for all i; j; i – j: From the above, Yi is

a random variable with mean

E{Yi} ¼ b0 þ
XN
j¼1

bjxij ð15Þ

and variance s2{Yi} ¼ s2: This model assumes that the

probability distributions of Yi have the same variance s2;

regardless of the values of the predictor variables. The errors

are assumed to be uncorrelated. Hence, the outcome in any

one trial has no effect on the error term for any other trial.

The observational or experimental data to be used for

estimating the parameters of the regression function consists

of the explanatory term xij (influence coefficient) and the

corresponding observations, denoted as yi: The estimated

regression function is

Ŷ ¼
XN
j¼1

bjXj þ b0 ð16Þ

where each bj is an estimate of the parameter bj: The above

equation can be written in matrix notation as:

Ŷ ¼ Xb ð17Þ

As can be observed our solution of the MFS can be

interpreted as a regression analysis to determine the

parameters bj; j ¼ 0; 1; 2;…;N; in Eq. (13). In the present

application, b0 accounts for a constant term in the

representational formula (12) and xij are the matrix

coefficients obtained after evaluating the boundary con-

ditions at the M boundary collocations points.

The method of least-square provide a good estimator of

the regression parameters bj by minimizing the sum of the

squares of the M residuals. This condition yields to the

system of N linear algebraic equations

Ab ¼ XTXb ¼ XTy ð18Þ

The above equation is called the normal equation of the

least-squares problem, with solution

b ¼ Cg ð19Þ

where C ¼ A21 and g ¼ XTy; with N # M; since there

must be more data points than model parameters to be

solved for. As can be observed a least-squares solution of

the algebraic system of equations arising from the MFS, i.e.

Eq. (13), can be interpreted as a linear regression.

Therefore, the point estimators bj of the parameters bj are

obtained from the solution of the normal equations

corresponding to the minimization of the sum of squares

of the residuals, usually denoted by SSE (deviation around

fitted regression line).

SSE ¼ FðbÞ ¼
XM
i¼1

ðyi 2 ŷiÞ
2 ð20Þ

The variance of the error terms 1i needs to be estimated to

obtain an indication of the variability of the probability

distributions of Y : An unbiased estimator for the variance s2
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is

MSE ¼
SSE

M 2 N
ð21Þ

The estimate of the mean or expected value of Yi is given by

the regression analysis in terms of Eqs. (17)–(19) as:

Ŷ ¼ HY ð22Þ

where H is called the hat matrix, computed as

H ¼ XCXT ð23Þ

The square M £ M matrix H is symmetric and has the

special property (called idempotency)

HH ¼ H ð24Þ

The estimators b are thus random variables with an

estimated variance–covariance matrix of s2{b} ¼ s2C;

which elements are:

s2{bij} ¼ s2cij ð25Þ

Since s2 is also estimated from the sample values, we can

estimate the variance of the sampling distribution of the

parameter estimates by replacing the variance s2 with its

unbiased estimator MSE.

Test for the significance of bj are usually given in terms

of the t test (selection of predictors), i.e.

tpj ¼
bj

s2{bjj}

 !
¼

bj

s2cjj

ð26Þ

and the decision rule with ð1 2 aÞ confidence:

Ifltpj l # tð1 2 a=2;M 2 NÞ conclude the alternative bj ¼ 0

Otherwise conclude bj – 0

It is known that the t test is a marginal test from the

perspective of the general linear test approach [19], in the

sense that possible misleading results can be obtained when

the predictor variables are highly correlated (for more

details about regression analysis see Ref. [20]). In the

application of the t test to our least-squares solution of the

MFS the terms bj are the estimated intensities of the sources

j and the terms cjj are the corresponding diagonal terms of

the matrix A21:

3.1. Alternative selection of predictors

In general in a regression analysis it is desired to know

how many independent variables are appropriate to include

in the analysis. In computational algebraic it is known that

singular value decomposition (SVD) provides what is

probably the most accurate way of determining numerically

the rank of a matrix such as those resulting from the system

of Eq. (13). The rank is determined as the number of non-

zero singular values. In practice it will be necessary to

discount small singular values, which have arisen due to

computational rounding errors. If any singular value is close

to zero, this indicates that there is little error caused though

omitting the associated modes. On the other hand, the

largest singular values will define those modes, which are

more dominant.

Besides, SVD routines produces a solution that is the

best approximation in the least-squares sense of over-

determined system of equations without dealing with the

normal equations. In many cases the normal equations

are very close to singular, giving fitted parameters with

very large magnitudes in a fragile balance, which cancel

out almost precisely when the fitted function is evaluated.

SVD is a set of techniques usually recommended against

multicollinearity and matrix ill-conditioning problems

such as those common in regression analyses. The direct

output from SVD gives an indicator of predictor

redundancy that is related to the probable uncertainties

in the estimates of the parameters. However, for large

systems this approach is compositionally expensive.

Recently, Ramachandran [21] used the method of

SVD to solve the resulting system of algebraic equations

obtained from the use of the MFS for 2D harmonic

problems showing extremely accurate results. In the

present work, in order to determine which are the mot

significant sources in a given distribution of sources in

the MFS for 3D problems, we will consider criteria of

regression analysis, as the one defined by the t test,

instead of looking at the largest SV of the corresponding

system, due to the computational cost involved in such

estimation. In this sense, the regression equation

expresses the best prediction of the dependent variable

y, given the independent variables X. Data will exactly

fit the model only asymptotically and there is usually

substantial variation of the observed points around the

predicted values Xb. Beyond the finding of best-fit

parameters, we need measures to assess the adequacy of

the fit. The smaller the variability of the residual values

relative to the overall variability, the better is our

prediction.

Besides the t test, another measure of the ability of

the regression to explain the variability of the dependent

variable is obtained by performing an analysis of

variance (ANOVA). The analysis of variance approach

is based on the partitioning of sums of squares and

degrees of freedom associated with the response variable

Y : There is a variation in yi; which is conventionally

measured in terms of the deviations around the mean �y:

In our MFS the value of �y is the mean value of the

known potential field for a first kind boundary value

problem, or the mean value of the known normal

derivative a second kind boundary value problem. In

the case of a mixed boundary value problem, �y is the

mean value of the known potential field and normal

derivative at the surface collocation points, both of them

considered as a single quantity. In the solution of a

mixed boundary value problem the surface potential
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and flux are two different physical quantities, however in

terms of a regression analysis they are the known

observation values of the random variable Y ; i.e. the

values of the respond variable.

The measure of total variations or total sum of squares

denoted by SSTO, is the sum of the squared deviations

SSTO ¼
XM
i¼1

ðyi 2 �yÞ2 ð27Þ

When using the predictor variables, the variation reflecting

the uncertainty concerning the variable Y is that of the Yi

observations around the fitted regression line. The differ-

ence between the sums of squares SSTO and SSE is another

sum of squares denoted by SSR (deviation of fitted

regression value around mean)

SSTO 2 SSE ¼ SSR ¼
XM
i¼1

ðŷi 2 �yÞ2 ð28Þ

The above partition formula of sum of squares follows from

the fact that for a linear regression model the cross product

XM
i¼1

ðŷi 2 �yÞðyi 2 ŷiÞ ð29Þ

is identical zero (for more details see Ref. [19]). SSR may be

considered a measure of that part of the variability of the Yi

which is associated with the regression line. The larger SSR

is in relation to SSTO, the greater is the effect of the

regression relation in accounting for the total variation in the

yi observations.

For computational purpose it is possible to rewrite the

above sums of squares in matrix form as [19]:

SSTO ¼ YT I 2
1

M

� �
J

� �
Y ¼ YTðY 2 �YÞ ð30Þ

SSE ¼ YTðI 2 HÞY ¼ YTðY 2 ŶÞ ¼ YTðY 2 XbÞ ð31Þ

SSR ¼ YT H 2
1

M

� �
J

� �
Y ¼ YTðŶ 2 �YÞ ð32Þ

where the matrix J is a square matrix with all elements equal

to 1, H is the hat matrix defined by Eq. (23), Ȳ is a

constant vector which elements are ð1=MÞ
P

yi and Ŷ is given

by Eq. (17) as Xb.

SSTO measures the variation in Yi; or the uncertainty in

predicting Yi when no account of the predictor variables is

taken. Similarly, SSE measures the variation in the Yi when

a regression model utilizing the predictor variables is

employed. A natural measure of the effect of the xij in

reducing the uncertainty in predicting Y is to express the

reduction in variation as a proportion of the total variation

R2 ¼
SSR

SSTO
¼ 12

SSE

SSTO
¼ 12

YTðY2XbÞ

YTðY2 �YÞ
ð33Þ

or

R2 ¼ 1þ
YTXb

YTðY2 �YÞ
2

YTY

YTðY2 �YÞ

¼ 1þ
bTg

YTðY2 �YÞ
2

YTY

YTðY2 �YÞ
ð34Þ

where the relations YTXb¼ bTXTY¼ bTg; according to

Eqs. (18) and (19), have been used. The measure R2 is called

the coefficient of multiple determination. This value is

immediately interpretable as the fraction of the original

variability explained by the regression, and 12R2 is the

fraction of residual variability. In other words, this is an

indicator of how well the model fits the data. Ideally, we

would like to explain most if not all of the original

variability. Of two models containing different variables,

the model with the largest coefficient of determination is

preferred.

In this work, we will compare the above two regression

analysis criteria for the determination of the

most significant sources in the least-squares MFS for 3D

harmonic problems, i.e. the t test and the coefficient of

multiple determination R2:

4. Adaptive refinement strategy

An adaptive refinement method can be described as a

process where the automatic construction of a near-optimal

discretization is performed in the course of the compu-

tations, according to a correction indicator obtained from

previous discretization. An adaptive refinement algorithm

for the MFS is made up of a certain number of steps, each of

them selectively improving the distribution of sources.

Multiple regression is a seductive technique where the

effect of introducing an additional predictor is to reduce the

error, thus tempting to capitalize on chance by introducing

many predictor variables and expecting that at least a few of

them will come out significant. When there is a practically

unlimited number of independent variables involved,

redundancy may only be manifested after several variables

have already been entered into the regression equation. The

reason for this is that, rather often, observations do not

clearly distinguish between two or more of the basis

functions provided. In this sense, our adaptive refinement

scheme could be interpreted as a multiple regression, in

which the introduction of additional sources is expected to

reduce the error of the MFS solution. In the present

approach, the problem of source selection is viewed as a

parameter estimation scheme where it is desired to select a

subset of best unit intensity fields from the fundamental

solutions as predictors of the fields at the given boundary

collocation points.

At each step k; some of the Nk21 sources from the

previous step need to be selected to be spread, so

that additional sources are added in their vicinities.
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The corresponding Nk 2 Nk21 columns of basis functions

are added to the design matrix X, and a new least-squares

problem is solved.

4.1. Correction indicators

Approximate numerical solutions obtained by the MFS

are sensitive to the selection of collocation points on the

boundary and to the selection of source points. As pointed

out before, the least-squares solution of the MFS provides a

direct way of computing the influence of each parameter

based on direct interpretation of the relative significance of

the sources provided by regression analysis, resulting in a

reasonable and inexpensive way of obtaining indicators for

refinement.

In any refinement strategy for the MFS, the selection

and spreading of sources must find a combination that

include as least as possible interactions between highly

correlated neighboring sources which may lead to

collinearity and ill-conditioning of the least-squares

problem. Consequently, care must be exercised to avoid

breakdown caused by premature inclusion of predictors.

This is accomplished in this work by following selection

procedures for best predictor subset in regression analysis

to guide the selective refinement with reduction of the

global error. In other words, new set of sources will be

added without increasing significantly the condition

number of the resulting matrix.

According with the t test and the fact that for a given data

Y the variance s is constant, a possible criterion to guide the

refinement procedure is to select as significant those source

intensities whose value (variance of parameters)

sj ¼
bj

cjj

�����
����� ð35Þ

is greater than some prescribed value, i.e. the most

significant parameters in the regression analysis [18]. In

this way we will be able to refine the sources without

increasing substantially the condition number of the

resulting matrix. As can be observed, this indicator is not

suitable for solution with iterative methods since it is

necessary to know the values of the diagonal terms of the

inverse matrix C:

As previously commented the t test is known to be a

marginal test from the perspective of the general linear test

approach. Therefore, it will be not surprising that the

application of the above criterion does not work all the time,

as was observed in our numerical examples. Another

alternative to select the new sources can be defined in

terms of the variability explained by the regression, i.e. the

criterion resulting from the values of R2; since the

coefficient of determination R2 is interpreted as a relative

measure of the error reduction, as higher R2 is the model fits

better the data. Using this last approach, we can compute a

local indicator by selecting the contribution of each source

to explain the total sum of the coefficient of determination.

In this way, the sources that contribute more to increase the

magnitude of R2 are the most significant in the solution.

Since for a given data file the terms YTðY 2 �YÞ and YTY in

Eq. (34) are constants, it follows that an increase in R2

obtained by those parameters (sources in our case) that

contribute more to produce a larger values of the vector

product bjgj in Eq. (34). Therefore, we choose as an

alternative criterion to the the t test one that guarantee an

increase of R2 at every step of the refinement algorithm by

chosen as the significant sources those with the higher

values of

sj ¼
bidijgldlj

Y·Y
ð36Þ

where for scaling purpose, we have divided the term by the

square of Y : Note that the above equation refers to

the individual components whose summation is given in

Eq. (34). In our numerical examples we tested the efficiency

of the above two criterion for selection of the sources that

need to be refined, i.e. those found by using Eq. (35) or (36).

The approach proposed in this work is an extension to 3D

problems of our previous work [22] for 2D harmonic

problems, in which only the criterion based upon the

coefficient of determination R2 was employed and due to

the 2D nature of the problem, the strategy used to spread the

sources was simpler.

4.2. Criterion for spreading of sources

A sequentially refined MFS solution will be started on an

arbitrarily defined distribution. In principle we need only to

define a distribution of the boundary points and the sources

sufficient to describe the geometry and boundary conditions

of the problem. We assume that the distribution of the

boundary points is adequate and we are only concerned with

the refinement of the source positions.

The basic idea is that the sensitivity of the error to each

specific source intensity will indicate which of them can be

split into a local higher number of sources. Starting from the

initial coarse distribution of source points on a given

surface, the new intensities are added by subdivision of

sources in a hierarchical structure. At each step, the

correction indicators sj; given by Eq. (35) or (36), are

computed on the starting distribution to select the areas that

must be refined. Various strategies based on the same

indicators are possible to obtain an accurate solution in an

efficient way. In this work, from the distribution of the

values sj; the maximum value smax and average value �s are

computed to define a threshold

sc ¼ a�s þ ð1 2 aÞsmax ð37Þ

so that all sources with a value sj . sc will be spread. a is an

adjustable refinement parameter, which can vary between 0

and 1. Noticed that with this strategy, when we use a ¼ 1;

we will refine all sources with an indicator larger than
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the average value, �s; and with a ¼ 0 only refine the source

with the larger value of the indicator.

4.3. Geometry of source spreading

As opposed to BEM, MFS is practically grid-free. Tree

structures have no preferred geometry and are particularly

effective for discretization in the MFS. By partitioning a

source distribution into a hierarchy of localized regions,

the branched region near the source in question is

explored in detail, and the more distant regions are

explored more coarsely.

An initial coarse distribution of source points on a

surface enclosing the original problem domain is given

and a tree structure of nested triangular branching is used

for spreading of the sources over such external surface. In

what follows we shall introduce the computational

molecule associated with the tree construction. Although

strictly speaking the distribution does not have a mesh

structure, for the purpose of automating the source point

generation process, the triangular areas around the sources

can be considered as associated cells connect neighboring

source points.

In the solution of the least-squares problem at a given

refinement stage we want to profit from the reduction in

error already achieved with all previous generations of

sources. Since we want to use the refinement algorithm to

create and modify sequences of nested distributions, the

linking of generations and creation of children points to be

added to the sequence plays an important role in the

procedure. In the presented sequence of nested triangular

branches, children source points are generated by simple

bisection of the arcs connecting the parent source point with

the vertices of its associated triangle. In this way, the source

distribution is iteratively partitioned into a hierarchy of

localized regions. At the next iteration the children of the

previous nest becomes the new parents. The construction of

a second order tree, i.e. of level two, over a sphere is

illustrated in Fig. 1.

Refinement algorithms can be applied in different

contexts, for example to be able to develop flexible

generators of irregular trees or to locally refine a given

tree. In these cases is not necessary to store the complete

sequence of divisions. However, some bookkeeping of the

sequential branching helps if during further refinement steps

it is necessary to eliminate some of the previous branches in

order to change sequences of nested branching, as in cases

of time dependent problems. Although the advantage of no

meshing is surrendered to a certain extent, there is great

flexibility and simplicity in the procedure for building the

hierarchical tree structure. The molecular structure of the

presented spreading algorithm is not intended to be

computationally optimal, but its computational burden is

small compared to that of the overall operations in the

refinement algorithm.

4.4. Termination of refinement

There are many possibilities for the process to come to an

end. In an absolute sense, at the last step, Nk cannot be

greater than M: The refinement can be terminated earlier by

consideration of computational limitations or desired

accuracy. In the present implementation a maximum

number of sources is fixed as Nmax ¼ M=4: However,

adequate accuracy is usually obtained before that limit

with a near-optimal value of the refinement parameter a:

Failure may be detected otherwise in the solver routine due

to ill-conditioning, generally as a result of a bad initial

discretization. In this paper emphasis is made on the strategy

as the specific computation of the correction indicator and

the termination criterion can vary between implementations.

The aspect of defining a criterion for the termination of the

adaptive process may deserve further study for particular

applications.

5. Numerical examples

Since the proposed method can be based upon two

different criteria borrowed from statistical analysis, its

capability to reproduce the potential needs to be tested on

different problems. In order to observe the features of the

adaptive process, the overall convergence of the numerical

solutions obtained with the adaptive scheme are illustrated

by computing the relative residual error, which is shown in

logarithmic scale in the figures below.

In the examples considered in this section, the

adaptive strategy applied on a enclosing surface auto-

matically yields a graded mesh in a relatively short

number of steps. In three steps the error obtained is

acceptable for practical engineering applications. Further

refinement gives increased accuracy, the reduction of

error is noticeable in few steps with a relatively small

number of sources.

In the present refinement is accomplished by introducing

new sources. As a way of comparing efficiency, we used

both direct and indirect algorithms to solve the resultingFig. 1. Tree structure of source refinement on the surface of a sphere.
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system of algebraic equations at each step of the refinement

schemes. When using a direct algorithm to solve the normal

equations, the design matrix updated at each refinement step

can be partitioned in order to obtain a solution by taking

advantage of the one from the previous step. We store the

inverse matrix C and the cholesky factor of A from

the previous distribution, so that the procedure to update the

vector of parameters and the complete inverse matrix

involves full inversion of a relatively small square matrix

only. The remaining operations are matrix products which

become more computationally expensive as the number of

sources increases.

For indirect solution we use GMRES and instead of storing

a precomputed square matrix for the normal equations the

product needed for each iteration is performed as two matrix-

vector products in order to reduce the effect of roundoff error.

The required memory for the stored basis vectors grows at

each iteration of the refinement procedure but is kept small

compared to that required by the whole matrix X.

In our numerical experiments, the use of the indirect

algorithm was always more efficient than the direct one.

Besides, numerical instabilities were encountered when

using the direct solver for more than 250 sources in

the discretization. In those cases in which both approaches

were possible to be used, the corresponding numerical

solutions were found to be identical. The numerical results

reported in this section were found with the used of the

GMRES solver.

We first consider the problem, which potential is given in

spherical coordinates by

F ¼ r2 sin2u cos 2f ð38Þ

inside a unit radius sphere. Dirichlet boundary conditions

are imposed at M ¼ 2048 points uniformly distributed on

the surface of the sphere r ¼ 1: An initial uniform

distribution with 32 sources located on a sphere with radius

a ¼ 2 is given. In this first example, the refinement

indicator, sj; is given by Eq. (35), i.e. the indicator based

on the variance of parameters. Fig. 2 shows the reduction of

the root mean square error in the potential and the normal

derivative at the surface in 4 steps.

An additional example with the same potential is

considered but imposing the normal derivatives at the

same collocation points of the first example, and the value of

the potential at the origin is given in order to guarantee

uniqueness of solution. Fig. 3 shows the corresponding

behavior of the error.

The previous two examples were solved using the

alternate indicator given by Eq. (36), i.e. the indicator

Fig. 2. Error reduction in refinement based on variance of parameters with

2048 imposed potentials on a sphere.

Fig. 3. Error reduction in refinement based on variance of parameters with

2048 imposed normal derivatives on a sphere.

Fig. 4. Error reduction in refinement based on coefficient of determination

with 2048 imposed potentials on a sphere.

Fig. 5. Error reduction in refinement based on coefficient of determination

with 2048 imposed normal derivatives on a sphere.
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based on the coefficient of determination, which gives a

faster reduction of the error than those obtained with the

previous error indicator, i.e. the indicator based on the

variance of parameters, as shown on Figs. 4 and 5. In both

examples, Dirichlet and Neumann problems, when using

the indicator based on the variance of parameters, Eq. (35),

it was necessary to keep the number of sub-divisions

relatively small at each iteration, i.e. to use a small value

of a corresponding to a slow refinement scheme, in order

to guarantee that the resulting algebraic system does not

become singular. However, this problem was not observed

when using the coefficient of determination, Eq. (36),

which always works even for large values of a

corresponding to a fast refinement scheme. The difficulty

encountered with the method of the variance of

the parameters appears to be consequence of the marginal

character of the t test.

We compare the performance of the iterative and direct

solvers with the latter indicator. For all successful runs, i.e.

for optimal values of the refining parameter a and an

adequate starting distribution of sources, the results from the

iterative solver are indistinguishable from those of the direct

solver. However, the iterative solver is faster for larger

problems. In addition, when the direct method degenerates

due to ill-conditioning the iterative approach was able to

produce good results. In general a trial value of the

refinement parameter near a ¼ 0:6 can be safely used as

an initial approximation.

As a next test using the iterative solver and the coefficient

of determination as the more recommended scheme,

according to our previous experience, we consider the

problem inside of a cylinder which potential given in

cylindrical coordinates as:

F ¼ I1ð2rÞsin u cos 2z ð39Þ

where I1 is the modified Bessel function of the first kind.

This problem is solved in a cylinder with radius 1 and

height 2. Potentials are imposed on the circular faces and

normal derivatives on the cylinder walls, i.e. a mixed

boundary value problem. For this problem the total number

of boundary points is M ¼ 2568: The sources are originally

distributed on an ellipsoid with semiaxes ar ¼ 2:2 and az ¼

3:3; which encloses the cylinder. Fig. 6 shows an important

reduction of the relative residual error in 4 refinement steps.

As a final test using the iterative solver and the coefficient

of determination, we consider the steady state heat flow in

an infinite hollow circular cylinder, i.e. between two

concentric cylindrical surfaces, with constant surface

temperature. The analytical solution of this problem is

given in cylindrical coordinates as:

F ¼ F1 þ ðF2 2F1Þ
lnðr=r1Þ

lnðr2=r1Þ
ð40Þ

where F1 and F2 are the temperatures on the inner and outer

surfaces with radii r1 and r2; respectively. We deal with this

2D problem as a 3D mixed boundary value problem with

plane covers placed at z ¼ ^h=2: This problem is solved

with F1 ¼ 1 at r1 ¼ 1; F2 ¼ 2 at r2 ¼ 2 and h ¼ 1: We

impose the corresponding temperatures on the cylindrical

surfaces and zero normal derivatives on the plane surfaces.

Although consideration of axial symmetry makes this a

simple problem, to illustrate its solution in 3D space a

uniform fine distribution of boundary points is used.

The total number of boundary points is M ¼ 3600; with

600 of them on the inner cylinder, 1200 on the outer

cylinder and 900 on each of the upper and lower plane faces.

120 sources are initially distributed on an toroidal surface

generated by an ellipse with semiaxes ar ¼ 1 and az ¼ 2;

with radius of rotation around the z axis rt ¼ 1:5: Fig. 7

shows the results of refinement with a ¼ 0:8: A sharp

decrease of the relative residual error can be noticed in the

first refinement step, which rather seems to indicate an

excessive number of initial points. This is followed by a

slower further reduction to the order of 1024.

6. Conclusions and recommendations

This work introduces an adaptive refinement procedure

for the MFS based on concepts from multiple linear

regression analysis. The computation of the approximate

solution to potential problems through the least-squares

Fig. 7. Error reduction in refinement based on coefficient of determination

with 1800 potentials and 1800 normal derivatives imposed on a square ring.

Fig. 6. Error reduction in refinement based on coefficient of determination

with 768 potentials and 1800 normal derivatives imposed on a cylinder.
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approach provides a notable reduction in the number of

source points in relation to those required by the direct

collocation scheme. In addition, a more reasonable

distribution of the global error in the solution can be

achieved. The solution with the iterative solver GMRES

makes this refinement scheme a powerful tool for large 3D

potential problems.

The numerical experiments carried out in this work (for

first, second and mixed boundary value problems) show that

the indicator based on the coefficient of determination

generally work better than the one base upon the variance of

parameters. This technique provides useful information to

guide a selective refinement of the source distribution.

Reduction of the global error is reached in relatively few

steps, even with a very coarse initial starting distribution of

sources.

Since the MFS allows great flexibility in the way in

which the discretization is carried out, the strategy used in

the presented refinement-only implementation for the

source spreading can be certainly improved. Simpler and

more obvious strategies can be used if it is not necessary to

redefine the refinement branches afterwards. However, this

redefinition of the branches procedure could be required to

manage more complex situations, as is the case of moving

boundary problems.

Although the present refinement strategy is based upon

the distribution of new sources over a prescribed auxiliary

surface enclosing the original problem domain, simulating

the effect of an external single layer potential, it is also

possible to extend the present idea to the distribution over

more than one auxiliary surface by allowing hierarchy

trees with branches perpendicular to the original surface

and not only tangential to the surface. In this way it is

also possible to represented the effect of two or more

layer of potentials, i.e. external double or more surface

potentials.

In the present refinement strategy based upon the

distribution of sources over a prescribed surface, it is clear

that the achievable error reduction is strongly dependent

on the selection of the surface and the initial distribution

of points. Adequate accuracy can be guaranteed provided

that the initial distribution of points reflects in some sense

the flow pattern and the auxiliary surface is constructed

following a compromise between the higher accuracy for

farthest distances from the domain and the better matrix

condition at shorter distances. Further improvement can

be directed towards refining the shape of the auxiliary

surface itself.

The proposed error indicator and refinement strategy

introduced in this work for harmonic problems could be

adapted to other elliptic problems. The approach adopted in

this work has potential advantages and more research is

needed in this direction for its application to complex

practical problems, especially time dependent problems

with moving boundaries.
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