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In this article we describe an improvement in the speed of computation for the least-squares method of
fundamental solutions (MFS) by means of Greengard and Rokhlin’s FMA. Iterative solution of the linear
system of equations is performed for the equations given by the least-squares formulation of the MFS. The
results of applying the method to test problems from potential theory with a number of boundary points
in the order of 80,000 show that the method can achieve fast solutions for the potential and its directional
derivatives. The results show little loss of accuracy and a major reduction in the memory requirements
compared to the direct solution method of the least squares problem with storage of the full MFS matrix.
The method can be extended to the solution of overdetermined systems of equations arising from boundary
integral methods with a large number of boundary integration points. © 2003 Wiley Periodicals, Inc. Numer
Methods Partial Differential Eq 19: 828–845, 2003
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I. INTRODUCTION

The method of fundamental solution (MFS) is one of the most intuitive approaches to solve
numerically linear elliptic partial differential equations. In this type of approach an approximate
solution is represented in the form of a linear superposition of source functions (fundamental
solutions) located outside the problem domain, �. As the fundamental solution satisfies the
differential equation at any point except at the source point, it follows that this representation

Correspondence to: Henry Power, School of Mechanical, Materials, Manufacturing Engineering, and Management,
University of Nottingham, University Park, Nottingham NG7 2RD, UK (e-mail: henry.power@nottingham.ac.uk)

© 2003 Wiley Periodicals, Inc.



exactly satisfies the governing equation and one seeks to satisfy the imposed boundary condi-
tions approximately at a set of boundary points (collocation points). In [1] a comprehensive
review of the MFS is given, in which this approach is related to a regular indirect single layer
boundary element approach (indirect-BEM). Some of the most relevant features discussed in [1]
will be addressed in this section.

In the regular indirect single-layer BEM approach, the solution of the problem is represented
in terms of a single layer potential, in which the unknown density is distributed over a auxiliary
surface Ŝ which encloses the domain �� , i.e., including the contour of � (the surface S ). Since
for such representation the kernel of the single-layer potential (the fundamental solution) is
completely regular at points on the surface S, its follows that standard quadrature rules can be
used to approximate the surface potential when it is evaluated at any boundary point on S,
whatever interpolation function is used. Therefore, the numerical approximation of such single
layer representation reduces to a linear superposition of fundamental solutions located outside
the problem domain, i.e., the MFS.

One of the pioneer works on the MFS was the work by Kupradze and Aleksidze [2] where
they prove the completeness of the potentials in H(�), the set of harmonics functions in �. This
work was later expanded upon by Bogomolny [3].

Although the MFS is useful for a large class of problems, the discussion in this article is
restricted to the solution of the three-dimensional Laplace equation. In this type of approach, the
solution of the Laplace interior problem is approximated by a linear combination of sources
located outside the problem domain [4]. The coefficients of the fundamental solutions for given
coordinates of the sources are determined in general by solving a system of equations that is
obtained imposing the corresponding boundary conditions of the problem. This can be done by
means of direct collocation, for which a system with a number of linear equations with an equal
number unknowns is solved (see [5]). Alternatively, the boundary conditions can be satisfied in
the least-squares sense with a number of sources smaller than the number of points where the
boundary conditions are specified. This was the approach taken by Bogomolny in [3] and there
is some numerical indication that this approach may be the most efficient [6]. In the present
work the least-squares approach is used, focussing our attention to the solution of very large
problems (in numerical analysis large problems means large number of degree of freedom).

A major problem encountered with the MFS is that for some problems as the number of
sources increases the system of equations resulting form the scheme can become highly
ill-conditioned [7–9]. However, it has been observed that despite the ill-conditioning, the
accuracy of the numerical solution is largely unaffected [3, 7, 10]. Golberg and Chen [1]
reported that in these cases direct solvers, as Gaussian elimination, can be used effectively, even
if the resulting condition number of the matrix is very large, by ignoring the message of singular
system of the numerical routine.

Traditionally in numerical analysis the stability of the scheme, i.e., the amplification of data
errors, is measured by the condition number of the matrix (the ratio between the largest and the
smallest singular values of the matrix). Typically ill-conditioning is indicated by very small
values of the smallest singular value. It is known that in some cases only the consideration of
the condition number will result in an under estimation of the stability. In [11] it is shown that
a full understanding of the numerical stability requires knowledge of the complete singular
values (SV) of the matrix and not only its largest and smaller values. In [8] and [9] Kitagawa
showed that this is the case when using the MFS.

Convergence analysis of the MFS for the solution of the Laplace equation in two dimensions
were considered by Cheng [12], Katsurada and Okamoto [13], and Katsurada [14]. In those
articles it is shown that when S and the boundary conditions are smooth functions, the MFS
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converges exponentially to the solution of the partial differential problem. Although equivalent
theoretical analysis are not available for the corresponding three-dimensional analogous prob-
lems, Golberg and Chen [7] presented an heuristic analysis, in which they suggest that similar
convergent behavior could be expect for three-dimensional problems.

In the implementation of the MFS, the approximation of the geometry of the problem and the
boundary conditions can always be improved by increasing the number of surface collocations
points or/and the number of sources representing the solution. This leads to a major drawbacks
of the methods due to the increasing in size of the resulting fully populated matrices. In order
to overcome the difficulties in the handling of the huge dense matrices arising from the particle
interactions, fast summation methods must be used. These methods use the fact that a collection
of such particles viewed from a sufficiently large distance can be grouped in a single evaluation,
the loss of accuracy in this approximation decays with the distance. Therefore the farther
influences can be clustered in order to reduce the computational time of the so-called N-particles
problem. N-particle problems pervade many different branches of numerical simulation. The
naive approach involves an all-pairs computation and is O(N2) complexity. Although the exact
computation of the pairwise interactions between all N components of such a system is O(N2)
in complexity, approximate solutions often may be computed with O(N log N ) or O(N )
complexity. Those fast methods for the solution of the N-particles problem, have immediate
implications on the boundary integral methods for the numerical solution of boundary value
problems, as their discrete representation is given by summation of pairwise interaction between
sources as well as in the direct collocation approach of the MFS. This is not necessarily the case
when computing the least-squares approach of the MFS, as we will discuss in this article.

By using an expansion and grouping technique, it is possible to perform a fast evaluation of
the matrix-vector products. In this approach it is not possible to have an explicit form of the
matrix, and therefore the use of iterative solvers is required. A description of the application of
this approach to obtain fast solution of the direct BEM collocation approach for the Laplace
equation is given by Rokhlin [15], where the use of the generalized conjugate residual algorithm
is suggested. By using the full implementation of Rokhlin’s fast approach it is possible to
reduces the computational cost of the BEM solution from O(N3) to O(KN), N being the number
of degree of freedom and K the number of iterations. Different formulations will lead to different
preferred iterative methods of solution, and the use of GMRES [16] has been explored in recent
applications of multipole schemes for a variety of problems using iterative solution of the linear
systems of equations obtained from the BEM [17–19].

In the early 1980s several O(N) and O(N log N ) numerical algorithms were reported for
computing the potential and force fields resulting from the gravitational or electrostatic inter-
actions of N particles (N-particle problem), for which the standard solution leads to a compu-
tational complexity of O(N2). These algorithms were based on the expansion of the potential
field generated by N sources in multipolar or Taylor series and grouping far-field influences.
Among these works, Barnes and Hut’s tree-codes scheme [20] and Greengard and Rokhlin’s fast
multipolar method [21] are worth special attention. Barnes and Hut did much of the early work
with truncated multipole expansions. Their tree-code algorithm uses an oct-tree data structure to
hierarchically subdivide the simulation domain into well-separated areas that can interact via the
truncated expansions. Their method reduces the computational complexity of the problem from
O(N2) to O(N log N ). From another standpoint, Greengard and Rokhlin introduced the concept
of local expansions to translate and sum the effects of multiple remote multipole expansions into
a single local expansion. These local expansions combined with the oct-tree data structure
provide a further reduction in the complexity of the evaluation to O(N ). This high-performance
algorithm was achieved by expanding the kernel in terms of spherical harmonic series and using
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the duality principle between the inner and outer expansions of harmonic functions. The group
of Board and coworkers present parallel implementations of multipole-based N-particle algo-
rithms for particle simulation, with application to molecular dynamics simulations [22–25].
These algorithms use multipole expansions and hierarchical decomposition to produce results
with a known error boundary for a variety of parallel computing platforms.

Successfully implementation of efficient applications of the multipole algorithm to complex
and computationally demanding practical problems has been recently reported in the literature,
as is the case of the numerical simulation of concentrated emulsions of deformable drops (see
Zinchenko and Davis [26]).

Although the fast multipole algorithm (FMA) is applicable to integration in the BEM, its
application to the direct collocation approach of the MFS is more evident, because in such an
approach the solution of the problem is approximated by a linear combination of N sources
located outside the problem domain [4], with an equal number N of surface collocation points.
Therefore, as in the N-particles problem, in this approach the solution reduces to the multipli-
cation of a N � N matrix by a vector in each iteration.

Although the number of source points is smaller for the least-squares MFS, the operation
count of iterative solvers is still O(K � M � N ), where K is the number of iterations, M is the
number of boundary points, and N is the number of sources, being usually M �� N. Also, the
storage capacity required is O(M � N ). However, for very large problems both the operation
count and storage capacity can becomes massive. Is for this reason that in this work we
investigate how to accelerate the least-squares MFS and reduce the memory requirements to
solve large three-dimensional problems by means of a multipole expansion method.

II. SOLUTION OF HARMONIC PROBLEMS BY THE METHOD OF FUNDAMENTAL
SOLUTIONS

In this section the MFS is described for interior boundary value problems of the Laplace
equation. A domain � � �3 is given, whose boundary S is a simple closed surface. An unknown
harmonic function �(P) must be found with prescribed boundary values on S, i.e., the following
equations need to be satisfied:

�2��P� � 0, P � � (1)

��P� � f�P�, P � S1 (2)

��

�n
�P� � g�P�, P � S2, (3)

where S � S1 � S2. Let �*(x, �) be the fundamental solution of the Laplace equation

�*�P, Q� �
1

4�

1

�P � Q� . (4)

A direct BEM gives an integral equation for ��/�n, the unknown normal derivative on S1, and
for the unknown potential � on S2. The integral equation is solved numerically and � can be
evaluated in the interior of �. The principal advantage of the boundary integral approach is that
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there is no need to construct a mesh on �. A main disadvantage is the computational expense
to evaluate the required boundary integrals on S.

Alternative to the direct BEM, the indirect regular BEM approach represents the solution of
an interior problem in terms of the single layer potential with unknown density �:

��P� � �̂
S

�*�P, Q���Q�dS, (5)

where Ŝ is the contour of a domain containing �� .
Representing the unknown density �, on Ŝ, in terms of a set of interpolation functions �j(Q),

j � 1, 2, . . . , n, i.e.,

��Q� � �
j�1

n

cj�j�Q�; Q � Ŝ, (6)

the above single layer can be approximated by

��P� � �
j�1

n

cj �̂
S

�*�P, Q��j�Q�dS. (7)

In general, the integrals

�̂
S

�*�P, Q��j�Q�dS 1 � j � n (8)

need to be evaluated numerically. Because in this approach the collocation points, P, are always
different to the sources points, Q, where P � �� and Q � Ŝ, the above integrals are nonsingular
and therefore can be evaluated numerical by any standard quadrature rules with a weighting
function 	l, i.e.,

�̂
S

�*�P, Q��j�Q�dS � �
l�1

N

	l�*�P, Ql��j�Ql�. (9)

And therefore, the above single layer potential can be represented by

�̂�P� � �
j�1

N

bj�*�P, Qj�, (10)

where
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bl � 	l �
j�1

n

cj�j�Ql�. (11)

The above superposition of fundamental solutions outside the problem domain, Eq. (10), is
known as the MFS. This equation follows naturally from Eq. (5); however, usually it is
necessary to add a constant term in particular in two dimensions, where it is required for
completeness purposes:

�̂�P� � b0 
 �
j�1

N

bj�*�P, Qj�. (12)

As can be observed a constant value is always a solution of the Laplace’s equation.
From the above analysis, we can say that the MFS is a technique pertaining to the class of

boundary elements methods, which is applicable when a fundamental solution is known for the
partial differential equation for which a solution is desired (for more details see [1]). Therefore,
the MFS is in a way similar to the method of boundary elements, with additional advantages
with respect to the simplicity of its formulation and the fact that the distribution of points is
practically mesh-free.

As the fundamental solutions satisfy the differential equation, �̂(P) will automatically be
harmonic. A good approximation to �(P) will then be obtained by imposing the boundary
conditions at M points Pi on S. The expression of �̂ or its corresponding normal derivative
��̂/�n are then equated to the values given by the boundary conditions. In this way, a system
of M linear equations with N unknowns bj is obtained. Once the system of equations is solved,
the potential and its directional derivatives at any point in �� can be computed by replacing the
intensities bj in the expression for the potential �̂(P) evaluated at the desired point.

After imposing the corresponding boundary conditions, the resulting system of linear
equations can be expressed in matrix form as

Xb � y, (13)

where X is the matrix of coefficients of the unknown source intensities b, i.e., values of �*(Pi,
Qj) and ��*(Pi, Qj)/�n, and y is the right-hand-side known vector of potentials and normal
derivatives at the boundary points. To obtain the estimate b0 in the case of Dirichlet conditions
a column vector x0 with its elements equal to 1 is added to the matrix X. For the case of
Neumann conditions, the corresponding elements in x0 are equal to 0. The direct collocation
MFS corresponds to the case where M � N, whereas the overdetermined system with M 	 N,
gives rise to a least-squares MFS.

III. FORMULATION OF THE LEAST-SQUARES PROBLEM

Minimization of the euclidean error norm yields N linear equations:

�
i�1

M �yi � �
j�1

N

bjxij� xik � 0; k � 1, . . . , N, (14)
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which can be written as the matrix equation

Ab � XTXb � XTy, (15)

where X is a matrix whose M � N components are constructed from N basis functions evaluated
at M boundary points, b is a vector of length N whose components are the source intensities, and
y is a vector of length M given by the values at the boundary points. These equations are called
the normal equations of the least-squares problem with solution

b � Cg, (16)

where C � A
1 and g � XTy, with N � M, since there must be more boundary than source
points to be solved.

One of the major problems on the application of the method of normal equations to obtain
a least-squares approximation of an over-determined linear system of algebraic equations, as the
one resulting from Eq. (15), is that its accuracy depends on the square of the condition number,
which could be critical for the type of problem considered in this article (in particular when
considering the position and number of source points as variables, since for such a case the
resulting MFS matrix can be poorly conditioned). Alternatively, it is possible to use some of the
scheme involving factorization or reflection of the matrix X to avoid the severe loss of accuracy
due to the ill-conditioning of XTX, at the expense of requiring about twice the number of
arithmetic operations and much more computer storage. Of those alternative approaches, Golub
[27] is likely to be one of the most accurate. Golub recognized that by application of
Householder transformation the successive reduced matrices are computed with sufficient
accuracy.

Substantial progress has been achieved in the development of numerical methods for
least-squares problems over recent years. There has been a great increase in the capacity for
automatic data capturing and computing. Least-squares problems of large size are now routinely
solved. The solution for the vector of parameters can be obtained with or without explicitly
computing the inverse matrix C, by using a wide variety of routines [28] for direct solution
methods such as LU decomposition and back-substitution or Gauss-Jordan elimination. Methods
specifically designed for symmetric positive definite matrices such as Cholesky decomposition
are usually preferred to solve the normal equations. However, the solution of a least-squares
problem directly from the normal equations is rather susceptible to roundoff error. Alternative
techniques such as QR decomposition of the design matrix X reduces the error since it does not
involve explicit computation of the product XTX.

As larger problems are considered and the matrix solution cost begins to dominate, some
advantages can be obtained from the use of indirect solvers: the first is a possible improvement
in solving time against direct methods provided that a good convergence is achieved, and the
second resides in the huge storage requirements that can be avoided if the cost of computing the
functions is less than the cost of storing the matrices, i.e. if explicit manipulation of the matrix
can be avoided. Björck [29] examines several direct and iterative methods for least-squares
problems. Among these, the conjugate gradient method (CG) has been widely applied to
least-squares problems in FEM and BEM applications for some time, but its convergence
depends on the expert selection of a good preconditioner. For ill-conditioned matrices LSQR
[30] should be more reliable and stable than least squares adaptation of symmetric CG, at the
expense of more storage and work per iterations.
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Recently, the attractiveness of the GMRES (generalized minimal RESidual) algorithm [16]
has been increasingly recognized in BEM, where the matrices that arise from surface discreti-
zation are fully populated and in general wholly unstructured, unlike those from finite element
methods. With suitable modifications the GMRES can indeed be applied to large three-
dimensional problems. The standard nonrestarted GMRES algorithm, also referred to as
GMRES�, calculate a new orthonormal basis vectors of the Krylov subspace for each iteration
by using all previous orthonormal basis vectors and is guaranteed not to break down. However,
a restarted version [GMRES(k)] is more convenient to reduce storage requirements. GMRES is
particularly useful if the system matrix cannot be built explicitly, since it only involves its use
through a product of the matrix by a vector.

In the fast algorithm developed in this work, we use the GMRES restarted indirect solver to
find the solution of the system of algebraic Eqs. (15), and instead of storing a precomputed
square matrix for the normal equations the product needed for each iteration is performed as two
matrix-vector products, in which we used the appropriate version of the FMA to evaluate each
of the products. Indeed this is the only way to obtain the product XTXb when the matrix X is
not stored explicitly, as it is required in the multipole-accelerated solution detailed in the
following sections. Besides by performing the above two matrix-vector products instead of
evaluating of the normal equation, even in the cases when using direct solvers without the FMA,
it was possible to reduce the effect of roundoff error in the least-squares solution.

IV. THE FAST MULTIPOLE ALGORITHM

The FMA of Greengard and Rokhlin [21] has been successfully used for efficiently computing
the N-body problem (particle interactions) for large numbers of particles. The main feature of
the FMA is that it reduces the operation count of the traditional O(N2) N-body problem to O(N ),
while maintaining known accuracy bounded by rigorously derived error bounds. Many discrete-
point applications have capitalized on the FMA’s performance, especially in molecular dynam-
ics and celestial mechanics. When this method is applied to continuum-mechanics as in the
BEM numerical technique, the discretization procedure uses a representation where a set of
points is chosen from the boundary and the integrals of the kernels in the Green’s representation
formula are expressed in terms of a sum of weighted singularities that are expanded by means
of fast summations with the FMA. This operation is immediately interpreted in the MFS as the
product of a vector of source intensities premultiplied by a matrix composed by the fundamental
solutions as in the system of Eq. (13). In the present article we introduce the application of FMA
to premultiplication by the transpose nonsquare matrix as in Eq. (15) for the solution of the
least-squares MFS.

A. FMA Basic Equations

The discussion and notation in this section follows closely the one given in [25]. The basic idea
behind the FMA is simple. The potential at a certain point due to all interactions between
sources can be divided into two components: one due to nearby sources that can be computed
directly and one due to distant sources, given in the form of spherical harmonic expansions. The
representations of the potential field exist in two series forms in the FMA. One form is known
as the multipole expansion, obtained by application of the addition theorem for spherical
harmonics, which converges for distant evaluation points:
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��r� � �
n,m

Mn,m

Yn
m��, � �

rn�1 (17)

The other form is known as the local expansion, which converges within a cell:

��r� � �
n,m

Ln,mrnYn
m��, � �, (18)

where Mn,m and Ln,m are the corresponding expansion coefficients.
For each equation, multipole expansion coefficients (Mn,m), which are equivalent to multipole

moments, or local expansion coefficients (Ln,m), determine the potential at an evaluation point
(r, �, � ). Yn

m(�, �) are spherical harmonics, based on Legendre polynomials. The multipole
expansion series is summed over the defined range of the order n (0 � n � �) and degree m
(
n � m � n) of the spherical harmonic function Yn

m(�, �). Although the mathematical
equations employed in the FMA are exact for infinite series, its practical application uses
truncated series, and therefore the overall accuracy of the algorithm must be controlled by
setting parameters that include the level of spatial decomposition, the number of terms carried
in the multipole expansions and the minimum separation between interacting cells.

B. FMA Translations

In the FMA, there are several translations used to facilitate computing the potential field. By
using these translations the coefficients of a cell within a larger cell (Children cells of the Parent
cell) are shifted to the larger cell (Parent of the previous cells), the far-field potential at the center
of a cell due to sources of another well-separated cell is taken from the multipole expansion of
the latter and shifted to the local expansion, and small cells within a cell shift to their centers
the local expansion of the larger cell. The derivation of the three series translations based mainly
on spherical harmonic expansions is presented by Greengard [31]. In the equations below we
follow the notation used in [25] to describe the translations, called the multipole-to-multipole
(M2M) translation, multipole-to-local (M2L) translation, and local-to-local (L2L) translation.
The result of each translation is an output coefficient matrix that is computed by weighted
summation of the input matrix with a translation matrix T as described below.

1. M2M.

Mn
m
 � �
n,m

Tn,m,n
,m

M2M �
��Mn,m (19)

Tn,m,n
,m

M2M �
�� � �

�
1�n

nAn
mAn

n

m

m

An

m
 Yn

n

m

m��, ��
n

n, if n � n
 and

0, if �m � m
� � n � n

otherwise.

(20)

2. M2L.

Ln
,m
 � �
n,m

Tn,m,n
,m

M2L �
��Mn,m (21)
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Tn,m,n
,m

M2L �
�� � �

�
1�n
�mAn
mAn


m
Yn
�n
m

m��, ��

An
�n
m

m
n
�n�1 , if n � n
 and

0, if �m � m
� � n � n

otherwise.

(22)

3. L2L.

Ln
,m
 � �
n,m

Tn,m,n
,m

L2L �
��Ln,m (23)

Tn,m,n
,m

L2L �
�� � �

An

m
An
n


m
m


An
m Yn
n


m
m
��, ��
n
n
, if n � n
 and

0, if �m � m
� � n � n

otherwise,

(24)

where

An
m �

1

��n 
 m�!�n � m�!
.

The translation from a distant cell A to a local cell B simultaneously translates the origin O of
a truncated multipole expansion describing the potential field due to the sources in A to a new
origin at point (
, �, �) at the center of B. In this way, the FMA replaces most of the
particle-to-particle interactions with cell-to-cell interactions to improve the efficiency of calcu-
lations. The above three cell-to-cell translations (M2M, M2L, and L2L) are schematically
represented in Fig. 1.

FIG. 1. Schematic representation of the FMA multipole expansion translations.

3D HARMONIC PROBLEMS 837



These input (Mn,m, Ln,m), output (Mn
,m
, Ln
,m
), and translation (T) coefficient matrices are
approximately half-filled, since the coefficients are zero outside the allowed range of n and m.
In [25], a weighting term is eliminated in addition to the standard normalization factor in order
to make the computations with the multipole expansion equations more efficient. In addition, the
translations are presented in a more concise form by separating each term in the series expansion
into two factors: Fn,m(r�), which includes powers of r, and Gn,m(
�), which includes all partial
derivatives of 1/
.

C. The FMA Expansion and Grouping Procedure

The grouping of the terms is accomplished by defining a tree of clusters. In a three-dimensional
system of sources, the FMA starts by using an oct-tree for hierarchical spatial decomposition to
divide the domain into cells. The grouping starts from the lowest clusters, usually called leafs,
where sources are grouped, and then continued by forming the higher clusters where lower
clusters are grouped. A truncated multipole expansion, which expresses the effect on distant
points of all sources in a cell, is then calculated by using Eq. (17) for each cell at the finest level
of spatial decomposition.

After spatial decomposition, starting with the multipole expansion coefficients at the leaf
cells, the expansions are combined in a hierarchical fashion to represent the effects of larger and
larger groups of sources in what is known as the upward pass. The child cells use the M2M
translation in Eq. (19) to shift their multipole expansion to the center of the parent cell. In this
way, the FMA computes the multipole expansion coefficients of all cells higher in the oct-tree,
until similar multipole expansions are carried out for all cells at all levels.

As distant cells interact, each cell accumulates the far-field effects into its local expansion.
In the downward pass, well-separated cells interact by creating a local expansion at the center
of each cell using the M2L translation in Eq. (21) and the local expansions of each parent cell
are used to transfer down its accumulative far-field interaction to each of its children cells using
the L2L translation in Eq. (23). The procedure is made nonredundant by keeping an interaction
list of cells, which is passed from parent to children and updated at each level.

When the grouping is finished, the influences of the whole far field that were transferred in
the downward pass are distributed to the collocation points in each cluster by summation of the
multiplication of the terms of the series and their adequate grouped moments. Finally, far-field
effects are combined with direct short-field evaluations to yield the potential at each particle. For
a small number of particles this is indeed more costly than computing the direct interactions.
However, the computational cost increases linearly with N, and when the number of particles is
large, this cost becomes much smaller than the O(N2) computational cost of the direct
interaction.

D. Well-Separated Cell Criterion

A solution to the N-particles problem must be configured to seek maximum efficiency with
respect to runtime/accuracy trade-offs. Efficiency is improved when particles are grouped in
such a way as to minimize runtime while remaining within some specified accuracy measure-
ment. The well-separated cell interaction is carried out with the M2L translation, creating local
expansions. To use the information in the far field, a well-separatedness criterion must be
specified to enable decisions about whether the cells are far enough to interact as whole cells
rather than its components. This criterion is derived from the case of worst relative error bounds
and is a simple ratio that includes the geometries of the cells involved in the well-separated
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interactions. In this way the following expression based only on the size and separation of the
cells is obtained:

�rA 
 rB�

R
� MAP, (25)

where R is the distance between two cells involved in an M2L interaction, measured between
cell centers, rA and rB are the radii of circumscribed spheres corresponding to the the two cells
(for a cubic cell the radius is �3/2 times the length of the cube sides), and the MAP (multipole
acceptance parameter) is a user-selected value between 0 and 1, which is used with other tunable
parameters to optimize runtime/accuracy performance. By using a smaller MAP value, the
accuracy is improved and for a fixed desired accuracy, the order of the expansions can be
reduced at the cost of larger interaction lists. For more detail about the different criterion of
well-separated cells, see [22].

E. Application of the FMA to the Least-Squares MFS

The matrix-vector products v � Xb and u � XTv are needed at each iteration of the GMRES
iterative solution in order to obtain the product in Eq. (15). Hereafter we will refer to these
products as the direct product and the transpose product, respectively. The application of the
FMA to obtain the direct product is straightforward and this is the only one needed for the direct
collocation approach of the MFS. In this work we introduce the solution of the least-squares
system, which requires the additional product by the matrix XT.

In the direct collocation approach, i.e., N � M, when applying the expansion and grouping
procedure with the boundary and source points in two layers very close to each other in a fixed
distribution, the construction of the oct-tree with all points together proceeds in a straightfor-
ward fashion. Although the source points are different from the evaluation points, this appli-
cation differs little from the all-pairs computation, since most cells contain both kinds of points,
and the speed of computation benefits from the multipole and local expansions at all cells. In this
method the potentials at the boundary are forced to be satisfied exactly within multipole
accuracy, but larger errors could arise in the estimation of the normal derivatives, especially
when the distance between the source and evaluation layers is very small. From practical
experience and some analytical works, in particular in two dimensions (see [12–14]), it has been
observed that the accuracy of the approximation improves as the sources are moved farther away
from S, but it is necessary to impose restrictions on the size of the surface containing the source
points in order to prevent the system of MFS equations from becoming highly ill-conditioned.

Numerical experiments have shown that a least-squares formulation can allows more flexi-
bility in the error balance over the boundary. In addition, it requires a smaller number of source
points (see [6]). However, as stated in the introduction, these advantages can be outweighed by
ill-conditioning in the normal system of equations. Therefore the least-squares formulation
cannot be implemented in a simple way. In this work we introduce the transpose product
required by the solution of the least-squares system and explain how we deal with the balance
between speed and accuracy under the special conditions of the least-squares problem when the
distance between the source points and boundary points is not small.

In the computation of the direct product for a Dirichlet interior problem, the boundary and
source points are distributed in two layers. The external layer corresponds to the sources, and
instead of computing the elements of the matrix as xij � �*(Pi, Qj), the potential due to the
sources at the points Qj is computed by applying the upward and downward pass of the FMA
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procedure. At the final step the influences of the far field from the sources that were transferred
in the downward pass are distributed to the points in the leafs. These far-field effects are
combined with direct near-field evaluations to yield the potential at each boundary point Pi. This
procedure has in general little difference with that usually applied in the FMA fast evaluation
of the direct BEM collocation approach. However, for the present least-squares application
where the separation between the two layers is in most cases larger than the size of a leaf cell,
the construction of the oct-tree with all points together needs an additional indicator for each cell
in order to distinguish source cells, which possess nonzero multipole expansions, and evaluation
cells, which need to accumulate local expansions. A cell in a level near to the root can be of both
types, but leaf cells will normally be of one type or the other exclusively.

For the computation of the transpose product, the operation can be described in a very
intuitive way when only the potential is given at all boundary points; this is a consequence of
the symmetric property of the fundamental solution. Since the direct product v � Xb is
performed by computing the potentials v at the boundary points (rows of X) due to the given
intensities b at the specified source points (columns of X), i.e., the evaluation of the potential
at M boundary points due to the distribution of N sources of intensities bj, j � 1, 2, 3, . . . , N.
The immediate consequence of reversing the direction of the influence of the sources is to
exchange the columns by rows. In other word, the product u � XTv is obtained for the Dirichlet
problem by computing the potentials u at the source points (columns of X) due to the given
intensities v at the specified boundary points (rows of X), i.e., the evaluation of the potential at
N points due to the distribution of M sources with intensities vj, j � 1, 2, . . . , M. These
matrix-vector products are thus implemented in a straightforward fashion, in which we have M
sources evaluated at N points for v � Xb and N sources evaluated at M point for u � XTv.

The computation of the transpose product for the case of the Neumann problem is somewhat
more involved. The elements of the matrix X for this case are xij � (��*/�n)(Pi, Qj), were
(�/�n) � (�/�Pk)nk(Pi). Therefore, the product v � Xb is obtained by evaluating the normal
derivative at each of the M boundary points due to the distribution of N sources with intensities
bj, j � 1, 2, . . . , N, requiring the computation of the three directional derivatives �/�Pk, k � 1,
2, 3, and the corresponding normal product. On the other hand, the product u � XTv represents
the evaluation of the potential at N points due to the distribution of M dipoles oriented in the
direction of the normal vector at the M boundary points, with intensities vj, j � 1, 2, . . . , M. As
can be observed our FMA for a Neumann problem is more computational demanding than the
Dirichlet one. Similar difficulties appears in the FMA of a BEM formulation when dealing with
the normal derivative of a single layer potential and the evaluation of the potential due to a
double layer, respectively.

V. NUMERICAL RESULTS

In this section we explore the effects of problems size on the performance of our proposed
multipole solution. In our analysis, we use as tunable parameters the order of the truncated series
in the multipole expansion p and the multipole acceptance parameter MAP. In the present
implementation, rather than assuming an uniform cell size for the neighborhood and performing
parental conversion to reduce the size of the interaction list, the interaction list for a cell is
initially taken from that of its parent, and then the cells are divided only if they do not match
the imposed criterion of well separatedness. In this way the accuracy can be improved by using
a smaller MAP value.
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A fixed desired accuracy can be achieved by increasing the order p and reducing the MAP
value simultaneously, at the cost of more direct interaction computations. Therefore, there is a
minimum time depending on these two parameters for a given problem and desired accuracy.
We performed a preliminary experiment with N � M (direct collocation approach) and sources
distributed on a sphere with a radius twice of that of the domain boundary. In general it was
observed that for this configuration and within the usual ranges for the parameters, the mean
square error is approximately proportional to 2.4
pMAP8.8. This relationship, together with
estimates of the computational cost depending on both parameters, can be used as a rough guide
to obtain a balance between accuracy and speed. However, since the accuracy of the approxi-
mation in the MFS improves as the sources are moved farther away, a lower MAP value may
be preferred. In the results presented below we use MAP � 0.45.

In order to test the performance of the proposed method of multipole summation for the
least-squares approach of the MFA, we consider the harmonic problem inside a circular cylinder
with a potential given in cylindrical coordinates as

� � I1�2r�sin � cos 2z, (26)

where I is the modified Bessel function of the first kind. This problem is solved in a cylinder
with radius 1, and we vary the height H for different problem sizes. Dirichlet conditions are
imposed on all the boundaries.

In this section we compare the computational cost of our FMA solution, using the GMRES(k)
solver with a fixed number of k � 20, with the solution of the direct normal equation, also using
the same GMRE(k) solver, in which the previous two matrix-vector products were directly
carried out. It is important to point out that for the problem sizes considered in the examples,
it was not possible to find a direct solution of the normal equation using Cholesky decomposition
or Gaussian elimination.

In principle we need only to define a distribution of the boundary points sufficient to describe
the geometry and boundary conditions of the problem. We assume that the distribution of the
boundary points is adequate, and we adjust the source distribution. For all the cases studied the
total number of boundary points was given in terms of the height H as

M � 768 
 900H.

The overall actual running times and memory usage for the numerical solutions obtained with
the direct and multipole schemes are compared. Memory usage is counted for the stored matrix
and the multipole coefficients, respectively, and for the iterative solver in both schemes. We
report the actual running times, not including input-output operations, measured on a dedicated
computer with a Pentium III processor at 1000 MHz. For the iterative solution in the multipole
scheme we use p � 8, and a little additional error reduction is obtained adjusting the source
intensities by a single coefficient given by a linear regression performed with a single multipole
pass using p � 12.

An approximately uniform distribution of N � 64H � 128 sources on a curved surface which
encloses the cylinder at a distance from the cylinder surface varying between 2 at the sides and
(H/4) � 3 at the ends of the cylinder was used. For the used multipole parameters, the accuracy
of the results are of the same order of magnitude of those of the direct scheme. The maximum
relative error for both the potential and normal derivative was always smaller than 10
4;
however, the number of iterations was in general smaller with the direct scheme.
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Figure 2 shows the execution times of runs with values of H ranging from 2 to 80,
corresponding to a number of boundary points between M � 2,568 and M � 72,768, and sources
points between N � 256 and N � 5,248. The computational time for the direct scheme was
found to be smaller than the one corresponding to the FMA for cylinders smaller than H � 60,
i.e., in the present case the computational advantage of using multipole expansion technique to
carry out the matrix-vector products becomes evident for cylinders lagers than H � 60.
However, since in the present case both M and N are linear in H and because of the
ill-conditioning of the normal matrix, the number of iterations was approximately proportional
to N, it was found that the computational time for the direct scheme grows approximately as
N8/3, whereas the computational time for the multipole scheme was found to be in this case
approximately proportional to N5/3. The advantage in computational cost using the multipole
scheme becomes evident above the point corresponding to a matrix size of 54,768 � 3,968. It
is important to point out that no preconditioning was used in any of the two cases, since we
never build the corresponding square matrix of the normal equation in order to avoid roundoff
error due to the conditioned number of the normal equation. Therefore, a simple diagonal
preconditioning and no computational costly was not easy to define.

Figure 3 shows that the memory used by the multipole scheme was always smaller than the
one required by the direct approach.

When comparing the multipole algorithm in the least-squares approach for the direct product
v � Xb and the transpose product u � XTv, it was observed that the computation of the
transpose product is more efficient since N is much larger than M and the number of or source
cells in the interaction regions is very small compared to that of the direct product, since the
boundary points are concentrated in a inner layer of smaller dimensions. For both products, the
number of indexed stores for the resulting vector is less in the transpose product, so that the
overhead in computing the transpose product, relative to that of the direct product only, is rather
small, especially for processors that take significantly longer times in the operation of indexed
stores.

FIG. 2. Comparison of the execution times for direct normal and multipole methods.
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For Neumann boundary conditions, the computational time required for the evaluation of the
transpose product in the multipole scheme increases appreciably. Results of runs where
potentials are imposed on the circular faces and normal derivatives on the curved cylinder walls
show an increase in time with respect to the previous problems, which is about 10% for the
direct normal scheme and 40% for the multipole scheme. Therefore, the multipole scheme can
be less efficient for other problems rather than pure Dirichlet problems but it is still preferable
in time for very lager number of sources. In the above mixed boundary value problem the FMA
becomes more efficient than the direct approach for sources in numbers above 4000. In this
article emphasis is made on the strategy as the specific selection of the multipole order, the
well-separatedness threshold and the iteration termination criterion can vary between problems
and specific machine and compiler implementations. The aspect of defining optimal combina-
tions of these multipole and iterative solver parameters may deserve further study for particular
applications.

VI. CONCLUSIONS

The computation of the approximate solution to potential problems through the least-squares
approach provides a appreciable reduction in the number of source points in relation to those
required by the direct collocation scheme. In addition, a more reasonable distribution of the
global error in the solution can be achieved. The solution with the iterative GMRES solver and
the Fast Multipole Method makes this scheme a powerful tool for large three-dimensional
potential problems.

The numerical experiments carried out in this work show that for the cases considered, the
multipole scheme was in general more efficient, i.e., less computationally costly, for a number
of sources above 4000 and number of boundary points about 10 times larger. It was observed
that for smaller problems, although the computational time was longer for the multipoles
scheme, the savings in memory were always significant.

FIG. 3. Comparison of the memory usage by the direct normal and multipole methods.
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Although this work shows the application of the FMA to the least-squares approach of the
MFS, the extension of the proposed procedures to the least-squares solution of a BEM numerical
formulation of boundary value problems is straightforward. Better performance than the one
found is this work is expected for well posed second kind integral equations formulations, for
which it is known that the number of iterations of an iterative solution to fixed precision is
bounded independent of the number of surfaces nodes (for more details see Greengard et al.
[32]).

The authors thank the reviewers of the journal for their helpful suggestions.
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