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Abstract

Interpolation problems for analytic radial basis functions like the Gaussian and inverse multiquadrics can degenerate in two ways:
the radial basis functions can be scaled to become increasingly flat, or the data points coalesce in the limit while the radial basis
functions stay fixed. Both cases call for a careful regularization, which, if carried out explicitly, yields a preconditioning technique
for the degenerating linear systems behind these interpolation problems. This paper deals with both cases. For the increasingly flat
limit, we recover results by Larsson and Fornberg together with Lee, Yoon, and Yoon concerning convergence of interpolants towards
polynomials. With slight modifications, the same technique can also handle scenarios with coalescing data points for fixed radial basis
functions. The results show that the degenerating local Lagrange interpolation problems converge towards certain Hermite—Birkhoff
problems. This is an important prerequisite for dealing with approximation by radial basis functions adaptively, using freely varying
data sites.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last two decades, radial basis functions have attracted more and more attention as tools in various fields
of computational and applied mathematics. There are now books of Buhmann [1] and Wendland [19] containing the
background theory, and a recent survey [17] in Acta Numerica summarizes many applications.

A central problem with a close connection to optimal recovery and supervised learning [17] is d-variate inter-
polation of real values f1,..., fy at scattered centers xi,...,xXNy € R? by translates ¢(el| - —x;ll2) of a real-
valued scalar function ¢ : [0,00) — R with an additional positive dilation parameter ¢. This means solving a
system

N
> aj@¢lxi —xjl) = fi. 1<i<N, 1)

j=1
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Table 1
Positive definite analytic radial basis functions

Name $(r)
Gaussian exp(—r?)
Inverse quadratic (147271
Inverse multiquadrics a+rHF >0
Jajp—1(r)
Bessel —_—
rdj2—1

for real coefficients a;(¢), 1 < j <N, depending on ¢ and the data, and writing the interpolant as

N
s(e, x) := Z aj(e)¢(ellx —xjll2) forall x € RY.
j=1

It is well known that the coefficient matrix S(¢) with entries ¢ (el|xx —x;[l2), 1 < j, k<N, called the kernel matrix in
machine learning is positive definite for all ¢ > 0, any choice of N data points xq, ..., xy € RY for arbitrary dimension
d, if the radial basis function is positive definite, and this is true in the first three cases given by Table 1. The fourth
case, the Bessel radial basis function, was introduced in [14] and rediscovered in [5]. It still leads to positive definite
systems, but the dimension d enters into the function, as is the case for compactly supported radial basis functions like
those of Wendland [18].

However, the interpolation problem still depends on the dilation parameter ¢, and the systems usually have a wildly
increasing condition when ¢ — 0. Nevertheless, by a surprising observation of Driscoll and Fornberg [4], the interpolants
s(¢, x) often converge towards multivariate polynomials when ¢ — 0, and this is called the increasingly flat limit.
Convergence does not always occur, and it is influenced by the geometry of the data points x, ..., xy and the radial
basis function ¢ in a way which is not yet fully understood. But interpolants using the Gaussian can be proven [15] to
converge towards the polynomial interpolant in [3] in all cases, and the same unconditional convergence was reported
experimentally for the Bessel case in [11].

For general analytic radial basis functions and general geometric configurations, Larsson and Fornberg [11] provided
interesting sufficient conditions which unfortunately were still dependent on the hypothesized nonsingularity of certain
matrices. Later, Lee et al. [12] could prove their nonsingularity and extended the results to conditionally positive definite
analytic radial basis functions.

This paper applies a completely different technique adapted from [15] written in 2002. It is useful also in other
situations, e.g., for understanding preconditioning strategies for the matrices S(¢). In the increasingly flat limit case, we
recover the result of the cited papers [11,12] with a different and somewhat more direct proof, but we can also analyze
the coalescence scenario for the first time. This interpolates with a fixed unscaled radial basis function ¢, but (in the
simplest case) in data points coalescing into the origin for ¢ — 0. This leads to the system

N

Y aj@lexi —exjlla) = f(exi), 1<i<N, )

j=1

similar to (1), where now the data are evaluations f(ex;) of a smooth function f around zero. We shall show that the
limit will exist in most cases, and it will be a Hermite interpolant of a specific geometry-dependent form.

The outline of the paper is as follows. Since our analysis will have close connections to multivariate polynomial
interpolation, we shall start with the latter and postpone radial basis functions as much as we can. Then we turn
to multivariate meshless kernel-based interpolation problems and focus on the increasingly flat case first, because it
partially solves the coalescing points case also, as will turn out in Section 11. Following [15], we shall explicitly
precondition the degenerating interpolation problem in such a way that the limit of the preconditioned system can be
analyzed and calculated. This will solve both the flat limit and the coalescence scenario, but it also helps to a better
general understanding of the ill-conditioning of systems arising in radial basis function interpolation. But note that
Fornberg and Wright [6] have devised a Contour—Padé algorithm which can stably calculate multiquadric interpolants
in the increasingly flat limit case without any need for preconditioning.
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We insert some explicit calculations at several places of the text, instead of placing all examples at the end. These
calculations serve as illustrations for our theory and are not intended to solve real-world problems.

2. Polynomial interpolation

For multivariate polynomial interpolation on a set X := {x1,...,xy} in R there are a few important quantities to
be defined a priori. To this end, we use multiindices o € Zg in the standard way, defining the monomials x* € RY
for x € R, the nonnegative integer |o| := ||«| 1, and the multivariate derivative D* as usual. We order multiindices
o, f € Zg polynomially by defining o < f5 if either |o| < || or || = || with o < f§ lexicographically. A polynomial

p(x) = Z Ay x®

d
aeZy

with finitely many nonzero coefficients is an interpolant to data fi, ..., fy on X, if p(x;) = f;, 1 <i < N. Furthermore,
the space IPZ of polynomials of degree at most k in d variables has dimension ( kj;d) . Only in rare cases will the number

N of given data be equal to one of these numbers. Anyway, there always is an integer k; = k1 (N, d) with

ki —14+d ki +d
( d )<N<< d ) )

However, evenin case N = (k‘;d) itis not at all clear whether the monomial basis {x* : |o| <k} is linearly independent

on X. Therefore, one has to look at monomial or Vandermonde matrices formed by entries x;‘, where we let the row
index be j, 1 <j <N, and the column index be the multiindex «. With our polynomial ordering as defined above, we
can define monomial matrices by

a1

My <k = (xj)lgjgzv,aezg,mgk’
_ o

M <k = (), <Jj<N,ueZd,|ul<k

with N rows, where the columns are formed by multiindices in ascending order. Existence of an interpolant of degree k
for arbitrary data on X is ensured if the monomial matrix M| | < has rank N. Consequently, the number k1 =k (N, d)
of (3) is the minimum possible degree for uniquely solvable polynomial interpolation on well-chosen sets of N points
in R?. It is attained if the determinant of the Vandermonde matrix formed by the values of the first N monomials (in
our ordering) on the given N points of X is nonzero, and this can be satisfied inductively by picking suitable points.
But if the N points of X are not that nicely placed, degrees of interpolating polynomials on X can be as large as

ky :=ky(X) := min{k : rank(M| | <) = N}.

We have kp <N — 1, because the nonzero Lagrange-type polynomials

L= [ Goiiow)

oy 12
1<j<N,i#j [lx; xj||2

have degree at most N — 1 and are linearly independent on X. The matrix M) <y, thus has N linearly independent
columns which cannot all occur already in M| |k, . Note that the bound k <N — 1 is sharp in 1D cases, and clearly
k1 <ky holds because of (3).

Uniqueness usually is more complicated and will not hold without further assumptions. Of course, one can always

select N multiindices o! <--- <o with | | <kp such that the monomial matrix with entries x;‘ , 1<j, k<N, is

nonsingular. Then there is a unique interpolant in the span of x“j, 1 <j< N, which we shall consider later, but any
other choice of multiindices with the above properties will lead to a different interpolant. The parameter describing
uniqueness is

ko = ko(X) := max{k : p € P¢, p(X) = {0} = p =0}
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defined as the maximal k such that any polynomial from Pf vanishing on X must be identically zero. Equivalently, kg
is the maximal polynomial degree for which interpolants, if they exist, are unique. The monomial matrix M| | <, must

then have rank (kojd> <N, and we finally get

0<ko<ki<ko <N — 1

“

as a fundamental relation between the problem parameters. In Section 4 we shall show how to calculate ko and k3 in

general.

3. Examples

We consider the bivariate examples given by Larsson and Fornberg in [11] (Fig. 1) and calculate the constants of (4)

for them in Table 2.

Example 2.1 of [11] Example 2.2 of [11] Example 2.3 of [11]
1.4 5 * 12
1
1.2 4
1% % 0.8 *
3 * 0.6 *
0.8 « .
0.6 2 « 0.4 *
*
0.4 ] 0.2 *
* 0
0.2 %
0 * 02
0 0.5 1 0 0.5 1 0.5
Example 2.4 of [11] Example 2.5 of [11]
1.2 25
1 * 2 * *
0.8 * 15
0.6 *
% 1 * *
0.4
0.5
0.2 *
* 0 * *
0
-0.5
0 0.5 1 0 1 2
Fig. 1. Examples of [11].
Table 2
Parameters of examples of [11]
Example ko ky k» N Data
2.1 1 2 2 4 General
22 1 2 3 6 On parabola
2.3 0 2 5 6 On a line
2.4 2 2 2 6 General
2.5 1 2 3 6 On a circle
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In order to give the reader an impression of the nontrivial geometric background of multivariate polynomial inter-
polation, we explain how the table entries arise.

e In 2D, all N between 4 and 6 have k| = 2 because of (3). Note that k| is always independent of the geometry of the
given set X C R? of N points.

e For any N points on a line in R?, there is a polynomial of degree 1 vanishing on all data points. Thus kg = 0 for
such cases for all N and d.

e Any number of points in 2D lying on nondegenerate conics and, more generally, points in R4 lying on nondegenerate
quadrics have a polynomial of minimal degree 2 vanishing on all data points. Thus kg = 1 in such cases for all N
and d.

e To interpolate arbitrary data values on 4—6 data locations in R?, one cannot get away with polynomials of degree
1. Thus k» >2 in all cases of Table 2. But degree 2 clearly suffices in cases where there are 4 points not on a line
(Example 2.1) or 6 points not on a conic (Example 2.5). Remember that 5 given points in 2D always lie on a suitable
conic.

e If N points are all on a line in R?, we need interpolants of degree N — 1 along the 1D-parametrized line. Thus
ko = N — 1 holds in such situations for all space dimensions.

e Interpolation on 6 points on a nondegenerate conic in R? cannot work for degree 2, because the space of polynomials
of degree up to 2 has dimension 6 while 1D is useless because of the nontrivial polynomial vanishing on the conic.
Thus necessarily 3 <k <5 in Examples 2.2 and 2.5, but k> depends on the geometry of points. Example 2.2 uses
points x; = ((i — 1)/5, (i — 1)/5)2), 1 <i <6, while Example 2.5 takes 6 equidistant points on the circle.

Due to the above arguments, N data on a line in R4 always lead to
0=ko<ki <k =N —1, 5)

the intermediate k; being ridiculously dependent on the dimension d of the embedding space. This is why, in contrast
to [11,12], we consider k1 as much less relevant for analysis than the other parameters, and ignore it from now on. Note
that the classical geometric situation of data points in general position with respect to R? is the case of maximal ko,
and this case can be described by kg = k1 = kp in case N = (k'jd), while kg =k; — 1=k, — lincase N < (k'jd).
This is satisfied in Examples 2.1 and 2.4 of Table 2.

The cited papers [11,12] prove convergence of increasingly flat radial basis function interpolants towards polynomials
if, in our simplified notation, the condition

0<ky —ko<2 (6)

holds, the intermediate k; being irrelevant. If 2 points are added to the 6 points on a parabola in [11, Example 2.2], we
get ko = 1, ko =4, and convergence in the flat limit turns out to fail for certain radial basis functions. Thus inequality
(6) is sharp as a sufficient condition for convergence.

The proofs of [11,12] are done by an ingenious recursive analysis of various linear equation systems connecting
polynomial coefficients to moments. However, this paper uses techniques of [15] to arrive at the same result and to
provide additional information on degeneration caused by coalescing data points.

4. Moment matrices

In contrast to [11,12] we use the concept of a moment matrix here. Such matrices arose in [15] as part of the
preconditioning technique, and they cared there for the geometry-dependent part of preconditioning, while the scale-
dependent part was done by certain positive definite diagonal matrices. As readers will see, moment matrices are closely
related to sets of multivariate (nondivided) differences. Since they are quite useful, they deserve a detailed introduction,
including an algorithm for their calculation and showing their connection to the numbers kg, k1, and k>. Readers should
keep in mind that they are connected to polynomial interpolation, not to radial basis functions. This is why we treat
them here, well before we deal with radial basis functions.

Given N scattered points in R?, we take the monomial matrix M .| < N—1 with entries x‘j°.‘ and apply pivoted Gaussian
elimination on it, starting from the left and proceeding to the right. Note that we index rows by j from 1 to N, but
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columns by multiindices « € Zg with || <N — 1 in ascending order. We only allow row permutations for pivoting,
which only means reordering of points of X. If no nonzero pivot can be found in a certain elimination step, we proceed
to work with the next column to the right, but we never move columns. Since the submatrix M| | <, is N x ky with
ko > N and has full rank N, we do exactly N pivoting steps at N columns whose multiindices we denote by

ol <o <-<al. @)

The degrees of the related monomials x* form a sequence
0=1:=|m|<n =< - <ty = |ay] =k, (®)

where we have f; = 0 because we start with an all-ones column. Furthermore, the definition of k, implies that we must
reach the degree k» <N — 1 as soon as we find the last pivot, proving |oy| = k». This is a standard way to determine
k> in general situations.

After suitable reordering of points, this process leads to a matrix factorization M| | <, = L - U where L is a standard
lower triangular N x N matrix with 1 on the diagonal, while the N x k» > N matrix U is not exactly upper triangular,
but of full rank with a staircase shape of zero elements in the lower left part.

Then we define a nonsingular lower triangular N x N moment matrix M =(m;;),1<i, j<N,as M := L! satisfying
M - M| <k, = U. This implies the moment conditions

1
Zmijx‘j-‘ =0 foralla<o, 1<i<N,
Jj=1

i
> mix¥ #£0, 1<i<N, 9)
j=1

due to our pivoting process. The connection to nondivided differences is apparent, since (9) shows how the rows of the
moment matrix annihilate polynomials.

The moment matrix also teaches us something about the constants ko, k1, and k>. In short, if looking at the staircase-
shaped positions of first nonzero elements in rows of U,

e ko is the degree after which the staircase leaves the diagonal to move to the right,
e kj is the degree necessary for forming the left N x N submatrix,
e ky is the degree at which the staircase hits the bottom row.

This illustrates (4), but we should give an example. Due to our arguments explaining Table 2, we should look at a case
where kj is nontrivial, and we pick Example 2.2 with 6 points on a parabola. If we take x; = (@ — 1)/5, (i — 1)2 /25),
1<i <6, as in [11], the left part of the matrix U * 15, 625 comes out to be

15,625 O 0 0 0 0 0 0 0 0

625 3125 25 125 625 1 5 25 125
0 —6250 300 500 0 60 140 300 500
0 0 900 750 0 540 750 900 750
0 0 0 =500 0 1200 700 O =500
0 0 0 0 0 1800 600 O 0

(10)

and the above staircase rules give us kg = 1 < k| =2 < k> = 3 and sequence (7) as

0,0), (0, 1), (1, 0), (0, 2), (1, 1), (0, 3) (11)
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with
O=t1i<l=hh=B<2=t4=t5<3=1t5=ko. (12)

The moment matrix in this case is

1 0 0 0 0 0
-1 1 0 0 0 0
3. -4 1 0 0 0
-1 3 -3 1 0 0
2 6 8 - 1 0
-1 5 —10 10 -5 1

Up to here, there are no radial basis functions involved, and it is no problem to calculate a polynomial interpolant based
on the monomials x* , 1 <i <N, for comparison with what comes later. This interpolant was already studied in [15]
and shown to be different from other polynomial interpolants like the one in [3]. It is somewhat special in that it uses
the minimum possible number of monomials, and it picks those which come first in our ordering when looking for N
linearly independent columns of the monomial matrix. Thus we call it the minimally ordered polynomial interpolant.
In many practical cases, it looks preferable to every other interpolating polynomial, and it was recently investigated
and generalized in [2], calling it a Schaback interpolant there. We shall see examples later.

Note that Gaussian elimination on a Vandermonde matrix is a notoriously ill-conditioned process. But in view of the
role of the moment matrix in preconditioning [15], this has to be expected and cannot be avoided. The computational
complexity is of order (N2 - k2) > (/(N3), and thus all of this makes no sense for practical use in case of very large N.
But modern large-scale methods like domain decomposition or partition-of-unity techniques [17] will localize large
problems anyway, and thus get away with reasonably small values of N.

This finishes our treatment of polynomial interpolation. From now on we consider interpolation by radial basis
functions.

5. Function expansions

Following [4,11,15], we assume an analytic radial basis function

o0
() =) = 2902,1(—1)"1’2", 0<r <R<o0,
n=0

with strictly positive ¢,,, n >0, to be given and scale it into

o0
G (r) == P(er) = p(e2r?) = Z P (=1)"e¥ P2, 0<r < R<00.
n=0

The conditions on the ¢,,, are motivated from the standard assumption of complete monotonicity [13], but we insist on
strictly positive constants here. This includes all standard analytic positive definite cases, e.g., the Gaussian and inverse
multiquadrics, but also the Bessel radial basis functions.

If we insert r := ||x — y||» into the expansion, we need an expansion of ||x — y||%” into monomials x# and y* for
vectors x, y € R?. To this end, we define two multiindices «, f§ € Zg to have equal parity, in short (o, f) € Z%Jd or
EQP(o, p) if all components o; and f§ j have equal parity for all j, 1< j <d. For later use, the reader should be aware
that the boolean-valued predicate EQP satisfies rules like

EQP (e, f) = EQP(a, f +27) =EQP(e+ 7, f +7)

for any choice of multiindices a, f3, y € Z‘é, and likewise for plain integers.
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We use Taylor’s formula twice and the multinomial formula once to get

=y =1 Y E by

oceZ“’

Y Y "—%D“”n 12

aceZ" ﬁeZd

xﬁ n!l(a+ p)!
_ _1\r—lol
Z B!« ( D ((a+ B)/2)!

o, e
lo+f1=2n

= Y Py

(.pezy
joc+ Bl=2n

= Z c(a, pxPy*

o, pezd
lo+B|=2n

with the symmetric kernel c¢(a, ) on Zg X Zg defined by

DB oA
|0 ||x||2

G+ B2+ P!
(+ P/l ap

(— 1)(|/f| I%I)/ZC( B) =

(13)

in case of (o, f) € Z%d and zero else. By methods of [12], it will turn out in the following section that c is a positive

definite kernel on the set Zg. Furthermore, it makes many kernels of the form ¢, gc (o, p) positive definite.

For illustration we display the c(a, f8) values for 2D and |«|, | f| <4. The matrix is positive definite in spite of certain

negative entries. Note the sparsity pattern due to the EQP predicate:

1 0o 0 -1 0 -1 0 0 0 O 1
0o 2 0 0 0 o -4 0 -4 0 0
o 0 2 0 0 0 0O -4 0 -4 O
-1 0 O 6 0 2 o o o0 0 =15
0O 0 O 0 8 0 0O o0 o0 O 0
-1 0 O 2 0 6 o o0 o o0 =3
0 —4 O 0 0 0 20 0 12 0 0
0o o0 -4 0 0 0 0 36 0 12 0
0 —4 O 0 0 0 12 0 36 0 0
0o o0 -4 0 0 0 0O 12 0 20 O
1 0O 0 -—-15 0 -3 0 0 0 0 70
0O 0 O 0 -24 0 O o0 o0 O 0
2 0 o0 -18 0 -—-18 0 O O 0 60
0O 0 O 0 -24 0 O o0 o0 O 0
1 0O 0 -3 0O —-15 0 0 0 O 6

—24

2 0 1
0 0 0
0 0 0
—-18 0 -3
0 24 0
-18 0 —-15
0 0 0
0 0 0
0 0 0
0 0 0
60 0 6
0 96 0
216 0 60
0 160 0O

D
(=)
(e}
\]
(e}
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Power series with these coefficients have nice convergence properties, since Neumann’s series yields

: S el pafyt. (14)

T+l =yI3 4=,
L 0

This is why we do not have to worry about local convergence of series expansions occurring below. Inserting (13) into
our expansion, we get

o0
da(llx — yll2) =Y 02,8 (= 1)"lx — y[I3"

n=0
o0

= Z§D2n$2n Z c(a, ﬁ)xﬁya
n=0 (.pezy

lo-+Bl=2n

= Z Pl pe e, paly”
(.pezy

= D Opep e paly,
o, pezd

where we define ¢, to be zero for n odd.

6. Expansion kernels

We now consider symmetric matrices having elements @y, pgc(a, f) for o, f € I from any index set I C Zg.
Fortunately, following [12], such matrices are nonsingular under mild assumptions.

Lemma 1. Let @() := ¢(||.|l2) be a positive definite radial kernel which is inverse Fourier transformable on R4 from
a generalized Fourier transform which is nonnegative everywhere and positive on a set of positive measure in R Then
the kernel C(a, f) := (— 1)(|ﬁ‘_|°‘|)/2c(oc, B) of (13) is positive definite, and symmetric matrices formed by elements of
the form @y, gc (o, p) are nonsingular.

Proof. We start with

o0
Dx —y)= Y g (=) llx = y[3"
n=0

00
= Z Pon Z (pla-i—[ﬂc(av ﬁ)xﬁya

n=0 (a,ﬂ)eZi‘l
lo+f1=2n

= D opapcl Py

(. pezsd

D**Fe(
= Z (—1)““0(,—&())5[3)’OC
o, pezd o
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for x, y € R?, where the last equality is Taylor’s formula. Since @ is positive definite and inverse Fourier transformable,
we look at a specific quadratic form with coefficients b, forall oz € I C Zg and get

2
dw

Z byw*

ael

0< / d(w)
Rd

= Zzb“bﬁ /Rd D)™ P dw

ael el

= > bubg(—iD)* P d(0)

ael fel

= Y babp(=)*H2 D)

o, pel
(. pezy

— Z Z ol baﬁ!b/5¢|a+[3\(—1)(‘“|_‘ﬁ|)/2c(0& ﬁ)’

ael pel

where we have used that c(a, f§) vanishesif o, 8 are not of equal parity. Therefore, all matrices with entries ¢, 5 C (o, 1)
based on arbitrary index sets [ are positive semidefinite. But if the above expression is zero, and if we use our special
assumption (which rules out the Bessel kernel), the polynomial in the first integrand must vanish on an open set, thus
all coefficients must be zero. This proves positive definiteness. As a byproduct, we get positive definiteness of the C
kernel itself, if we use the inverse quadratic (14) with ¢,, = 1 for all n. Furthermore, all symmetric matrices formed
with elements @, g c (o, p) will be nonsingular. [

Repeating this argument with g, := bya!(—1)*/2, the sum above runs over 828BP|o+p € (o, B). This proves:

Lemma 2. Under the assumptions of Lemma 1, all matrices formed by elements ¢, g c(a, ) are positive definite as
quadratic forms over C.

7. Expansions of interpolants

If we solve an interpolation problem on X := {xi, ..., xy} using ¢, and data f1, ..., fu, the system
N
Y aj@d(lxj — xell) = fr. 1<E<N, (15)
j=l1

has a unique solution for all ¢ > 0 which can be written as a quotient of determinants by Cramer’s rule. The coefficients
aj(e) come out as rational functions of ¢ with a leading term of the form ¢~ 2k for some nonnegative k. This was first
observed by Driscoll and Fornberg in [4], whereas [15] looked at similar expansions for the Lagrange basis functions,
as studied in the next section.

We start by connecting this & to relevant quantities for polynomial interpolation.

Theorem 1. Under the assumptions of Lemma (1), the coefficients aj(e) have expansions starting with g2k,

Proof. We proceed very similar to the final section of [15] on preconditioning. From now on, multiindices o, f
will always vary in Zd, and we only state additional conditions. Let S(¢) be the matrix arising in (15) and use the



R. Schaback / Journal of Computational and Applied Mathematics 212 (2008) 127 — 149 137

moment matrix M from (9) to form the matrix M S(e)M T with the (r, s) entry
r N
Z nyj Z myede(llx; — x¢ll2)
j=1 t=1

= Z (p|a+ﬁ|s|“+ﬂ|c(oc, B Zmrjxf megx?
j=1 =1

o, pezd

= Y Qupd™Ple Byvir, pyvis. o,

p=o"
=0k

EQP(a.f)

with moments

.
v =Y myxl, 1<r<N, pezd, (16)
j=1

having the properties

v(r, /) =0 forall f <o, 1<r<N, in particular,
vir, o) =0 forall 1<s<r<N,
v(ir,d) #0, 1<r<N, a7

due to (9). Note that the matrix of the v values is identical to the matrix U of the LU decomposition we performed for
getting the moment matrix. We can collect the terms as

r N
D ome Y mgd(lxj — xell2)
=1 =1

= glrtls Z §0|a+m8'°‘+ﬁ|f"”“c(u,ﬂ)v(r,ﬁ)v(s,oc)

p=o"
=0k

EQP(.f)
=: grth By 5(¢)

to define a symmetric positive definite N x N matrix B(g) which converges for ¢ — 0 to B(0) with entries

Bis)= Y @, fvir Bvis, o)
|Bl=tr

|‘x‘=tv

EQP(x,f§)

for 1 <r, s <N with equal parity of ¢ and #,, and zero else.
In our running example, we do not need to repeat the v values because they are already displayed by (10). Here, they
generate the matrix 390, 625 - B(0) with the sparsity pattern determined by (12) as

390, 625 0 0 —22,500 0 0
0 32,500 —62,500 0 0 —19,200
0 —62,500 125,000 0 0 24,000
—22,500 0 0 14,976  —4800 0
0 0 0 —4800 3200 0

0 —19,200 24,000 0 0 124,416
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Lemma 3. The matrix B(0) is nonsingular.

Proof. We take an arbitrary u € RN , define the set
I ={ae Z‘é :|a| =t forsome r, 1<r< N}
and a function R which associates to each f§ € I the set
R(B):={j : |pl=1;. 1<j<N}.
Then we evaluate the quadratic form

N N

Y ueug B (0) (=)

r=1s

N
D o urus (DTN g ge( BV Bv(s, o)

I
M=L

r=1 s=I1 Iﬁlztr
o=ty
o,pel
EQP(«, )
= Y Opapc AEDPTIZN v B Y ugv(s, o)
o, fel reR(P) sER(x)
EQP(x,f3)

which clearly is positive semidefinite due to Lemma 1 and because it is the limit of positive definite quadratic forms.
It is positive definite, because from

Z uv(r, p)=0 forall el
reR(p)

we can conclude u = 0 by inserting = o!, ..., o one after another, applying (17). This finishes the proof of the

lemma. [

With an N x N diagonal matrix D(¢) with entries ¢ 7%, 1 <k <N, system (15) is rewritten as
y = S(a(e),

D(e)My = D(e)MSE)MTD(e) D™ ' (e)(MT) a(e)
=:B(¢)
=B@ED (o) (M) a(e)

to get the solution as a rational vector-valued function

ae) =M DB ' (e)D(e)My
for all positive ¢ with an asymptotic behavior which has at most &>V = %2 in the denominator. [J
We shall not use Theorem 1 directly, because it concerns the coefficients of interpolants in terms of the degenerating
basis ¢ (¢]|x —x ill2), 1< j < N.Naturally, these coefficients are much less stable than coefficients u j (x, ¢) of a Lagrange
basis. This observation motivates the next section.

8. Expansions of Lagrange bases

We write the standard linear system for Lagrange interpolating functions u;(x, &) satisfying u;(xx, &) = d i,
1<j,k<N,as S(e)u(x, &) = Px(x, &) with

Py (x,e) i= (Ppellx — x1]2), ..., pellx —xnl2))"
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and transform it into

DEMS@EMTDE) D™ o) (M Y Tu(x, &) = D(e)MPx (x, ¢) (18)

=B(¢) =:v(x,&) =w(x,&)

to make it stably solvable, as we shall see, led by the last section of [15]. Note that proving a stable limit for (18) shows
how to precondition the matrix S(¢) successfully. This is the background link of our technique to preconditioning.
Scaling is handled by the diagonal matrices D(e), while geometry is cared for by the moment matrix M which is
independent of scaling. The diagonal matrices D (¢) contain the e-dependent denominators needed to turn D(¢) M into
a matrix of divided differences.

We expand the elements of the B(¢) matrix as follows:

B, () = Z (pw+m8|a+ﬂlftr7txc(a, Bv(r, B)v(s, o)

1Bl =t
o = 1
o
_ Zgn Z @t pic (o, Pyv(r, PYv(s, o)
n=0 1Bl =t
o] > 1
lo+Bl=n—+t,~+15
o
=: ZS"B,,M (19)
n=0

with coefficients

By s = E (pla_,'_mc(oc, Pv(r, Pyv(s, o)
|Bl =1
o] = 1
o4 l=n4-tr 41

which are zero unless EQP(n, ¢, + t;) holds. The components of the right-hand side of (18) are

J
w;j(x,8) =&Y mkd(ellx — xcll2)

k=1
=Y ik D Ol e P
o.f

= 3 gt PEH @0 v(, )
o, fp
| =12

DT D ppic B o)
n=0

o, f
[ot|=n+t;

= Zs”wjyn(sx), (20)
n=0

where we defined

wjin(y) = Z Plogpc(a, ByPv(j, o
. f
\O(|=n+l‘j

= Z wj,n,ﬁyﬂ
B
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having coefficients
Winp= D Puipc Y, o) @1)
\OC|:Or(l+tj

which can be nonzero only if EQP(|f|, n + ¢;) holds. The special representation (20) of the right-hand side leads us to
postulate a similar representation

o0
vj(x. &)=Y &"vja(xe) (22)
n=0
for the solution. If we plug this into the full system, we get

o]

Z Us,m(XS)

m=0

N
Z Us.m (xe) Br,s,k—m

ZF Wy (xe) =

M8 L;M8
||M»WM2

~
Il
=}

and this is satisfied, because the nonsingularity of B(0) proven in Lemma 3 allows to solve the recursive linear system

n N
wr,n(y) = Z Z VUs,m (y)Br,s,n—m

m=0 s=1
N n—1 N
= Z Us,n(y)Br,s,O + Z Z Us,m(y)Br,s,n—m
s=1 m=0 s=1

for all n>0, 1 <r < N. This justifies (22) and allows a recursive component wise calculation in the form

n N
Z wr,n,ﬁyﬁ = Z Z Z vs,m,ﬂyﬁBr,s,n—m

pezg m=0s=1 pe7d
n—1 N
Z ﬁ(zvsn[}BrsO“‘ZszmﬂBrsn m)’
[gezd s=1 m=0 s=1
n—1 N
Wrn,p = sznﬁBrAO“‘ZZUsmﬁBr,\n m (23)
m=0 s=1

of the representation

Us,m(y) = Z vs,m,ﬁyﬂ'
pezé

Here, nonzero coefficients can only occur if EQP(| |, m + ;) holds, as was the case for the w,., expansion coefficients.
To see this, we look inductively at (23) in case EQP(|f|, n +t,) fails. Then the left-hand side is zero, and so is the double
sum, because it contains only terms with EQP(|f|, m + t;) and EQP(n — m, t, + t;) which imply EQP(|f|, n + t,).
Thus the solution is zero.
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We now exploit u(x, ) =M TD(E)v(x, ¢) componentwise with (22) to get

uj(x,e) =

N
Z mp, j& kvkm(xg)

Mg

0

3
Il

N
E mk,jsft" E Vi ox e

||M8

an‘é
o
—t o
=g N Z g Z mg,j Z Uk, n+tp—ty —|o),aX
n=0 k=j OCEZg
o] Sn+ix—iy
o
—t
=g N Zs”Pj,n(x) (24)
n=0
with polynomials and coefficients
Pj,n(x) = Z Pj,n,ax“,
ang
lo| <n
N
Pjna= Z Uk, n+ty—ty —|of ok, j - (25)
k=j

la| Sn+t—ty <n

Note that the degeneration of Lagrange basis functions is only like %2 = ¢~V | while the solution of (15) degenerates
like &2

9. Convergence conditions
Now it is time to draw conclusions from the above expansions.
Lemma 4. All polynomials P, are zero unless EQP(n, k2) holds.
Proof. In fact, the equation for P; , , contains only terms with
EQP(Ja|,n + tx —ty — |o| + 1x) =EQP(0,n —ty) = EQP(0,n — kp). O
As in the cited papers, expansion (24) implies

Pja(x) =0, 1<j, k<N, n=0, n#k =ty,

Pity(x0) =Sk, 1</ k<N. (26)
Theorem 2. For analytic positive definite radial basis functions with positive Fourier transforms on a set of positive
measure, increasingly flat interpolants will converge to a polynomial if and only if all polynomials Pj,, 1<j<N,

0<n <k, calculated in the previous section are zero. If convergence takes place, the polynomials Pj,, 1 <j<N,
are the flat limit Lagrange basis on the given N points. Convergence is guaranteed, if ko <ko + 2 holds.

Proof. Assume nonconvergence. Then there are j, n with 1 < j <N, 0<n <k and EQP(n, k3) such that P; , does not
vanish. This polynomial then must have a degree larger than ko, because it vanishes on X and is nonzero. This implies

ko <deg Pj,<n<ky —2<ky with EQP(n, k2). ]
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Note that by [12] the final assertion of Theorem 2 holds also in the conditionally positive definite case, but our proof
technique does not currently cover this.

10. Computations in the flat limit case

In our running example, we can explicitly calculate the quantities By s n, w; ,, s Vkom.as Pjn.a along the lines of
the previous section, but we do not display the matrices here. The polynomial P; 3 arising as a flat limit will be the
Lagrange interpolant to data (1, 0, 0, 0, 0, 0) at the 6 points given, and via the coefficients P 3 5 we get

P 3(x,y) = gle (816 4 26,034y — 9100x + 46, 500y* — 61, 500xy
+9750x% — 5625y — 4375xy% — 1875x%y — 625x°) (27)

in case of the inverse quadratic. This agrees with the findings of Larsson and Fornberg [11].

But we should explain our calculations in more detail, because we have to determine how far to calculate the
expansions. Looking back at (25), it suffices to calculate the P; , o for 1 < j <N, 0<n<k; and |o| <k;. This requires
Vj n,o for the same range. From (23) we see that also the w , o share this range, and we need the B, ; ; for 1 <r, s <N,
0< k< k. However, Egs. (21) and (19) imply that we need the ¢ and v values for multiindices |o| <2k, to calculate
those values. Altogether, this fixes finite data to work with, and it is quite straightforward to program all necessary
linear algebra calculations. Degeneracy occurs if one of the polynomials P; , with n <k, and EQP(n, k) comes out
to be nonzero, or if one of their coefficients P; , 5 does not vanish. Thus our technique allows a complete analysis of
the flat limit scenario, even in the degenerated cases.

We calculate two other results for illustration. Using interpolation by the span of the 6 monomials with exponents
(11) and ignoring radial basis functions at all, we get the minimally ordered Lagrange interpolant

P(x,y) = 5 (72 — 625y* + 3500y% — 798x + 3101y — 5250xy)

which looks simpler than (27) but does the same job.

Finally, we should consider the degenerate Example 2.3 of Larsson and Fornberg [11]. The points are x; = ((i —
1)/5, (@ — 1)/5), 1 <i <6, such that everything is annihilated by the polynomial x — y. Pivoting must increase the
degree at each step, and thus we get r; =i — 1, 1 <i <6, and the multiindices from (7) as

0,0), (0, 1), (0, 2), (0, 3), (0, 4), (0,5)

because they are lexicographically minimal. Without looking at radial basis functions, the minimally ordered interpolant
generated by these monomials to data (1, 0, 0, 0, 0, 0) is

1
P(x,y) =5, (24— 625y° — 274y + 1125y% — 2125y° + 1875y*)
625 i
o LI\ 5 )
i=1

When interpolating with radial basis functions, the Gaussian case must converge in the flat limit due to [15], and our
method reproduces the result of [11] in this case, which is identical to the de Boor and Ron [3] interpolant by [15]. For
the inverse quadratic, degeneration occurs by nonzero polynomials P; 3 for k; = 5. For example, we get

625 ,
Pi3(x,y)= —m(x +y—=2)(x—y)
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satisfying (26). Though it does not arise as a flat limit, the polynomial P; 5 is well defined and must also be an interpolant
to Lagrange data due to (26). It comes out to be as terrible as

Pis(x,y)= (50, 643, 855, 552 — 289, 092, 008, 776y — 289, 092, 008, 776x

50, 643, 855, 552
+ 644,704, 707, 000y* + 1,084, 521, 315, 000xy + 644, 704, 707, 000x>

— 669, 165,369, 750y° — 1, 572, 880, 318, 750xy? — 1, 572, 880, 318, 750x°y
— 669, 165, 369, 750x> + 329, 367, 480, 000y* + 996, 994, 387, 500xy>

+ 1,303, 827, 480, 000x2y* + 996, 994, 387, 500x° y + 329, 367, 480, 000x*
— 62,010, 168, 125y° — 231,403, 798, 125xy* — 366, 011, 236, 250x>y>

— 366,011, 236, 250x° y? — 231, 403, 798, 125x*y — 62, 010, 168, 125x°).

11. Radial coalescence

We now leave the increasingly flat scenario and go over to the coalescence scenario as described in (2). Given a set
X :={x1, ..., xn} of N scattered points in R, we want to study what happens if the points are very close to each other,
and finally coalesce into a single point. Since everything we do with radial basis functions is translation-invariant, we
can model this by considering points ¢ - x;, 1 <i <N, for ¢ — 0, leading to coalescence into the origin, but we keep
the radial basis function ¢ fixed. We call this scenario radial coalescence. Consequently, the relative geometry of the
points is the same for all positive ¢, but the limit of the interpolation process will depend on this geometry. We shall
relax this assumption to some extent in Section 14.

Clearly, if we look at smooth interpolants to smooth functions using smooth radial basis functions, we expect the
interpolants to converge somehow for ¢ — 0, and from univariate polynomial interpolation we can expect that the limit
is a nonpolynomial Hermite interpolant and has nothing to do with the flat limit polynomials we studied up to now.
Since Wu [20] provided the basics of Hermite interpolation by radial basis functions, we have no problems dealing
with the limit problems.

Below, we shall prove that Lagrange interpolation in coalescing points indeed converges to Hermite interpolation,
but currently we do not know how to proceed from N coalescing Lagrange data close to the origin to N hopefully linear
independent Hermite data taken in the origin. Furthermore, we would not like to end up with Hermite data requiring all
derivatives of order up to N — 1 in the origin. Unfortunately, exactly this order is necessary if the coalescing Lagrange
data are on a line, but in this case we only need directional derivatives of order up to N — 1 in a single direction. This
leads us to expect that we can always get away with some directional derivatives of maximal order k> in the origin,
directions and orders being dependent on the local geometry of coalescing points. Thus we want to explicitly know N
linear independent data functionals arising in the limit, making up the limiting Hermite problem, and these functionals
should be linear combinations of directional derivatives in the origin of order at most k.

We now tackle this problem, and we need the whole machinery we developed up to here. From (20) we see that

9] N
wj(x,8) =Y dwin() =6 muply —exila), y=ex,
n=0 k=j

is the right-hand side of a Lagrange-type system of equations where ¢ is not scaled, but where the data points exy
coalesce radially into zero for ¢ — 0. We define linear functionals

j
Lje(f) =€) mpflexr), 1<j<N, (28)
k=1

and use them for interpolation with the basis

wj(x, &) =25 $(llx = yll2)
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generated by 4; . acting with respect to y on ¢(|lx — yl|2). This leads to system (18) having the interpolation matrix
B(¢) with entries we rewrite as

It 23,6 (1x = ¥l12) = Brs (&) (29)

using our functionals (28) now. This is exactly the setting of generalized interpolation started by Wu in [20]. Our scaling
is such that in the dual of the native space for ¢ (see [19] for details of native spaces) we have

121l = By (6) = Br,r(0)>0

for ¢ — 0. The finite-dimensional interpolation space which arises in the limit will now not consist of polynomials,
but rather be spanned by the functions

w0 = D @uepc Y, 0. (30)
a’ﬁ
|O(\:tj
They span the same space as the functions v; o we get when taking the limit of (18), because the v; o are generated
from the w; o by application of B(O)_l. The functions above are of the form w; o(x, &) = i§’0¢(|lx — yll2) for limit
functionals

iﬁ“x%:z{vo’w |““:U’}

0 else

which act like 7;-fold derivatives at zero. In fact, they can be rewritten as

(DP £)(0)

Lio(f)= > v, g

|Bl=t;

3D

when acting on analytic functions f. They still are linearly independent because of
(ir,Os )vs,O)qb = Br,s (0)» I1<r,s<N,

and they can be read off the rows of the U matrix we obtained when calculating the moment matrix. We summarize:

Theorem 3. Under the hypotheses of Theorem (2), radially coalescent Lagrange interpolation problems with analytic
radial basis functions converge towards Hermite interpolation problems with a maximal differentiation order ko of
limit functionals. The limit functionals for the Hermite problems can be explicitly calculated via (31), and they are
independent of the radial basis function used.

12. Calculations for the coalescence scenario

If we go back to the matrix in (10), we can read off from the rows and (31) that the 6 limiting Hermite data functionals
in this special case are

of _of of 362f+562f o’f  f f

b ~ 5_7 _3 A 1 _7 _’ A 2 A ~ 0
f Oy * Ox Ox 0y? Ox0y  0xOy d0y3  0x0y?

up to multiplicative constants and evaluated at the origin. Since it is rather special to let 6 points of a parabola coalesce
radially, we also look at Example 2.5 of Larsson and Fornberg [11]. There, 6 points of a regular hexagon coalesce
radially into its center. Unfortunately, the corresponding U matrix is too large to be printed here. The numbers #; are
as in (12), but instead of (11) we have o® = (1, 2). Then, after close inspection of the U matrix, the limiting Hermite
functionals come out to be

2 2 2 2 3 3
7 \/§af of of 27];_’_\/56]( of  of o' f o'f

oy ox ox’ oxdy ox2’ oxdy  oxd%y 0%xdy’
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But this is only an illustration of the expansions we developed here, and not intended for practical use. For small local
subsystems, e.g., when using partitions of unity, one can replace the standard system by the stabilized version

N
D A blx = ylbj(e) = die(f), 1<i<N,
j=1

which converges to the Hermite limiting case for ¢ — 0.

But in practice this approach should be put upside down. A set of close points yg, 1 <k <N, should be rewritten as
Y = Yo + & - x; with a small ¢, i.e., the points yi are pushed out towards x; from a central point yq to be chosen. This
defines a small ¢, and then the above preconditioned system using the x; and ¢ is set up and solved. This interprets the
given points yy — yo as nearly coalesced from the points x;, and the preconditioned system will not show the usual
condition problems, at least for moderate values of ¢. However, as in every other standard preconditioning method, bad
condition is at least partly moved into the preconditioning transformation.

We should look at the condition behavior somewhat more closely. The preconditioning transformation D(¢) M can
be described as the action of the functionals Z; ; of (28) on discrete data. The M part is only dependent on geometry,
not on scaling. It does not affect the behavior for ¢ — 0 at all, neither in the flat limit nor in the coalescence case. It
has increasing condition as a function of N, but this is much less dramatic than the one of the whole process for ¢ — 0
which is hidden in the D(¢) part. In fact, the lowest diagonal entry of D(¢), which corresponds to the denominator of
AN.¢ of (28), is of the form ¢k2_This makes the direct pointwise evaluation of 1y, numerically impossible already for
moderate values of N and . For instance, if about 50 points in 2D are used, there will be a k, of about 9, and an ¢ of
about 0.1 will already be hard to handle. But there is a way out, namely to evaluate the divided difference functionals
/.j,¢ for small ¢ via an application to a power series, e.g., like evaluation of the first divided difference in 1D via

S — fx)
y—x

which is perfectly stable for y — x and can for analytic functions fbe done to any accuracy, provided that all derivatives
are explicitly available. But this would need quite some coding effort in the multivariate case.

1
=f'0)+ z(y—X)f”(X)+~-~

13. Newton interpolation

The foregoing sections contained some rather heavy machinery, but they followed a strategy which is well known
from univariate polynomial interpolation. In fact, the transition from Lagrange to Hermite interpolation via the Newton
interpolation formula is precisely what happened above. To see this more clearly, we start without the parameter ¢ in
this section.

First, in univariate situations, we make the transition from function values f(x1),..., f(xy) to the N divided
differences

2i(f) = flx, ..., xjl, 1<j<N,

in standard terminology, but written as N linear functionals which have form (28) with a moment matrix that does not
appear explicitly. The connection between (28) and divided differences is based on the property

i) =0, l|of<tj=|a|=j—1,

in 1D, as assured by the moment matrix via (9). Then the Newton basis

j—1
vj0) = [T —x). 1<j<N,
i=1

generates the Newton interpolant

N
px) =Y i (fHv(x), (32)

j=1
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and the Lagrange interpolation process nicely converges for coalescing points into a Hermite interpolation problem.
Note that this transition is not apparent as long as the Lagrange interpolation is written via Lagrange basis functions.
If both problems are rewritten in Newton form, the limit behavior is obvious.

While our functionals of (28) correspond nicely to divided differences, we still have to see how our new basis of
functions v; ; of (22) corresponds to the Newton basis. The crucial fact is that the 1D polynomial Newton basis satisfies

Zj(vg) =0k, 1<j, k<N, (33)

as it follows from (32). Note that the case j < k relies on the fact that v vanishes on x, ..., xx—1, while the case j > k
is standard for divided differences, because they annihilate lower-order polynomials.
In our technique, system (18) can be written as

N
D G ) v (x) = wi (x)

j=1

using (29), both for positive ¢ and in the limit ¢ — 0. But the definition of the wy implies 4; (w) = (4}, 4x) ¢, and thus
we get (33). If we use the fact that the M matrix is lower triangular by construction, we immediately get something
similar to the 1D case:

Lemma 5. The functions v; ; of the transformed interpolation process satisfy

Vie(xk) =0, 1<k<j<N, ¢>0.
14. General coalescence

We now turn to the harder problem of N more or less freely coalescing points at zero. To this end, we assume that
our given coalescing data points yi (h) move along smooth curves for 7 — 0 into 0 = y,(0). For simplicity, we assume
vk (h)|l2 < h throughout. The geometry now is h-dependent, and the characteristic multiindices o (h) of (7) and the
tj(h) = lo/ (h)| of (8) will vary with /. But we shall focus on sequences i; — 0 where these discrete quantities do
not vary any more. Thus we ignore their dependence on % again.

If we define points xi (h) by yr(h) = h xx (h) such that the x (k) still vary smoothly, the geometric quantities derived
for the x;(h) are the same as those for yx (%), because the columns of the monomial matrices just get different scalar
factors. We assume that higher-order monomials of the x; (/) can be stably calculated via

N
xph)y = _"d(j h,oxf (h), 1<k<N. |of > ko, (34)
j=1
from lower-order monomials, with uniformly bounded coefficients d(j, &, o). From the definition of k; this is clear if
the x; are constant, but we allow them to vary here, allowing a more general but still somewhat regular coalescence of
the yi (h).
The above identity describes how the column with multiindex o of the monomial matrix can be reconstructed from
the N linear independent columns corresponding to the o/, 1< j < N. In our coalescence scenario, the above identity,
when rewritten in terms of the y,‘f(h), turns into

N
Ve =Y G, by ), T<ESN, ) > ko, (35)
j=1
and describes in a natural way how the larger powers of the y; vanish faster than the lower ones for 4 — 0. This

provides a good reason why (34) should be assumed.
We can always find h-dependent N x N moment matrices M (h) = (m jx(h)) such that the linear functionals

N
Lin(f) =Y mj (W) fr(h), 1<j<N, (36)
k=1
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are orthonormal in the native space of ¢. This can be done theoretically by orthogonalizing in the span of the functionals
Oy (h)» 1 <k<N. Due to their normalization, these functionals must be weak-x-convergent, and thus there are limit
functionals 4 o with norm one in the dual of the native space such that

2j.0(f) = lim 2;5(f)

for suitable subsequences and all f in the native space of ¢. The whole problem works in the span of the right-hand
sides

win(y) = 25 bl = yll2)

which nicely converge in the native space towards
wio0(y) =2 0p(lx — ylla), 1<j<N,

whatever these functions actually are, and the orthogonalization of our functionals imply the Lagrange property
Dy win() =25 75 50lx = yll2) =0k, 1<j, k<N,

for all positive h. Clearly, the limit functionals must be supported in zero only, but we want to figure out that they are
necessarily derivatives at zero of order up to k. From (35) we get uniform convergence

N | |
D n (%) =Y d(G kT, () — 0
j=1

for h — 0 and all |o| > ky. This proves
Zjox*) =0 forall |o| >ky, 1<j<N.

But for general functions f the functionals act like

D*f(0
Boh =3 PO 00

ang
D*£(0)
- L'zj,o(x“)
o
o] S k2

proving that they are derivatives of order at most k, as required. Now we can also check the limit of the orthogonality.
Since convergence is not strong, we cannot directly conclude

Ojk = }}ii%(ij,h, Zk.h) ;(}~j,0’ 2k,0) >
but we can consider the limit of
Ojk = (Aj.hs M)
D e Bopapiin ik n (P
o, peZ
= > e PPt hiox ) iko(P)

a,ﬁeZg
loel, 1Bl < k2

=()uj,0,)vk’0)¢, 1<j,k<N.

Theorem 4. Under the hypotheses of Theorem 2, generally coalescent Lagrange interpolation problems satisfying
(34) converge to Hermite problems whose functions and functionals are defined by limit functionals being certain
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derivatives of order at most ky at the coalescence point. The limit functionals for the Hermite problems can be explicitly
calculated, and they are independent of the radial basis function used.

15. Open problems

For the increasingly flat limit case, the conditions given by Theorem 2 are sufficient to guarantee convergence,
and they are sharp as far as conditions are formulated using ko and k> only. However, convergence is equivalent to
certain guaranteeing Pj, =0forall ko <n <k, 1 < j <N with EQP(n, k3), and these come up as complicated rational
expressions involving the data set X and the expansion coefficients ¢,, of the radial basis function ¢. Thus there may
be special cases of X and ¢ where there is convergence outside the validity of Theorem 2. A particular case, conjectured
firstin [7] and proven in [15], surprisingly states that the Gaussian lets these conditions be satisfied in all cases, no matter
what the geometry of X is. In other words the Gaussian overcomes all possible geometric degenerations. By recent
numerical experiments and conjectures of Fornberg et al. [5], the same property holds for a new class of oscillatory
radial kernels, including the Bessel radial basis function Jo(r) in 2D. But this one fails to satisfy the assumptions of
Lemma 1 and leads to singular matrices [12]. The special role of the Gauss and Bessel kernels is still a mystery which
deserves investigation. Our MAPLE® procedures, available on request, allow some explicit experimentation along
these lines, but there are no theoretical results known so far.

For the coalescence scenario, our methods indicate how to cope with data points that come too close and thus spoil the
condition of the linear system. Such situations will automatically occur, if adaptive methods calculate approximations
of functions that are derivatives of the kernel at a fixed point. Investigations of such methods are under way, since
they proved to be rather efficient [10,16] in practice, even for solving partial differential equations by collocation
[8.9].

Another future application concerns the investigation of approximations with N free centers. In such nonlin-
ear situations, one has to calculate the closure of the manifold of trial functions under a weak norm like the L,
norm. This requires to investigate coalescence carefully, and the current paper is a first step into this
direction.
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