Wen-Cheng Shen's schedule in the last three months

1. Eccentric case

Error analysis: BEM, Trefftz method, MFS and the present method
Contour plot: ABAQUS, BEM, exact solution and the present method
2. Velocity field disturbed by two equal cylinders for analytical solution
3.

	Interior	Exterior
Singular formulation		
Hypersingular formulation		

4. Find a numerical example in a half-plane bulged with a circular hill.

5. Laplace problem with straight boundary (with cracks)

6. Electrostatic potential

7. Anti-plane problem (Urge A. C. Wu to finish the subject using the program developed by W. C. Shen)
8. Degenerate kernel
$U(s, x)=\left\{\begin{array}{l}U^{i}(R, \theta ; \rho, \phi)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos m(\theta-\phi), R \geq \rho \\ U^{e}(R, \theta ; \rho, \phi)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos m(\theta-\phi), \rho>R\end{array}\right.$
$M(s, x)=\left\{\begin{array}{l}M^{i}(R, \theta ; \rho, \phi)=\sum_{m=1}^{\infty}\left(\frac{m \rho^{m-1}}{R^{m+1}}\right) \cos m(\theta-\phi), R \geq \rho \\ M^{e}(R, \theta ; \rho, \phi)=\sum_{m=1}^{\infty}\left(\frac{m R^{m-1}}{\rho^{m+1}}\right) \cos m(\theta-\phi), \rho>R\end{array}\right.$
Since the potential resulted from $T(s, x)$ and $L(s, x)$ kernels are discontinuous cross the boundary, the $T(s, x)$ for $R \rightarrow \rho^{+}$and $R \rightarrow \rho^{-}$are different. This is the reason why $R=\rho$ is not included in expressional degenerate kernels of $T(s, x)$ and $L(s, x)$. 9. Easy manual of LPCB (Laplace Problems with Circular Boundary) and ABAQUS
