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aDepartment of Mathematics, Faculty of Civil Engineering, Technical University of Košice,Vysokoškolská 4, 042 00 Košice, Slovakia
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Abstract

A study of errors appearing in traction boundary value problems on simply connected domains solved by the symmetric Galerkin

boundary element method (SGBEM) is presented. Two methods for the removal of rigid body motions from the nullspace of the

discretised SGBEM system matrix, one based on the direct enforcement of additional point supports and the other based on the

Fredholm theory of linear operators, are analysed. The fulfillment of the global equilibrium conditions by the discretised load has been

found to be the key point in the different behaviour of the errors in displacements obtained applying these two methods. The main

objective of this paper is to compare the application of these methods with the SGBEM and with the classical collocation BEM,

clarifying in particular a different role of the equilibrium of the discretised load in the SGBEM and classical collocational BEM linear

systems. Conclusions of the theoretical analysis presented are confirmed by numerical examples, where the conditions of the global

equilibrium are either fulfilled or slightly violated by the discretised load.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The application of the symmetric Galerkin boundary
element method (SGBEM), e.g., Bonnet et al. [1], in the
solution of the traction boundary value problems (TBVP)
on the boundary of a simply connected domain is
considered. The displacement solution of a TBVP is not
uniquely determined because superposing a rigid body
motion (RBM), which has zero strain energy and thus also
zero stresses, on such a solution, another admissible
solution of the problem is obtained. A consequence of this
fact is that the square matrix of the discretised SGBEM
linear system is theoretically singular (with a non-zero
nullspace corresponding to the set of RBMs). Note that
this matrix is actually ill-conditioned due to the finite
e front matter r 2006 Elsevier Ltd. All rights reserved.
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precision arithmetic used by computers. Therefore, reliable
methods for removal of the RBMs from the nullspace of
the SGBEM system matrix, or in other words methods
which will modify the original ill-conditioned SGBEM
system to obtain a well-conditioned system, are required.
Several techniques have been developed in the finite and

boundary element methods (FEM and BEM) for removal
of RBMs from the nullspace of the discretised systems
associated to TBVPs (i.e., to achieve invertibility of the
modified system) in the past.
Taking into account that the SGBEM [1] has some

aspects coincident with those of the FEM, e.g., a
variational formulation and a symmetric discretised linear
system, it appears to be reasonable to apply in the SGBEM
the method successfully used in the FEM, e.g., Szabó and
Babuška [2] and Zienkiewicz and Taylor [3]. Additional

point supports are directly enforced in the displacement
field in this method, hereinafter referred to as Method S
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(following the notation introduced by Blázquez et al. [4], S

being used to address the direct imposition of support
conditions). This can be carried out, e.g., by zeroing the
appropriate rows and columns in the linear system and
defining the corresponding diagonal elements equal to a
non-zero number.

The mathematical framework where the above difficulty
of TBVP can be well understood is the Fredholm theory of
linear operators with zero index [5,6]. Such operators have
the dimension of the nullspace and the codimension
(dimension of the orthogonal complement to the operator
range) finite and equal to each other. In this sense they are
similar to square matrices which have the same property.
Several methods to achieve invertibility of the modified
operator based on the Fredholm theory, hereinafter
referred to as Methods F, have been developed by various
authors in different applications of boundary integral
equations (BIEs).

The variant referred to as Method F1 (following the
notation introduced in [4]), in literature sometimes called
the augmenting method or bordering method, has been
considered, for example, by Hsiao and Wendland [7],
Costabel [8], Karrila and Kim [9], Chen and Zhou [5] and
Blázquez et al. [4]. In this method, the original operator is
augmented by two operators of finite rank (equal to the
dimension of the nullspace of the original operator), one
closely related to the vectors of the nullspace and the other
to the vectors orthogonal to the range of the original
operator, converting the augmented operator into an
invertible operator. For an abstract mathematical analysis
of this method see Chen and Sun [10] and Chen and Zhou
[5].

The variant referred to as Method F2 (again following
the notation introduced in [4]), sometimes called the
completion method, has been considered, for example, by
Heise [11], Ugodchikov and Khutorianskii [12], Power and
Miranda [13], Vable [14], Phan-Thien and Tullock [15],
Blázquez et al. [4] and Lutz et al. [16]. In this method, an
operator of finite rank, obtained as a composition of the
finite rank operators considered in Method F1, is summed
to the original operator in order to obtain an invertible
operator.

Relations between Methods F1 and F2 in the framework
of the classical collocational BEM have been discussed by
Kim and Karrila [17] for Stokes flow and by Blázquez et al.
[4] for elasticity.

In removing RBMs from the nullspace of the original
operator a crucial question arises: how the solvability or

non-solvability of the original discretised system can affect

the precision of the solution obtained using the modified

invertible system obtained by some of the above mentioned

methods.
This question is related to the following two facts:
�
 When the solvability condition of the TBVP on the
continuum level, i.e., fulfillment of the global equili-
brium by the load, is discretised, it may not coincide
with the solvability condition of the discretised linear
system.

�
 Although the load prescribed is always equilibrated on
the continuum level, after discretisation its global
equilibrium can be slightly perturbed.

Due to the above reasons the original discretised linear
system may not have a solution for the (equilibrated or
not) discretised load. Nevertheless, it is convenient to
search for a reasonable approximation of the TBVP
solution on the continuum level.
These difficulties, mentioned by Chen and Zhou [5] and

Chen and Sun [10], were studied theoretically and
numerically by Telles and Paula [18] and Blázquez et al.
[4] for the classical collocational BEM. It was shown in [4]
that in general there is no equivalence between equilibrium
of the discretised load and solvability of the original
discretised linear system.
According to the above discussion, Methods S and F are

general methods for the removal of RBMs a priori
admitting application not only to the classical collocational
BEM (as has been done, e.g., in [4]), but also, providing
that the symmetry of the linear system is kept, to the
SGBEM. In the present work, a theoretical and numerical
analysis of the application of both methods for the removal
of the RBMs in SGBEM is introduced. For the sake of
brevity the Ref. [4] is heavily relied upon. A theoretical
analysis of the Methods S and F applied to the SGBEM is
given in Section 2. It is shown that an equivalence between
the global equilibrium of the discretised load and the
solvability of the original discretised linear system for a
TBVP does exist in the SGBEM, demonstrating in this way
a relevant difference between the classical collocation BEM
and SGBEM with reference to removal of RBMs. The
conclusions of this theoretical analysis are confirmed by
numerical examples given in Section 3, where the accuracy
of the numerical solutions obtained by Methods S and F is
studied.
2. Removal of RBMs in the SGBEM

2.1. BIEs

Let us consider a bounded elastic body defined by a
simply connected domain O � Rd ðd ¼ 2; 3Þ with a
Lipschitz piecewise smooth boundary qO ¼ G (domain O
being locally on one side of G). Let GS � G denote the
smooth part of G, i.e., excluding corners, edges, points of
curvature jumps, etc. Let the traction operator T applied
to the displacement field uðxÞ give the traction vector tðxÞ
associated to a unit normal vector n as follows:
tðxÞ ¼Tðn; qxÞuðxÞ.
Let us consider a TBVP with tractions t0 prescribed

along the whole boundary G. For the sake of simplicity,
volume forces are neglected, a generalisation to a TBVP
with volume forces being straightforward.
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The classical collocational BEM uses the displacement
Somigliana identity written for boundary points (denoted
here as u-BIE), see [5,19–21]:

CklðxÞulðxÞ þ
�
Tklðx; yÞulðyÞdGðyÞ

¼

Z
G

Uklðx; yÞtlðyÞdGðyÞ; x 2 G; k; l ¼ 1; . . . ; d, ð1Þ

where Ckl is the well-known coefficient tensor of the free
term [22] (CklðxÞ ¼

1
2
dkl for x 2 GS, dkl being the Kronecker

delta), and the integral kernels Ukl and Tkl , respectively,
represent the fundamental solution of Navier equation in
displacements and the corresponding fundamental trac-
tions. The matrix of the fundamental tractions is obtained
from the fundamental solution via the traction operator as
follows: Tðx; yÞ ¼ ðTðnðyÞ; qyÞUðx; yÞÞ

T, where nðyÞ denotes
the outward normal unit vector to G and T stands for the
transposed matrix.

An application of the traction operator T to the
displacement Somigliana identity written for off-boundary
points, and a subsequent asymptotic procedure, yields the
following form of the traction Somigliana identity [5,20,23]
for boundary points at GS (denoted here as t-BIE):

�
Sklðx; yÞulðyÞdGðyÞ ¼ �

1

2
tkðxÞ

þ
�
T�klðx; yÞtlðyÞdGðyÞ; x 2 GS; k; l ¼ 1; . . . ; d, ð2Þ

where T�ðx; yÞ ¼TðnðxÞ; qxÞUðx; yÞ and
Sðx; yÞ ¼TðnðxÞ; qxÞTðx; yÞ.

In (1) and (2) the integrals with the strongly singular
integral kernels Tkl and T�kl are evaluated in the sense of
Cauchy principal value, and the integral with the hyper-
singular integral kernel Skl is evaluated in the sense of
Hadamard finite part, both considering a spherical vanish-
ing zone, see for details [5,23,24].

With reference to the above-defined integral kernels, let
us recall the following reciprocity relations [1]:

Uðx; yÞ ¼ UTðy;xÞ; T�ðx; yÞ ¼ TTðy;xÞ,

Sðx; yÞ ¼ ST
ðy; xÞ. ð3Þ

Additionally, the fundamental solution is symmetric, i.e.,
Uðx; yÞ ¼ UTðx; yÞ, and, according to [25], the hypersingu-
lar integral kernel S in 2D is also symmetric, i.e.,
Sðx; yÞ ¼ ST

ðx; yÞ.
A general SGBEM formulation involves a combination

of both aforementioned BIEs, depending on the boundary
conditions prescribed. In the present case of a TBVP, solely
t-BIE (2) is required, the symmetric integral operator of the
first kind of the SGBEM system being then defined by the
hypersingular integral on the left-hand side of (2). Recall
that the non-symmetric integral operator of the second
kind defined by the integral on the left-hand side of (1)
appears in the classical BEM system for a TBVP.
2.2. Removal of RBMs and global equilibrium

An analysis of the errors which may be present in the
numerical solution of TBVP, in the case of equilibrated and
non-equilibrated discretised loads, by the SGBEM and also
the classical BEM is presented.
Let us denote a basis of the linear space of RBM by la

for x 2 O [ G, where a ¼ 1; . . . ; nd with n2 ¼ 3 (in 2D) and
n3 ¼ 6 (in 3D). This basis can be defined, e.g., in 2D, by the
following vectors:

l1ðxÞ ¼
1

0

� �
; l2ðxÞ ¼

0

1

� �
; l3ðxÞ ¼

�x2

x1

( )
, (4)

where l1 and l2 are rigid body translations and l3 is a rigid
body rotation. Note that there are three linearly indepen-
dent rigid body translations and three linearly independent
rigid body rotations in 3D.
Applying a RBM as a solution of the auxiliary problem

in the second Betti theorem of reciprocity of work [5,21]
written for O results in the following global equilibrium
conditions for any traction solution of a BVP on O:Z
G

tkðxÞmakðxÞdGðxÞ ¼ 0; a ¼ 1; . . . ; nd . (5)

A crucial property of RBMs for the present work follows
from their substitution, together with the associated zero
tractions, into (1) and (2), giving

1

2
makðxÞ þ

�
Tklðx; yÞmal ðyÞdGðyÞ ¼ 0; x 2 GS, (6a)

�
Sklðx; yÞmal ðyÞdGðyÞ ¼ 0; x 2 GS. (6b)

According to (6) RBMs are in the nullspace of the integral
operators of both approaches, the classical BEM and
SGBEM, for TBVPs, and thus the BEM solution is non-
unique. An analysis of techniques which remove this non-
uniqueness from the SGBEM solution, keeping the
symmetry of the final linear system, is the aim of the
present work.
In addition to the simple Method S which mimics the

usual FEM approach [4] (note that this method is called
Method S1 in [4]), directly imposing additional point
supports in the SGBEM linear system to remove the
RBMs, two variants of Methods F, which rely on the
Fredholm theory, will be studied.

Method F1 modifies (2) by ‘augmenting’ the original BIE
system:

�
Sklðx; yÞulðyÞdGðyÞ þ

Xnd

a¼1

makðxÞo
a

¼ �
1

2
tkðxÞ þ

�
T�klðx; yÞtlðyÞdGðyÞ, ð7ÞZ

G
mal ðyÞulðyÞdGðyÞ ¼ 0; a ¼ 1; . . . ; nd , ð8Þ
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displacements u and parameters oa being the unknowns of
the augmented linear system.

Method F2 modifies (2) by ‘completing’ the original BIE
system:

�
Sklðx; yÞulðyÞdGðyÞ þ

Xnd

a¼1

makðxÞ
Z
G
mal ðyÞulðyÞdGðyÞ

¼ �
1

2
tkðxÞ þ

�
T�klðx; yÞtlðyÞdGðyÞ, ð9Þ

displacements u being the only unknowns.
It can be shown, see for an analogous analysis

[4,5,10,17], that the modified systems (7)–(9) always have
a unique solution, and that the numerical solutions
obtained by Methods F1 and F2 coincide with the exception
of round-off errors.

In what follows the question of solvability of the original
equations (1) and (2) and their discretised versions will be
discussed.

Let us denote sa the solution of the exterior displacement
BVP, defined on the complementary domain to O, with
boundary conditions u ¼ la and with the far-field beha-
viour given by the relation:

ukðxÞ ¼ Uklðx; 0Þbl þOðkxk1�dÞ; kxk ! 1,

where bk ¼

Z
G

tkðyÞdGðyÞ. ð10Þ

BIE (1) rewritten for this BVP takes the form [4]:

makðxÞ ¼
Z
G

Uklðx; yÞtal ðyÞdGðyÞ; x 2 G; k; l ¼ 1; . . . ; d.

(11)

Solution of this BIE always exists and is unique in 3D,
whereas it exists and is unique except for (either one or
two) critical scales of the domain considered in 2D, see [26]
for details.

As was shown in [4], the left-hand side of (1) is always
orthogonal to sa (considering a natural generalisation of
the inner product in the space of square Lebesgue-
integrable functions ½L2ðGÞ�d). However, if the prescribed
tractions t0 did not exactly satisfy the equilibrium
condition (5), the right-hand side of (1) would not be
orthogonal to sa. In such a case the original equation (1)
does not have any solution, whereas its modified versions,
with an invertible operator on the left-hand side obtained
by the Methods F [4], do have.

This situation is somewhat different when a discretised
version of u-BIE (1) is considered. Then, the condition of
equilibrium of the discretised load is in general not
equivalent to the condition of solvability of the corre-
sponding linear system. As was explained in [4], this is
related to the fact that sa in general cannot be exactly
approximated by the boundary element functions and also
to the usually collocational nature of the classical BEM
linear system. The difference between the numerical
solution of the modified u-BIE and the solution of the
original TBVP most noticeably appears in Method S, see
[4], for the reason that in this method some collocation
equations are in fact dropped out of this linear system,
consequently not all of them being satisfactorily fulfilled.
If, on the other hand, SGBEM system, given by (2), is

used for the same TBVP, the left-hand side of the equation
is orthogonal to la, according to (6b) and the reciprocity
relation ð3Þ3, i.e.,Z

G
makðxÞ

�
Sklðx; yÞulðyÞdGðyÞ

� �
dGðxÞ

¼

Z
G

ulðyÞ
�
Slkðy;xÞmakðxÞdGðxÞ

� �
dGðyÞ ¼ 0, ð12Þ

while for the right-hand side, when multiplied by la (from
the left) it holds, using (6a) and the reciprocity relation ð3Þ2,
thatZ

G
makðxÞ �

1

2
tkðxÞ þ

�
T�klðx; yÞtlðyÞdGðyÞ

� �
dGðxÞ

¼

Z
G

tlðyÞ � �
1

2
mal ðyÞ þ

�
Tlkðy;xÞmakðxÞdGðxÞ

� �
dGðyÞ

¼ �

Z
G

tlðyÞmal ðyÞdGðyÞ. ð13Þ

This means that the right-hand side of (2) is also
orthogonal to la for equilibrated loads. Thus, the same
kind of errors as appeared in the solution of u-BIE may
also occur when solving an SGBEM system if the load is
not equilibrated.
Notice that the order of integration has been changed in

Eqs. (12) and (13), which include principal value and finite
part integrals, such a procedure also being allowed in this
case as shown, e.g., by Bonnet [27].
Inasmuch as la can be approximated exactly using

boundary element shape functions (when considering linear
or higher order isoparametric boundary elements), the
discretised version of (2) has a solution for any equilibrated
discretised load and does not have a solution for any non-
equilibrated load.
Therefore, the kind of error discussed above may appear

in the solution of the discretised SGBEM system, but only
for non-equilibrated discretised external loads, e.g., due to
a complicated behaviour of prescribed tractions along the
boundary.
3. Numerical examples

The results of Method S and Method F2 for removal of
the non-uniqueness in the solution of the SGBEM will be
compared. Recall that the results of Method F1 would be
the same as those presented for Method F2, with the
exception of the rounding-off errors.
In particular, the appearance and behaviour of the errors

discussed in the previous section will be analysed. Two
typical examples have been chosen to study the behaviour
of the SGBEM solutions of TBVPs on bounded domains.
First a problem whose traction distribution can be
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Fig. 2. Displacement results for the plate bending problem.
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represented exactly by the boundary element shape
functions used, and then a problem where this condition
is not satisfied, due to a higher order of variations of
tractions along the boundary, will be solved. The former
case is represented by a plate bending problem, the latter
by a piece of a ground subjected to a half-line load. Note
that the same problems were studied in Blázquez et al. [4]
using the collocation BEM solving u-BIE (1). This will
allow an easy and direct comparison of the results obtained
using both BEM approaches.

Plane strain state is assumed in both cases. Material
parameters Young’s modulus and Poisson’s ratio are E ¼

100GPa and n ¼ 0:25, respectively. Dimensions of solids
and displacements are given in millimeters. Load para-
meter p is set to 100MPa.

The problems presented have been solved by a 2D
SGBEM code. The code uses straight linear continuous
elements with nodes at the ends of the element allowing
discontinuity of tractions when required [21]. Analytical
integrations are used to evaluate the influence matrices.
Gauss elimination method is applied to solve the SGBEM
linear equation system. In all calculations double precision
floating point arithmetic (REAL(8) in FORTRAN90) is
used.

3.1. Example 1: equilibrated discretised load

The accuracy of the SGBEM solutions in the case of the
equilibrated discretised loads is evaluated in this example.
As follows from an analysis due to Blázquez et al. [4],
significant errors appear applying Method S to the classical
u-BIE, even in the present example in which the discretised
external load is in equilibrium. Nevertheless, as will be
shown here, this is not the case of Method S applied to the
SGBEM in the case of equilibrated discretised external
loads.

Let us consider the solution of a plate subjected to
bending [4], see Fig. 1, whose Airy stress function is
expressed as [28]: F ðx1;x2Þ ¼ ðp=3hÞx3

2, where h ¼ 40mm is
the plate height.

The additional point supports are placed at points
P1ð�40; 0Þ and P2ð40; 0Þ in the following manner:

u1ðP1Þ ¼ 0; u2ðP1Þ ¼ 0; u2ðP2Þ ¼ 0. (14)
80

40

A

CD

P1 P2

-p

p

-p

p

x2

x1

B

Fig. 1. Geometry of the plate bending problem.
Recall that in Method F2, resultant displacements, which
fulfill these point support conditions, are obtained by
adding a suitable RBM to the solution in displacements in
a post-processing step.
The discretisation used is also the same as in the

aforementioned paper [4], a uniform mesh with 16 elements
at faces AB and CD and 8 elements at BC and DA being
used.
Displacements calculated by the Methods S and F2 are

plotted in Fig. 2, s being the arc length measured starting
from the point C in counterclockwise direction. The results
obtained agree excellently with the analytical values. Thus,
as predicted by the theoretical analysis in Section 2, no
significant errors appear in the Method S applied to the
SGBEM in presence of an equilibrated discretised load.
The errors normalised by the maximum value of the
analytical solution are shown in Fig. 3. An absolute
agreement between both Methods, S and F2, might at first
sight be considered surprising, but it is just in line with the
following two facts. First, RBMs are approximated exactly
by the discretisation used. Second, for equilibrated loads
the right-hand sides of Eqs. (2) and (9) are orthogonal to all
RBMs, and thus the second term on the left-hand side of
(9) must be equal to zero. These results would allow
application of Method S in the SGBEM (at least for
problems with equilibrated discretised loads), as opposed
to the classical collocation BEM where, as was shown by
Blázquez et al. [4], errors for this method are not negligible,
peaks appearing in the displacement solution at the
additional point supports.
3.2. Example 2: non-equilibrated discretised load

This example differs from the previous one in the fact
that the total load applied loses equilibrium when
discretised. According to the analysis in Section 2 larger
errors, in comparison with the previous example, can be
expected in Method S applied to the SGBEM for a load
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which cannot be exactly represented by the boundary
element functions.

Let us consider a domain surrounded by a quadrangle
ABCD [4,21], see, Fig. 4, in the half-plane ðx240Þ subjected
along the negative half-axis x1 to a constant pressure p. The
Airy stress function for this problem is expressed as [28]:1

F ðx1;x2Þ ¼ �
p

2p
�x1x2 þ ðx

2
1 þ x2

2ÞArctan
x2

x1

� �� �
,

where Arctanx ¼
arctan x; if xX0;

pþ arctan x; if xo0:

(
ð15Þ

The point support conditions for Method S (imposed
also on the solution of Method F2 in a post-processing step
as explained above) are placed as follows:

u1ð60; 0Þ ¼ 0; u2ð60; 0Þ ¼ 0; u2ð150; 0Þ ¼ 0. (16)

The BEM mesh applied here is also identical to that in
Blázquez et al. [4], faces AB, BC, CD and DA, respectively,
being discretised by 3, 5, 7 and 7 elements of equal length
along each face.

The displacements calculated by the SGBEM using
Methods S and F2 do not coincide in this case. These
differences can be clearly seen in Fig. 5, s being the arc
length measured starting from the point A in counter-
clockwise direction. Agreement between the results by
Method F2 and the analytic solution is excellent, taking
into account the coarse discretisation used. It should be
remarked that similar results were obtained by Method F1

applied to the classical collocational BEM in [4]. Peaks
appear, however, at the support points (given by s ¼ 134:4
and 224.4mm) in the results of Method S, the differences
between the results of the Methods S and F2, along a major
Fig. 5. Displacement results for the half-plane-solution problem, coarse

mesh.

1Notice that in Refs. [4,21] this function was erroneously considered to

be multiplied by p.



ARTICLE IN PRESS
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part of the boundary, being approximately given by a
relative RBM (translation and rotation).

These effects (peaks and a relative RBM) can be even
more strikingly seen for a finer mesh, though the absolute
differences between both Methods, S and F2, are smaller
due to a smaller discretisation error. The boundary is
discretised by 21, 30, 40 and 41 elements at faces AB, BC,
CD and DA, respectively, in order to make the mesh along
the whole boundary almost uniform. The distribution of
displacements is now in excellent agreement with the
analytical solution, see Fig. 6. However, the distinction
between the results of the Methods S and F2, see the
normalised errors in Fig. 7, keeps the same character as for
the coarse mesh, where, for the sake of brevity, an
analogous figure has been omitted because the errors are
clearly evident from Fig. 5. On one hand, errors of Method
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F2 are very small and smooth at each face, and on the other
hand, errors of Method S are relatively large along the
boundary and non-smooth at the support points. The
nearly linear distribution of the errors in Method S at the
faces with no point support indicates an approximate RBM
appearing in the results of this method again, its magnitude
being, however, substantially smaller than in the case of the
coarse mesh. The behaviour of the results by this method at
the supported face does not follow such a simple
distribution inasmuch as these errors vanish exactly at
the support points, which produces peaks in the error
distribution at these points, the solution obtained being
consequently locally perturbed along this face. Note that
this conclusion coincides with that found for Method S

applied in the classical BEM approach [4]: the load, which
cannot be accurately represented by the boundary elements
and consequently in its discretised form generally violates
the global equilibrium, results in strong peaks of errors in
displacements in the vicinity of the additional support
points, although the actual errors vanish at these points. It
is clear that if stresses are evaluated using such displace-
ments, either on the boundary (the so-called in-boundary
stresses) or at interior points, relatively large errors can be
expected near the support points due to these peaks.
The above-observed relatively poor behaviour of Method

S in contrast with Method F2, in the case where the
discretised load is non-equilibrated and thus the original
discretised SGBEM system does not have any solution,
can be attributed to the following fact: in Method S the
errors in the fulfillment of the linear equations of the
original SGBEM system are concentrated in a few products
of the BIE (2) with the element shape functions associated
to the additional point supports (equations are dropped
out from the final system), whereas in Method F2 these
errors are distributed in some way between all the linear
equations.
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4. Conclusions

The errors in solving TBVPs on bounded domains by the
SGBEM have been studied. An equivalence between
equilibrium of the discretised load and solvability of the
original discretised SGBEM linear systems has been
explained and demonstrated. It has to be stressed that
such an equivalence does not exist in the classical
collocational BEM. The theoretically predicted differences
in the error behaviour between configurations with
equilibrated and non-equilibrated discretised loads are
observed in the numerical examples.

Two kinds of methods, referred to as Method S (which
directly imposes the point support conditions in the linear
system) and Methods F (based on the Fredholm theory of
linear operators), for removal of the RBMs from the
nullspace of matrix of the SGBEM system, which keep the
final system symmetric, have been proposed, analysed
theoretically and tested numerically.

Although Method S, widely used in the FEM, gives
excellent results for problems with equilibrated discretised
loads (as, e.g., in the presented bending problem where the
load varies linearly), it is not reliable in solving problems
with a complex behaviour of traction distribution, where a
slight violation of the equilibrium of the discretised load
may appear (as, e.g., in the presented half-plane-solution
problem). In such cases, it provides an acceptable solution
for very fine meshes only. It has to be mentioned with
reference to the application of Method S to problems with
equilibrated discretised loads, that whereas it provides
satisfactory results in the SGBEM, peaks appear in the
results obtained applying the classical collocational BEM
[4].

According to the theoretical analysis presented and
numerical results obtained, Methods F, based on the
Fredholm theory, may be recommended as reliable
methods for removal of RBMs in the SGBEM, in the
same manner as has been done in [4] for the classical
collocational BEM, as they produce accurate results in
both cases, with equilibrated and non-equilibrated dis-
cretised loads.

Note finally that more sophisticated approaches for
solution of non-uniqueness of TBVPs in multiple con-
nected domains (with one or several cavities) are proposed
and studied in [29]. These approaches also deal with other
BVPs different from TBVPs on multiple connected
domains, which also have a non-unique solution when
solved by SGBEM.
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