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SUMMARY 

A theoretical and numerical study of the removal of rigid body motions in the solution of the boundary form 
of Somigliana identity and of the corresponding discretized linear system of the direct BEM is presented. This 
study is based on the Fredholm theory of linear operators and mechanical aspects of the problem. Various 
methods suitable for implementation in BEM codes are analyzed and relations between apparently different 
methods are shown. The relation between global equilibrium conditions and solvability of the discretized 
linear system of the direct BEM is discussed. 
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1. MTRODUCTION 

If a two- or three-dimensional (2-D or 3-D) finite elastic body is completely free, i.e. all prescribed 
boundary conditions are given in stresses, or if it is improperly supported, i.e. it can freely translate 
and/or rotate in some directions (finitely or infinitesimally), the solution in displacements is then 
not unique. There are infinite solutions which generate the same stress state, the only difference 
between two such solutions being a rigid-body motion. 

The analogy in the Theory of Potential-solution of Poisson equation-is the Neumann problem, 
whose solutions differ from each other by a constant. 

This uncertainty in displacement solutions of some elastic Boundary Value Problems (BVP) 
implies singularity of the system of linear algebraic equations resulting from the discretizations of 
this problem. Zero eigenvalue solutions of this linear system naturally correspond to the rigid-body 
motions which are allowed by the given boundary conditions. 

In the mathematical bibliography this difficulty in the solution of Boundary Integral Equations 
(BIE) is related to the Fredholm alternati~e.'-~ Starting from the Fredholm theory of linear op- 
erators, two different approaches have been proposed by various authors to solve this difficulty: 
the first, augmenting the original non-invertible linear operator;'? 4-6 the second, adding an integral 
operator with a degenerate kernel to the original linear operator.'9 

Although various related numerical tests in solutions by indirect BEM in Elasticity'37,9 and 
Potential Theory: and also some results for direct BEM can be found in Reference 10 for Elasticity 
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and in Reference 11 for Potential Theory, it seems that there is a need for a deeper numerical 
study and comparison of various approaches in direct BEM. 

Additionally, it appears that there is a lack of a simple interpretation from an engineering point 
of view of some mathematically motivated methods, and a lack of emphasis on a direct relation 
between the Fredholm theory, rigid-body motions and global equilibrium conditions which must 
satisfy prescribed loads in improperly supported bodies. 

The article presents various approaches suitable for implementation in BEM codes, shows re- 
lations between these at first sight different methods and gives a simple analysis of what occurs 
with the solutions by these methods if the global equilibrium conditions are slightly perturbed due 
to inaccuracies in discretizations of geometry or loads. All the approaches presented have been 
implemented in a 2-D BEM code and a comparative study has been performed with the aim of 
recommending some of them for practical computations by BEM. 

2. BEM, RIGID-BODY MOTIONS AND GLOBAL EQUILIBRIUM CONDITIONS 

Let us consider an elastic finite body 9 C Rd (d = 2,3) with a boundary 8 9 .  For the sake of 
brevity, body forces will not be considered in what follows. Somigliana identity 12-14,10 written 
for a boundary point x has the form of a BIE for the displacement and stress vectors, uj and t,, 
at boundary points: 

where Qi, is the fundamental solution of Navier equation in displacements, T$ are the correspond- 
ing fundamental stresses and C&) is the characteristic matrix of the free term, which depends on 
the local geometry of the boundary at the point x ,  C&) being $du for 'smooth' boundary points. 

A BVP with all boundary conditions given in stresses does not have a unique displacement 
solution, because rigid-body motions give zero stresses. In other words, if u l l ) ( x )  and u y ) ( x )  are 

A basis of the linear space of rigid-body motions will be denoted by & ( x )  for x E 9 U 8.9 and 
solutions of BIE (1 )  then uj2 ) (x )  - ui ( 1 )  ( x )  = pi(x) ,  where p i ( x )  represents a rigid-body motion. 

LX = 1,. . . , nd with nd = 3(d - 1). A simple example follows in 2-D: 

By substituting the above rigid-body motions as the solution of the auxiliary problem into the 
second Betti theorem of reciprocity of work,', l4 the global equilibrium equations, due to the fact 
that rigid-body motions give zero stresses, are directly obtained 

Application of BEM to Elasticity consists of the numerical solution of BIE (1 ). Discretization of 
the boundary 8 9  by boundary elements assuming certain evolutions of the variables of this equation 
along each element leads to a system of linear equations that can be represented schematically by 

HU = Gt(= b)  (4) 

Entries of the matrix H E Rd.nxd.n, with n equal to the number of nodes used in the discretization, 
represent integrals of stresses of fundamental solution, T:, times the shape functions over the 
boundary elements plus the free term matrix C!j. Analogously, entries of the matrix G E Rd.nxd.n 
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M =  [m', m2, m3] = 

represent integrals of the fundamental solution Qq. Vectors u E Rd." and t E OXd." contain displace- 
ments and boundary stress vectors at the boundary element nodes. Although without implications 
in the problem under consideration, it should be noted that the matrix G can have a greater number 
of columns depending on the continuity assigned to the stress vector passing from one element to 
an adjacent one. 

Because rigid-body motions give zero stresses, H is a singular matrix and its null space is 
composed of vectors that correspond to rigid-body motions, i.e. rank(H) = d.n - f ld .  In the 
discretized version of BIE (4) column vectors ma of the following matrix M E Rd.nxnd form the 

- 1  0 -Xz(l) 

0 1 Xl(1) 

; ; 
1 0 -xz(n) 

- 0  1 xl(n> 

Isoparametric straight and curved boundary elements exactly represent constant and linear func- 
tions of the spatial variables Thus, the accuracy of equation (6) is defined only by the 
accuracy of the evaluations of the integrals which form the entries of the matrix H. On the other 
hand, this equation is valid only approximately for constant elements or even for curved elements 
with linear interpolation of the variables, which cannot represent exactly a rotation of the body.13 

The problems presented in this study have been solved by a 2-D BEM program which uses: 
linear elements with the nodes at the extremes of the element but allowing discontinuities in the 
stress vector, collocation at nodes, analytical evaluation of singular integrals and the free term 
matrix, numerical integration of regular integrals by Gaussian quadratures usually with 8 points, 
double precision for floating point numbers (Reah8) and Gaussian elimination for solution of the 
linear system of equations. 

3. METHODS BASED ON SIMPLE APPLICATION OF SUPPORT CONDITIONS 

If the problem under consideration is analysed by BEM, linear system (4) with a theoretically 
singular matrix has to be solved. With increasing accuracy of quadratures used for evaluation 
of the matrix coefficients, the matrix will be more singular (i.e. the condition number of the 
matrix will increase16), and consequently results obtained by a direct solution of this system will 
be increasingly affected by roundoff errors. This fact rules out the possibility of directly solving 
the system (4) without modifying it in some way. These general statements are corroborated 
numerically in Appendix I with reference to the problems considered in this paper, which will 
be presented later on in this section. Therefore, methods replacing the original ill-conditioned 
system (4) with a well-conditioned and in a certain sense equivalent one are useful. 

The usual way in engineering practice of solving this kind of BVP, with some displacements 
and/or rotations allowed, is the removal of the rigid-body motions from numerical solutions by 
placing a sufficient number of additional point supports. These supports, naturally placed at the 
nodes, must not introduce stresses into the problem and must inhibit all rigid body motions. 
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Figure 1 .  Example of supports that do not introduce stresses and inhibit all rigid-body motions 

Figure 1 represents a 2-D problem where it is assumed that all boundary conditions are given 
in stresses, three-point constraints being needed to inhibit all rigid-body motions. The support 
conditions of Figure 1 can be written as 

U l ( P )  = 0 

U2(P) = 0 (7) 
l iui(Q) + 12~2(Q) = 0 

Simple implementation of this procedure in BEM can be achieved by replacing some collocation 
equations with point support conditions. It should be stressed that it is not known a priori which 
collocation equations are suitable for dropping out. Therefore, the following two methods have 
been examined. 

First, a simple approach applying the idea successfully used in FEM’’, l7 and recommended’* 
for applications in general situations, i.e. directly forcing the displacement field in the resulting 
linear system to satisfy additional point support conditions by putting zeros in the corresponding 
rows and columns of the linear system and defining the diagonal entries equal to 1 (Method Sl), 
is applied. Second, point support equations are added to the initial system. The system then has 
more equations than unknowns and a procedure of column pivoting, which selects as pivot the 
largest entry in the column, is used to solve the resulting system by elimination of some collocation 
equations which are linear combinations of the others (Method S2). 

All the results shown in this paper correspond to the problems shown in Figures 2(a) and 2(b), 
which in what follows will be denoted by ‘plate’ and ‘ground’ respectively. The analytical 
sol~t ions’~ used for comparison with numerical solutions fulfill the shown point support con- 
ditions. Loads are defined by the parameter p = 1000 kg/cm2 and material by Young’s modulus 
E = lo6 kg/cm2 and Poisson’s ratio v = 0-25. Some comments are required to justify the selection 
of these two problems. The errors in the solution by BEM can come from the errors in discretizing 
the boundary (the original boundary could not coincide with the discretized boundary) and from 
the errors in discretizing the variables along the boundary. In the two problems selected the orig- 
inal boundary and the discretized boundary coincide, the only source of errors being the second 
cause. In the first problem the procedure of approximation of the load does not alter it (linear 
elements can represent exactly the piecewise linear stress vector field) and, in turn, in the second 
problem the approximation will alter the load. Consequently, the discretized boundary stress vector 
field will be globally in equilibrium in the first problem but not in the second. 

Figure 3 represents the solutions of the problem of Figure 2(a) using Methods S1 and S2. 
Comparing these results, and although neither of them can be considered completely satisfactory 
because of the peaks that appear in the displacement 242, it might seem that Method S2 leads 
to a better result than S1. However, it can be observed that the result using Sl is similar to 
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Figure 2. Geometry, boundary conditions, discretization and point supports in the analysed problems: (a) plate subjected 
to bending; (b) ground subjected to a semiinhite pressure 
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Figure 3. Plate: results of methods S1 and S2 

the result using S2 if the result of S1 is appropriately translated along the axis x2 (vertically in 
Figure 3). This translation is required because the peaks in the results of S1 always appear at 
point supports (the corresponding collocation equations have been dropped out), whereas in S2 
they appear associated to the nodes (not supports in this case) and directions whose corresponding 
integral equations have been dropped out by the pivoting procedure. 

Studying the dropped equations, the relative residuals in the original system, defined by ( H i j U j  - 
b,)/llbll, were calculated for all the equations, applying the solutions given by each method. It was 
observed that for at least two of the equations dropped out fiom the original system the residuals 
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were of an order even if Gaussian quadrature with 16 points was used, while for the rest 
of the equations they were of an order 10-17-10-18 or smaller. Thus, in general, dropped out 
collocation equations may not be fulfilled, which gives rise to the peaks that appear in the solution. 

From the foregoing facts it can somewhat surprisingly be concluded that the singular original 
system (4) has, from a theoretical point of view, no solution for the prescribed load in the case 
analysed. For direct verification of this statement a basic criterion of Linear Algebra for solvability 
of a linear system was applied: rank(H) = rank([H,Gt]). According to Referece 16, the only fully 
reliable way to compute the rank of a matrix is Singular Value Decomposition (SVD). The four 
lowest singular values of the matrix H in decreasing order given by an SVD procedure were: 
7 . 5 ~ 1 0 - ~ ,  2 . 2 ~  2.1 xIO-l5, 1-7x 10-15, and similarly for the matrix: [H,Gt] 7 . 5 ~  
2 . 0 ~  2-1 x 1-7x 1O-Is, if the matrices were generated by 16-point Gaussian formula. 
This result implies rank(H) c rank([H, Gt]). 

With reference to the problem of Figure 2(b), the displacement solution is considerably affected 
by the dropping out of equations. The solution obtained by Methods S1 and S2 can be considered 
poor, except when a very high number of elements (about 200) was used, peaks again appearing 
at the nodes whose equations are not fulfilled. 

A general conclusion can be deduced from the numerical study presented. The initial linear 
system (4) may not have any displacement solution u for some globally equilibrated discretized 
loads t, which implies that if some collocation equations are dropped out of this system there is no 
guarantee that a solution of the resulting system satisfactory fulfills these dropped out equations. 
Additionally, a strong relation between a nodal variable and the corresponding collocation equation 
applied at the node has been observed. Consequently, it would be desirable to propose a modi- 
fication of the initial system which implies a 'suitable average' fulfillment of all the collocation 
equations, none of them being dropped out of the resulting system. This will be the object of the 
following sections. 

4. METHODS BASED ON THE FREDHOLM THEORY 

First, we will introduce a simple theoretical analysis of some important relations between rigid-body 
motions, global equilibrium conditions and boundary integral operators on the left- and right-hand 
side of the BIE (1). Then two methods based on this analysis, which augment or modify the 
original BIE and its discretized form in such a way that they become uniquely solvable, will be 
presented. 

4.1. Removal of rigid-body motions in the original BIE 

Consider for a moment that all space Rd is occupied by the original finite elastic body 9 and its 
complementary infinite body 9'. It is assumed that 9 is a simply connected body with a smooth 
boundary 89, 

For a rigid-body motion pg(x ) ,  it follows directly from BIE (1 ) that: 

1 
~ ~ ~ ( x ) + ~ ~ ~ ~ ( x , y ) ~ ~ ( y ) d s ( y ) = O ,  X E  8 9 ,  a =  1, ..., nd (8) 

Thus, rigid-body motions are zero eigenfunctions of the second kind of boundary integral operator 
on the left-hand side of the BIE denoted here by $ + T. 

If the behaviour of the displacement field u,(x) at infinity in the complementary body 9' can 
be described by: 

ui(x) = Q,(X,O)bj + o(\ \x\ \ ' -~) ,  x E 9 ' 3  l\x\l --t 00 (9 ) 
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where, as follows from Saint-Venant principle, the constant vector bj must be equal to the resultant 
force of stresses on 8 9 :  

then the same form of BIE (1) is valid for 9' as wel1.l2*I3 Notation T F ( x , y )  will be adopted 
for the integral kernel which depends on the outward normal with respect to 9', nF(y) = -n; (y) .  

Let the boundary stress vector solution of the BVPs in 9' with displacement boundary condition 
# ( x )  and with behaviour of the displacements at infinity defined by (9) be denoted by T ; ( x )  for 
x E 8 9  and u = 1, ..., nd. These BVPs always have unique solutions apart from the critical 
2-D contours analogous to the concept of y-contours in Potential Theory.14 Some details and 
numerical tests in Elasticity can be found in Reference 20. BIE (1) in 9' for these BVPs takes 
the form 

= &(x), x E d 9 ,  a = 1 ,..., nd (11) 

where relation T F ( x ,  y) = -qT(x, y )  and equation (8) were used in obtaining the second equation. 
We refer to Heise7 for a detailed discussion on the functions T ~ ( x )  and ,uy(x) from the point of 
view of the BIEs used in the indirect version of BEM. We must be aware of the usually compli- 
cated behaviour of z:(x), e.g. they can contain singularities at reentrant comers of the body 9'. 
In general, we do not know these functions a priori. 

Now let us return to the original problem for the body 9. It can be shown that solutions T ~ ( x )  
of equations (1 1) are orthogonal to the image of the integral operator + T and will be very 
useful in the description and analysis of the methods to be presented in this section. 

Multiplying BIE (1) for the case of a smooth boundary by T ; ( x )  and integrating over 8 9  
gives 

where the symmetry of the Kelvin fundamental solution @ , j ( x , y )  = @,,(y,x) and equation (1 1) 
were taken into account in derivation of the second equation and global equilibrium conditions (3) 
in derivation of the third equation. 

A classical result of Mikhlin (Reference 21, Section 45) states that the number of linearly 
independent vector functions orthogonal to the image of the operator f +T equals the number 
of its linearly independent zero eigenfunctions and that both are equal to nd. Consequently, the 
Fredholm theory, originally developed for boundary integral operators with bounded or weakly- 
singular kernels, is applicable to this operator with strongly-singular integral kernel as well. Hence, 
pUg(x) form a basis of the null space of this operator and T ; ( x )  a basis of the complementary 
subspace orthogonal to the image of this operator. 
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The following important relation between the rigid-body motions ,uLq(x) and the related stress 
vectors 73.) is shown in Appendix I1 (cf. Reference 8 for the 3-D case): 

We can now describe two closely related methods to obtain invertible operators which will be in 
+ T. We proceed either by augmenting some reasonable sense equivalent to the original operator 

the original BIE (1 ), Method FZ: 

O?(y)U;’)(y) ds(y) = 0, Ct = 1,. . . , nd ( 14a) 

with both displacements uj’)(x) and real constants ma as unknowns, or by modifying the original 
BIE (1 ) by adding an integral operator with a degenerated kernel, Method F2: 

with only displacements uY’(x) as unknowns. ug(x) and wF(x) can be any functions satisfying the 
following conditions: 

Conditions (16) and (17) are necessary and sufficient conditions of invertibility of the operators 
on the left-hand sides of equations (14) and (15). Chen and Zhou (Reference 1, Theorem 4.6.4) 
introduced a proof of this statement for Method F 1. Their proof can be applied after slight amend- 
ments for Method F2 as well. It must be emphasized that conditions (16) and (17) provide a 
specification for a correct choice, among all the possibilities, of ug(x) and w:(x), which is very 
useful for devising computational procedures. Hereinafter in this section it will be assumed that 
these conditions hold. 

Subtracting equations (14a) and (19,  multiplying the result by zf(x) and integrating over 89 
yields 

which with condition (17) provides a basic relation between Methods Fl  and F2: 

O ~ ( y ) U ~ ’ ( y ) d s ( y ) = ~ a ,  a =  l,...,nd (19) k 
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1 0  - X 2 ( P )  

0 1  Xl(P> 
1 1  J2 -J ix2 (Q)  + Jzx l (Q)  

If the boundary stress vector t,(y), y E 89, satisfies conditions of global equilibrium (3), then 
multiplying (14a) by $ ( x )  and integrating over 8 9  one obtains 

= J i (x2 (P)  - x z ( Q ) )  - J z h ( P )  - x l ( Q ) >  # 0 (22) 

Hence, in view of (17), 0' = 0 and from (19) also 

u;(y)u;?)(y)ds(y) = 0, a = 1, ..., nd 19 
Therefore, solutions in displacements of (14) and (15) represent two solutions of the original 
BIE (1 ). Consequently, these solutions might differ in a rigid-body motion, but, in view of (16), 
they have to be equal because both satisfy the same constraint equations (14b) and (21). 

As follows from the previous analysis, there are an infinite many ways to choose sets of functions 
vF(x) and wg(x).  Here we describe two basic ones. 

In view of relation (13) we see that the most simple choice is to define ug(x) = wg(x) = p:(x). 
The other possibility is to keep w ~ ( x )  = p;(x)  but replacing integral conditions (14b) (and 

similarly in (15)) by linear pointwise constraint conditions, which can represent point support 
conditions familiarly used in engineering and briefly presented in Section 3 (cf. Reference 1, 
Section 4.7). A simple 2-D example was shown in Figure 1, condition (16) for this example, 
taking the form 

It clearly follows from (1 1) that if wg(x) is taken equal to pF(x), then ty(y) = .r?(y). Equations 
(14a) and (15) can, respectively, be rewritten, applying relation (23), as 
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and 

The expressions in brackets on the right-hand sides of (24) and (25) equal each other due to 
(19) and represent a modified boundary stress vector. By application of a standard procedure, i.e. 
multiplying (24) by $(x), integrating over 8 9 ,  using the symmetry of the kernel qV(x, y )  and 
equation (1 1 ), it is found that this modified boundary stress vector field satisfies global equilibrium 
conditions 

Thus, the non-equilibrated part of the prescribed load tj(y) has been undertaken in both methods 
by a linear combination of ty(y), solutions of (23), the resultant stress vector field, being conse- 
quently highly dependent on the choice of functions wF(x). The coefficients of this combination are 
additional unknowns ma in Method F1 and perturbations of constraint equations (21) in Method 
F2. Their values indicate how much the equilibrium is altered by the applied boundary stresses. 
Obviously, displacements u:.')(y) and u:2'(y) are solutions of the BIE (1) with the same modified 
right-hand side. These solutions differ from each other by a rigid-body motion which depends on 
the choice of functions ug(x) and which is defined by the subtraction of equations (14b) and (19). 

4.2. Removal of rigid-body motions in the linear system 

case of a body occupying a general domain, as follows for Method FI: 
The discretized versions of the above methods presented firstly for BIEs can be written, for the 

H W  
[VT 0 1  { ":)} = { Y }  

and for Method F2: 

[H + WVT] {u"'} = {Gt} (28) 

where W, V E Rd." x n d  and have a clear meaning according to (14) and (15). It can easily be 
demonstrated that the necessary and sufficient conditions for the invertibility of linear systems 
(27) and (28) are 

det [VTM] # 0 (29) 
and 

det [WTS] # 0 

where the column vectors of M E Rd-"xnd, defined in ( 5 ) ,  and S E Rd."x"d form bases of the null 
spaces of the matrices H and H', respectively. 

Briefly speaking, Method F1 augments the square original matrix by nd rows and nd columns 
and Method F2 adds to the original matrix a square matrix of rank nd. 

Assuming that the matrix H has d.n linearly independent eigenvectors, the relation 

det [MTS] # 0 (31) 
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can be simply demonstrated. If this condition was not fulfilled, then such a non-trivial linear 
combination of the columns of S, combination which is orthogonal to all the columns of M (to 
the null space of H), would exist. But simultaneously it would be orthogonal to all the eigenvectors 
of H related to non-zero eigenvalues, which is of course impossible. 

Relation (31) pennits the use of the known vectors ma as vectors wa in both methods. Vectors 
ma can be used as vectors v' as well, but vectors related with another suitable linear condition 
for displacements, e.g. point supports described above, can also be used. 

Subtracting system (28) from the first equation of (27) and multiplying from the left by ST 
yields 

STH (.(') - u(')) = 0 = -STW (0 - VTu(2)) (32) 

VTU(2) = 0 (33) 

which in view of condition (30) gives a basic relation between these systems analogous to (19): 

Moreover, relation (33) implies H (dl) - d2)) = 0 which in turn implies that u ( l )  - d2) is a 
rigid-body motion. 

If the original system (4) has a solution, the following natural correspondence between this 
system and systems (27) and (28) can be easily shown: solutions in displacements u(') and d2) of 
systems (27) and (28) are the solutions of (4) as well and they are equal to each other. Subtracting 
the first equation of (27) from (4) and then multiplying the result by ST gives 

H (U - d") = -WO 
0 = - S T W o  (34) 

Hence, condition (30) yields w = 0 and from (33) V T d 2 )  = 0. Therefore, u(I) and d2) solve (4). 
Consequently, u ( ' ) - d 2 )  is a rigid-body motion and, in view of (29), the condition VT (d') - d')) 
= O implies u(') = d2). 

Now these two methods are applied to solve problems of Figure 2, by using two different forms 
for V, but with the same W matrix. 

First, using V = W = M, constraint equations VTu = 0 imply zero 'average' translation and 
rotation of the displacement field. If the desired position is defined by the point supports, then an 
obviously calculated rigid-body motion can be added to the displacement solution in such a way 
that the point support conditions are fulfilled by the resultant displacements. 

Second, using the matrix V associated to point support equations. Then, the solution obtained 
from Method F1 is directly the solution desired. Note that, in view of (33), a rigid-body motion 
has to be added to the solution from Method F2 to reach the position desired. 

The results obtained by both Methods F1 and F2 coincide, once an appropriate rigid-body motion 
is applied. Moreover, it has been observed, as was expected, that the choice of V does not have 
any significant influence on the solution, but only defines the final position of the body, selecting 
a displacement field among all those possible. Therefore, only the results of Method F1 for the 
second option of the matrix V are shown in the following figures. 

The excellent results, Figure 4, have been obtained, with no presence of peaks in the solution, 
for the problem of Figure 2(a). Note that the values of ma for this problem were of an order 

With reference to the problem of Figure 2(b), the results are presented in Figure 5 .  It can be 
observed that errors are small in spite of the relatively low number of boundary elements used. 
Some heed can be given to the larger error found in the sharpest corner (at node number 16 in 
Figure 2(b)), the possible reason for this being that the stress vector distributions fT(y) = z:(y) 

and 
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Figure 4. Plate: result of Method F1 
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Figure 5. Ground result of Method F l  

(see (23)) used present singularities at comers of this kind. The values of oa for this problem 
were of an order 

Note that Methods F1 and F2 can obviously be adapted to the cases of improperly supported 
bodies by using only vectors related to rigid-body motions satisfying prescribed displacement 
boundary conditions. 

lod4 and 

5. METHOD BASED ON CORRECTION OF STRESSES AT POINT SUPPORTS 

In this section a special implementation of a physically important variant of Method F1 given by 
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Let the matrix VT be given by nd point support equations. Without loss of generality the 
following partitions of the matrices H = [H',H"], G = [G',G"] and the vectors u = [u',~"], 
t = [t', t"] will be adopted, where the submatrices HI', G" E R d . n x n d  and the subvectors u", t" E 
R"d correspond to the variables associated with point supports. Now, the matrix W in equation (27) 
is taken as W = G", which means that its co1urr.i~ are generated by distributions of the stress 
vector over boundary elements in the neighbourh od of point supports given by the related shape 
functions. The first equation of (27) can be rewiI.ten as follows: 

Therefore, constants oa can be interpreted as the corrections to the given nodal values o f t "  at the 
point supports which enable the original system (4) to have a solution. According to Section 3, 
constants oa may have relatively large values even if the values o f t  correspond to an equilibrated 
boundary stress vector field. 

Equation (27), by applying the above adopted notation, is written: 

where I is the diagonal unit matrix. For implementation in BEM codes the following simplified 
equivalent form of this equation is suitable (Method Flu): 

[HI, G"] { i} = {Gt} 

Qualitatively, the level of accuracy reached by this variant of Method F1 for problems of 
Figure 2 is, in spite of its simplicity, similar to that of the other variants of Methods F1 and 
F2 discussed in the previous section. Inasmuch as their results for the problem of plate almost 
coincide, only the result for the problem of ground is presented in Figure 6. 

The values of o" obtained for the problem of Figure 2(a) are of an order 10' associated to 
the xzcomponent in both supports, while of an order when associated to the xl-component. 
Therefore, the final solution of the vector of stresses, (t', t" - w), is not in global equilibrium. This 
result corroborates the statement that stresses in equilibrium are not necessarily a set of stresses 
for which the system (4) can be solved. 

For the problem of Figure 2(b), whose initial discretized stresses are not in equilibrium, the 
values of w" are of orders 102 and 10' associated to the XI- and x2-components, respectively. It 
must be stated that in reducing the size of elements next to the supports, some local perturbations 
appear. This occurs because the area where stresses associated to w" are applied is smaller, so 
that variables w" have to reach higher values, thus modifying the solution locally. 

Method Flv, due to the distributions r;(y) (see (23)) used, can be considered the most straight- 
forward way to simulate real point supports, obtaining the support forces from the values of w". 
It should not be forgotkn that these d do not force equilibrium, although they generally lead to 
a discretized boundary load which is close to an equilibrated one. 

This procedure permits the solution of problems modelled from an engineering point of view by 
means of point constraints and concentrated loads. These situations have been treated, as suggested 
in this section, by Lachat and Watson2' and Brebbia and Dominguez," among others. 
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Figure 6.  Ground: result of Method F l v  

6 .  FINAL DISCUSSION AND CONCLUSIONS 

The fact that the equilibrated discretized load t does not imply in general solvability of the linear 
system of equations (4) has been emphasized several times in the course of this article. It seems 
that the following two reasons can be given to explain why the condition of the equilibrium of 
this load is not exactly equivalent to the condition that the column vector Gt be an element of 
the column space of the matrix H. The first reason can be seen in the collocation nature of the 
linear system (4) and the second one in the fact that functions zg(x), which are orthogonal to the 
image of the left-hand side operator of the BIE (1 ), generally cannot be exactly approximated by 
boundary element shape functions. 

Accordingly, the two subspaces of the discretized boundary loads t, one containing loads satis- 
fying global equilibrium and the other containing loads for which system (4) has a solution, can 
be different. Consequently, the question of how distant a load t related with a solution of (4) can 
be from all the globally equilibrated loads does arise. The notion of distance between equidimen- 
sional subspaces16 can give an answer to this question. An important feature of this distance is 
that it represents the maximum relative difference between a non-zero equilibrated load vector t 
and the nearest vector to it for which equation (4) has a solution. It is naturally expected that a 
mesh refinement implies a decrease in this distance, but further investigation of this global error 
bound is considered necessary. 

The relatively poor behaviour of Methods S1 and S2 has been attributed to the above discussed 
fact. Note that they can be interpreted as implementations of a variant of method F1 as well; 
e.g., Method S1 is obtained by defining W = V, where the matrix VT is given by point support 
equations. But in this case the matrix W has only a few non-zero rows, so all error in the 
system is concentrated in a few collocation equations (dropped out in our implementation). The 
consequence of this is peaks in displacement variables associated to collocation equations which 
are not fullfilled. Obviously, Methods S1 and S2 work if the original system (4) has a solution. 
This is the case of the plate subjected to pure traction analysed by linear elements or the plate 
subjected to bending analysed by quadratic elements. 
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On the other hand, if the traction Hypersingular BIE (HBIE) is discretized by the Galerkin 
method?3 then functions orthogonal to the image of the left-hand side hypersingular symmetrical 
operator represent rigid-body displacements p:(x), which are at the same time unit eigenvectors 
of the adjoint operator to the strongly singular operator on the right-hand side of the HBIE. 
Inasmuch as pg(x) can be exactly represented by element shape functions, we can appreciate that 
the HBIE ‘corresponding’ to (4), discretized by the Galerkin method, will always have solutions 
for any equilibrated discretized loads, and both methods S1 and S2 will be able to work very 
well. 

This is an appropriate point to reflect on the difference, in simple terms, between FEM and 
classical BEM, with reference to the application of the methods discussed to remove rigid-body 
motions. When the original system of equations corresponding to the discretized body has a solu- 
tion, which is always the case for equilibrated loads in FEM, linear dependent equations can be 
removed, a smooth solution without peaks appearing. However, when the system has no solution, 
which can be the case of classical BEM with equilibrated loads, the removal of any equation 
implies the appearance of peaks in the solution, one approach in some way averaging the error 
then being required. 

Theoretical analysis given in Section 4.1 helped us to give mechanical explanations to somewhat 
algebraically introduced numerical Methods F1 and F2 in Section 4.2. The error of a displacement 
solution is distributed along the boundary in accordance with chosen functions r;(y) (see (23)). In 
this study only r;(y) = ~ y ( y )  has been tested, the ‘unavoidable’ errors of displacement solutions 
obtained always being smoothly distributed along the boundary. 

An interesting connection between Method F1 here proposed and numerically checked and an 
approach suggested by Vable9 is developed in Appendix 111. 

Operator i + T is in general very suitable for application of iterative Krylov methods (conju- 
gate gradients, etc.) to the solution of the resulting linear system. The convergence rates of these 
methods seem to be dependent on the eigenvalues of the linear system, real and clustered spectrum 
usually yielding rapid convergence.’ The application of Heise’s idea’ to this operator (see Refer- 
ence 1 1  for Potential Theory) leads to our proposal to apply these solvers to the resulting linear 
system of method F2 with WVT = 4 k M T .  For definition of the matrix 6l see Appendix I. 

It should be observed that the usual method applied for removing rigid-body motions in BEM 
codes’o* ** has not appeared completely consistent with BEM discretization principles, which as- 
sume that stress vector is defined over boundary elements and not at nodes, and moreover that 
the type of boundary conditions cannot change along elements. Nevertheless, in Section 5 it was 
demonstrated that this classical approach can be included as a particular implementation of Method 
F1 at the expense of the proof of the fulfillment of condition (30). 

Even though for a definite recommendation on ‘how to remove rigid body motions in BEM 
codes’ more numerical tests ought to be carried out, we can state that it should be done in a 
general framework of Methods F1 and F2 and that the ‘decisive’ factor is the choice of the matrix 
W .  This matrix determines the smooth distribution of ‘unavoidable’ errors in displacements and 
consequently has a considerable influence on stress solutions. From the two possibilities introduced 
in this work, W = M and G”, it seems that the first will give, in general, smoother distributions 
of displacement errors. 
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APPENDIX I 

Details of some numerical results 

The objective of this appendix is to give a few numerical results that will characterize ro- 
bustness and effectiveness of the methods dealt with in the previous sections. For this pur- 
pose the condition number of the linear system matrices, as a measure of their singularity, 
has been examined. Additionally, the influence of this condition number on the solution error 
is shown. 

The number of points used in Gaussian quadratures is denoted by nG. The condition number u2 
of the linear system matrix has been computed using an SVD procedure16 by means of formula 
~2 = omax/omin, where omax and omin are, respectively, the maximum and minimum singular values 
of the system matrix. The relative error, denoted by e,  of relative displacements between nodes 
1 and 17 for the plate subjected to bending, Figure 2(a), has been calculated by means of the 
formula e = (nu?'. - Auym.)/Auy'., where Au, = ul(17) - ul(1). For the direct solution 
of (4), a rigid-body motion has been added to the resulting displacements to fulfill the point 
support conditions before calculating this relative error. 

With reference to Methods S1, S2, F1, F2 and Flv, point support conditions shown in Fig- 
ure 2 have been applied in all of them. The matrix W in Methods F1 and F2 has been taken 
equal to M. Variants of the Methods F1 and F2 denoted as F1* and F2* are defined by V = 
W = M/&, where columns of M are orthonormalized columns of the matrix M. In fact, 
I" = ma/((moL(( ,  taking the centroid of the boundary nodes as the origin of the co-ordinate system 
(cf. Reference 7). 

From Table I it can be observed that the order of the condition number ~2 of the system matrix 
in the direct solution, matrix H, increases considerably with increasing precision of Gaussian 
quadratures, which implies large roundoff errors in numerical solution of this system with a 'cata- 
strophic effect' on errors of the relative displacements computed. In turn, ic2 of the system matrix 
in Method F1 is relatively small and independent of nG, i.e. it is independent of the condition 
number of the matrix H included in the linear system (27), which corroborates the robustness and 
effectiveness of this method. The error e computed by F1 does not improve with increasing no, 
the best value being achieved already for nG = 4. This fact can be attributed to the regularity of 
the mesh, which in this case is formed by elements of equal length. 

The condition numbers ~2 of the linear system matrices of all the methods proposed in this 
paper are examined in Table 11. Values of ~2 have been observed to be almost independent of nG, 
and therefore they are only shown for n~ = 8. The minimum values of ~2 have been achieved 
for Methods F1* and F2' with the matrices W and V suitably defined for this purpose. All these 
methods provide a relatively small condition number, which corroborates their effectiveness in 
replacing the original ill-conditioned system with a well-conditioned one. 

Table I. Plate: condition numbers and relative errors of deformations 
using direct solution and Method F1 

nG 4 8 16 

Direct K2 1.08 107 2.25 x 10l2 4.99 x loi5 
solution e -6.32 x 1.25 1.94 107 
Method F1 ~2 424.7 424.1 424.1 

e -6-72 x lo-' -6.73 x -6-73 x lo-' 
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Table 11. Plate and ground: condition numbers for different methods 
Method S1 s 2  F1 F2 Flv F1' F2' 

Plate K2 123 26-2 424.7 398.7 27.6 12.8 12.7 
Ground ~2 375.1 33.2 2215 2108.7 537.5 13.9 13.8 

APPENDIX I1 

Proof of a relation between pa and ta 

In this appendix relation (13) is proved. Let us assume for a moment that the relevant de- 
terminant (nd x n d )  is zero. This implies that there is a non-zero linear combination f j ( y )  = x?=, c b ! ( y )  which satisfies all global equilibrium conditions (3) and generates, integrating with 
the kernel Q i j ( x , y ) ,  a continuous displacement field i i i ( x )  in Rd: 

Ci (x)  = Q;j (x ,  y ) f j ( y )  ds(y), x E Rd (39) J,, 
which obviously satisfies Navier equation in the domains 9 and 9' separately and on the boundary 
8 9  equals a rigid body motion j i i ( x ) .  The regularity conditions at infinity: for displacements 

Ci (x )  = O((lxlll-") and for the pertinent stresses c?,(x) = O ( [ I X I I - ~ ) ,  x E 9', 11x11 -, 00, follow 
directly from the representation (39) (cf. Reference 14). Let e ( x )  and ?' (X) ,  x E 8 9 ,  denote, 
respectively, boundary stress vectors pertinent to the displacement fields & ( x )  defined on the 
domains 9 and 9' separately, the corresponding outward normals ni(x) and nt(x) being applied 
in the definitions of the stress vectors. From the well-known boundary jump relations for the stress 
vector of the simple layer potential'$ * it follows that f ; ( x )  = f ? ( x )  + f?"'<x), x E a.9. Then 

j i i (x )?; (x )  ds(x) = j i i < x ) e ( x )  ds(x) + 
The theorem of work and energy separately applied to the displacement fields I l i ( x )  in the do- 

mains 9 and 9' implies that the two integrals on the right-hand side of (40) represent the pertinent 
elastic strain energies in these domains. Therefore both energies equal zero and consequently the 
displacement field iii is a rigid-body motion in the whole space Rd. This yields e ( x )  = e c ( x )  = 0 
and finally fi(x) = 0, which concludes the proof. 

APPENDIX 111 

A note on Vable's algorithm 

The resulting displacement field u(") of the algorithm proposed by Vable (Reference 9, Appendix 
11.3) for removing rigid-body motions in direct BEM can be written, concentrating all the steps of 
the algorithm in one equation and applying our notation, as the solution of the following modified 
system: 

(H + WVT) U(V) = ~t - w (v' (H + W V T ) - ~  w1-l VT (H + wv~1-1 ~t (41) 

Multiplying equation (41) times VT(H + WVT)-' from the left gives directly VTuV = 0. Hence, 
dV) is a solution of the original system (4) with the modified right-hand side by a linear combi- 
nation of columns of W. Inasmuch as this linear combination is uniquely defined by coefficients 
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o (see Section 4.2), solution u(’) equals solution u(’) of (27) theoretically, i.e. omitting rounding 
errors of numerical computations. Moreover, application of the following interesting and easily 
provable identity: 

VT (H + WVT)-’W = I 

substantially simplifies the right-hand side of (41 ) as follows: 

(H + WVT) u‘”) = Gt - WVT (H + WVT)-’ Gt (43) 
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