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Abstract--Free rigid body modes in Neumann problems are typically eliminated by suitably 
restraining the body. An alternative approach, here called "regularization", involves first computing 
the singular stiffness matrix and then suitably modifying it using ideas from linear algebra. This 
idea has been suggested by V~rchery (1990) for symmetric matrices. This paper is concerned with 
regularization of nonsymmetric stiffness matrices that arise from the boundary element method 
(BEM) for linear elasticity. Existence and uniqueness issues, as well as properties of the displacement 
field, for elasticity problems with tractions prescribed at every point on the boundary, are discussed 
in this paper. (9 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

It is well known that pure Neumann problems lead to singular stiffness matrices at the 
discretized level. Such is the case, for example, if only tractions are prescribed on the 
boundary 8B of a linearly elastic body B, or fluxes are prescribed on 8B in potential theory. 
The common remedy for such problems is to apply sufficient restraint on the body by 
prescribing displacements (in the elasticity problem) or temperatures (in the steady state 
heat conduction problem) at suitable points on its boundary. An alternative approach, here 
called "regularization", is to first compute the singular stiffness matrix A and then modify 
it using ideas from linear algebra. This has been done by VSrchery (1990) for the case where 
A is symmetric and positive definite. Obviously, VSrchery's work is applicable to methods 
such as finite elements or symmetric Galerkin boundary elements where one obtains a 
symmetric positive definite stiffness matrix after discretization. 

The linear algebraic approach of"regularization" of A has certain potential advantages 
over the commonly used "restraint" approach. Some of these are : 

(1) The regularization can be applied routinely without requiring the analyst to determine 
how to sufficiently restrain a body for each separate problem. 

(2) It is expected that the regularization approach, which is global, will lead to better 
numerical accuracy than the restraint approach which is often local, especially for 
problems without obvious regions of symmetry. 

This paper is concerned with application of the regularization approach for the usual 
boundary element method (BEM) that leads to non-symmetric matrices. Only linear elas- 
ticity problems are considered in detail hereafter. Potential problems are easier to regularize 
and are sometimes alluded to in this paper. 

For specifity, elasticity problems under consideration in this paper start from the 
boundary integral equation (BIE) first proposed by Rizzo (1967) 
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C,k( P)u,(P) = fB [Uik(P, Q)zi(Q) - T,k(e, Q)u,(Q)] ds(Q) (11 

where u and v are boundary tractions and displacements, U and T are the usual Kelvin 
tensors (given in many references such as Mukherjee, 1982) and C is the corner tensor. 

Also, P and Q are source and field points, respectively, on 8B, and ds(Q) is a surface 
element on 8B. Equation (1) applies to both two- and three-dimensional (2-D or 3-D) 
problems provided that the appropriate kernels are used. 

A discretized form of eqn (1) can be written as 

where, for specificity, let 

A u = B r  (2) 

[u] r : [u,(1),Uz(1),u3(1) . . . . .  ut(N),u2(N),ua(N)] (3) 

and similarly for the traction vector. Here, 3-D problems are under consideration and N is 
the number of boundary nodes on OB. The superscript T denotes the transpose of a vector. 

The square matrices A and B are, in general, nonsymmetric. The matrix A is singular 
with nullity k equal to six for 3-D elasticity and three for 2-D elasticity. (The corresponding 
discretized BIE for the Laplace equation leads to a stiffness matrix with nullity equal to 1). 
It is well known that the null space Y ( A )  of A is spanned by the rigid body modes. 
Therefore, a basis of Y ( A )  for 3-D elasticity problems, is 

tl r = [1,0,0,  1 , 0 , 0 , . . . ,  1,0,01 

t2 r = [0, 1,0,0, 1 ,0 , . . . , 0 ,  1,0] 

t3 r = [0,0, 1,0,0, 1 . . . . .  0,0, 1] 

p r = [0 , - -z l ,y l ,0 , - -z2 ,y2  . . . . .  0,--ZN, Yu] 

p T  = [.71 , 0 ,  - - X l ,  Z2, 0 ,  - - X  2 . . . . .  ZN, O, --XN] 

p~" = [ - - y l , X l , 0 , - - y 2 , x 2 , 0  . . . . .  --yN, XN,0] (4) 

in terms of the three translation and rotation vectors tk and Pk (each of size 3N × 1), 
respectively. An important issue is the choice of a coordinate system for specifying Pk. This 
matter is addressed later in this paper. 

The matrix B is nonsingular since linear elasticity guarantees a unique solution for v if 
u is prescribed on 8B. 

It is noted that a basis for the null space of  the corresponding matrix from potential 
theory is a vector, of size N × 1, with all its entires equal to unity. 

The rest of the paper is organized as follows. First, a proposed approach for the 
regularization of A is presented. This is followed by a discussion of the properties of the 
specific unique solution that is obtained by this approach. Finally, some comments are 
made regarding partial regularization--i.e, when only some (but not all) of the free trans- 
lation and/or rotation modes need to be eliminated in a particular boundary value problem. 

2. REGULARIZATION OF THE MATRIX A 

This section explains how the matrix A can be modified in order for a correct solution 
for u to exist and be unique. 
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2.1. Ex i s t ence  o f  a solution z 

This p r o o f  is well known and is only repeated here for completeness. 
L e t u i = t f f o r i = l , 2 a n d 3 a n d u i = p ~ f o r i = 4 , 5 a n d 6 .  L e t n = 3 N a n d U ,  n × 6 ,  

have the null vectors ui as its columns. N o w  

A u = O  

Any solution o f  a consistent linear system 

A x =  b 

can be written as 

(5) 

{6) 

x = z +  Uy (7) 

where the vector z is or thogonal  to the null space o f  A, i.e. 

u r z  = 0 

Let 

(8) 

C = A + V U  r (9) 

with V and n × 6 matrix with the rank of  V equal to six. Then 

Cz = A z +  V U T z  = A z + O  = A ( x -  Uy) = A x  = b 

so that one can solve 

C z = b  

in order  to find one o f  the solutions x o f  eqn (6). 

2.2. 

with 

(1o) 

Uniqueness - -a  suff icient  condition 

A singular value decomposi t ion (SVD) of  the matrix A can be carried out  in the form 

A = WZZ T (11) 

W = [ q l , q 2  . . . . .  q.  6 , v l , v 2  . . . . .  v6] 

Z =  [ P l , P 2  . . . . .  p,, 6,u, ,u2 . . . . .  u6] 

where qt, i = l, 2 . . . . .  n - 6  constitute a basis for ~ (A) ,  the range o f  A, vi, i = l, 2 . . . . .  6 is 
a basis for the ~t ("~ complement  o f  ~ (A) ,  Pi, i = 1, 2 . . . . .  n - 6  is a basis for the ~i,,~ 
complement  o f  X ( A ) ,  and Z is a diagonal  matrix 

Now,  let 

with V = [vl, v2 . . . .  , v6]. 

Z -= diag [a l ,a2  . . . . .  a.  6 , 0 .0 ,0 ,0 ,0 ,0 ]  (12) 

C = A +  V U  v (13) 
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where 
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It is easy to show that the singular value decomposition of C is 

C = W A Z  r (14) 

A = diag [at, ~r2 . . . . .  O'n_6, 1, 1, 1, 1, 1, 1] (15) 

2.3. Choice o f  V 

It is well known that for any matrix A 

~-L(A) = X ( A  r) (16) 

Further, for a square matrix A 

nullity (A) = nullity (A 7) (17) 

Thus, for any square matrix A 

~(A) U x(A~) = ~+ (18) 

Therefore, if A is symmetric, a sufficient choice of V, for C t o  be nonsingular, is 

V = U (19) 

This has been done by V~rchery (1990). 
Unfortunately, A in eqn (2) from the BEM is not symmetric. The choice V = U does 

not work, in general, for nonsymmetric matrices. A simple counter-example is 

:) 
for which X(A)  = ~(A). It is still possible, however, to efficiently choose V such that a 
sufficient condition for C to be nonsingular can be met. The algorithm proposed for this 
purpose is given below. 

First, note that in order for a solution u of eqn (2) to exist, ~ must satisfy equilibrium, 
i.e., the discretized versions of the equations 

t ~ds = 0 (20) 
B 

f (r×'c) d s = 0  (21) 
B 

where r is the radius vector from any point to a boundary point. 
The proposed algorithm for choosing V is 

1. Choose six linearly independent traction vectors, zi, i = 1, 2 . . . . .  6 that violate equi- 
librium. This guarantees that for any of these choices, a solution u from eqn (2), does not 
exist. Therefore, the vectors Bzi are outside the range of A. 

so that C is nonsingular and z, from equation (10), is unique for any b. 
The remaining issue is an efficient way to choose V. It is necessary that rank (V) = 6 

and it is sufficient that ~t(V) be outside of ~t(A) 
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A simple choice for ~i is 

• g = t e ,  i =  1,2,3 

¢i = Pi, i = 4 , 5 , 6  (22) 

The vectors p~ can be evaluated in an arbitrary coordinate system. The reasons for this 
are explained later in the paper. 

2. Since B is nonsingular (by virtue of the uniqueness theorem of linear elasticity) 

d i = B ~ i ,  i =  1,2 . . . . .  6 (23) 

are linearly independent. 

3. The vectors de are outside ,¢t(A) by virtue of statements (1) and (2) above. 
Set 

V = [d~, dz , . . . ,  d6] (24) 

2.4. Scalin9 o f  equations 
In practice, when using eqn (10), it is important to scale the matrices U and V such 

that the entries of V U  r are of the same order as the matrix A. 

3. PROPERTIES OF THE UNIQUE SOLUTION 

This section discusses additional properties of the unique solution. First, the unique 
displacement solution is shown to satisfy six conditions that are in the form usually 
associated with equilibrium conditions for forces. Second, for a given particular solution 
composed of the unique solution with added rigid body modes there is a direct way to 
remove the rigid body parts and return to the unique part. Both of these properties have 
both discrete (matrix) and continuum (integral) formulae. 

Let u ~°) be the (unique) solution of the regularized BEM equation 

Cu ~°) = BT (25) 

From (8), we know that Uru (°) = 0, where the 0 is a 6-dimensional zero vector. Each of the 
first three components has the form triu ~°) = 0, where te is a pure translation vector, and is 
the summation of a particular displacement component at all the nodes. These summations 
are a discrete analog of the continuum vector integral 

f u d s =  0 (26) 
B 

The last three components of UVu ~°) = 0 are of the form p f u  ~°) = 0 with rotation Pi. These 
summations are the discrete analog of the continuum vector integral 

f ( rxu)  ds = 0 (27) 
B 

Equations (26) and (27) are of precisely the same form as the force and moment equilibrium 
eqns (20) and (21), but with displacement taking the place of traction! Also, the "force 
equilibrium" condition (26) allows the "momentum equilibrium" condition to be measured 
from an arbitrary point. This is analogous to the fact that for a body in equilibrium, the 
sum of the moments of all the applied forces about a point is 0, regardless of the location 
of that point. 
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From (7), it is known that any other u ~') that is a particular solution of Au ~p) = Bz 
differs for the solution u ~°~ by a linear combination of the (rigid body motion) columns of 
U, i.e. 

u ~p) = u ~°)+[t~ t2 t3] 32 +[pl  P2 P3] 602 (28) 

L33J 093 

where the multipliers for the linear combination of columns have interpretations as trans- 
lations 31, 82, 33 and rotations 60~, 602, 603. This interpretation applies to both the 3N 
dimensional vector solution (28) and on a point-by-point basis in Cartesian space. That is, 
by expanding the rigid body vectors as defined in (4), one obtains the displacement com- 
ponents for u (°) and u ~') at any particular node as 

u(p) = u ( ° ) + c $ + 6 0 × r  (29) 

If the rotations are taken about the centroid of the nodal points, and one uses principal 
coordinates, one has 

0 for i :/: j (30) 
tr t j=6~jN,  f f p j = O ,  prip/= L, for i - j  

where L is the second moment of the nodes about the xg axis (e.g. I 1 = Y~k(Y~ + 22) and Xk, 
Yk, Zk are (principal centroidal) nodal coordinates of  node k). Please note that the principal 
centroidal coordinate system is determined by appropriate summations of the discrete nodal 
coordinates. 

In principal centroidal coordinates, one can extract 62, 62, 33 and 601, (/)2, 603 from a 
given u p by taking inner products of both sides of (28) with the rigid body vectors and 
applying (30) and Uru (°~ = O: 

1 1 
3~= ~ f l u  (p) , 60,-- ¥pru(p), i =  1,2,3 (31) 

& 

Once these are known, u ~°) can be obtained directly by simple rearrangement of (28). 
Clearly, the same u ~°) is obtained regardless of which particular u p is chosen for the 6- 
dimensional rigid body motion space. 

As was done for (26) and (27), if one interprets the inner products in (31) as discrete 
analogs of continuum integrals, one obtains formulae to extract translation and rotation 
parts from a particular displacement solution field uP as 

l u~ p) ds, 60i = [r × u]/ds (32) 

where A is the surface area of  the body. 
Finally, one gets 

1 u (p) d s -  ~ [r x u(P)]k ds ek X r u~°~(x) = u ( ' ( x ) -  ~ ~ (33) 

If the translations and rotations are expressed in other coordinate systems (e.g. not 
centroidal or not in principal orientation), the 6i and 60s can be obtained by solving the 
(6 x 6) linear system of  the form 
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-61]  
3, L 

Uru~PI = UrU 6,, 
o , )  t 

I 

¢02 ] 

_(03 
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(34) 

The choice of centroidal coordinates simplifies the problem by making UrU diagonal. 
(Scaling appropriate columns of U by x /N and x/), simplifies the solution even further, 
making UrU an identity matrix.) 

In two dimensions, one has three linearly independent vectors in the null space of A. 

t r = [1.0, 1,0 . . . . .  1,0] 

t2 r = [0, 1,0, 1 . . . . .  0, 1] 

p T =  [__yl,XI ' __) ,2 ,X  2 . . . . .  __ y n , X n  ] (35) 

Now one can follow the same procedure as before to obtain, in centroidal coordinates, 

l T ) 3 g = - - t , u  ~p i = l  v (36) 

l pr#p~ (37) o ) = ~  

where I is the second moment of the boundary nodes about an axis normal to the body 
through its centroid, i.e. 

I = ~(x~ + f i )  (38) 
k 

The continuum analog of these equations is 

u~°'(x) = u ~ ' ( x ) -  Z ~ ? (39) 

where L is the perimeter of the body. 
The regularization approach presented in this paper calculates the elastic deformation 

and stress fields with respect to a reference rigid body configuration that satisfies the 
constraint eqns (26)-(27). It is important to mention here that for bodies moving freely, 
such as space structures, this reference configuration is of little practical consequence, 
provided that u (°) from eqn (28) is unique. The calculated stresses in the body, of course, 
are also unique. Also, it is restated for emphasis that, in practical applications, the entire 
problem including the evaluation of Pk, can be carried out in arbitrary coordinates. 

4. A 2-D EXAMPLE WITH UNIFORM STRAINS 

Consider a 2-D body of arbitrary shape, in plane strain to be specific, subjected to 
spatially uniform normal strains ell and e22 with zero shear (~2 = 0). The general form of 
a particular solution u ~), in arbitrary coordinates, is 
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u~ p~ = g 1 1 x  + o 9 1 2 y +  E ~ 

b/f2 p) = g 2 2 Y - - f D i z X q - E 2  (40) 

where m~2 is an arbitrary rotation and E is an arbitrary translation. 
A simple solution for u C°~ is obtained from eqn (39) if centroidal principal coordinates 

are used. This is 

u~°)(~) = (e~l~ / (41) 

This means that if the problem [including the rotation vector p in eqn (35)], is 
formulated in centroidal principal coordinates, the computed unique solution is such that 
the initial configuration does not undergo any rigid body motion. Again, it should be 
emphasized that it is not necessary in practice to use any special coordinate system. Any 
arbitrary coordinates would suffice in order to get a unique solution u ~°). The purpose of 
the exercise in this section is to understand the nature of the unique solution in this special 
case with uniform normal strains. 

A numerical example is shown in Fig. 1. An irregular hexagon, in plane strain, is 
subjected to a boundary traction field corresponding to equal biaxial tension, i.e. 

011 = 1, 0"22 = 1, 0",2 = 0 

which gives 

where n is the unit outward normal to ~B. 
The discretized form of a BEM elasticity code from Becker (1992) was regularized and 

used to solve this problem. The Young's modulus and Poisson's ratio were taken as 1 and 
0.3, respectively. It is observed from the deformed shape of the body in Fig. 1 that it 
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Fig. 1. A polygonal body subjected to boundary tractions corresponding to equal biaxial tension. 



Elimination of rigid body modes from discretized boundary integral equations 4435 

experiences pure expansion without any rigid body motion. Of course, the computed 
displacements were verified against the closed form analytical solution from eqn (41). The 
numerical and analytical results agree within about 1%. 

5. PARTIALLY RESTRAINED BODIES 

It is common to face problems in which some but not all the rigid body modes are 
restrained. Some simple 2-D examples are shown in Fig. 2. Figure 2(a) shows a body with 
a free translation mode in the y direction, while Fig. 2(b) shows a body with a free rotation 
about the z axis. 

The first class of problems are easy to regularize with the present approach. Thus, for 
example, for Fig. 2(a), one uses 
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Fig. 2. Partially restrained bodies. 
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t~  = U r = [0 ,  1 , 0 ,  1 . . . . .  0 ,  1] r 

with V computed from U in the usual way. An example problem, 2(c), was solved with this 
approach and, as expected, a correct solution was obtained. 

The situation however, is different, in general, for problems with free rotations. Of 
course, one would use 

pT q. U T = [ _ y i , x i  ' _ y 2 ,  x2 . . . . .  _ T N ,  XN ] 

The difficulty that one now faces, however, is that eqn (26), "displacement equi- 
librium", in general, is not satisfied any more since an arbitrary point O in B might be fixed. 
One is now faced with choosing a suitable point M in B such that, with r measured from 
M, eqn (27) is satisfied. This is analogous to a situation in a mechanics problem where one 
tries to find a point about which a system of forces, acting on a body, gives zero resultant 
moment even though the forces themselves are not in equilibrium! Of course, for a simple 
example such as the one in Fig. 2(d), M is such a point. Sure enough, defining p with M as 
the origin gives a correct solution with the u~ and u2 profiles shown in Fig. 2(e) and 2(f), 
respectively. Note that this displacement profile violates eqn (26) while satisfying eqn (27) 
as long as r is measured from the point M! In general, however, it is not easy to find M so 
that it would be difficult to apply the present approach to problems such as in Fig. 2(b). 

6. CONCLUSIONS 

The regularization method, presented in this paper, is an attractive alternative to the 
usual one of suitably restraining a body in order to eliminate rigid body modes in Neumann 
problems. It is shown that previous work on regularizing symmetric stiffness matrices does 
not apply, in general, to nonsymmetric ones such as those that arise from the BEM. A new 
method is presented for regularizing nonsymmetric stiffness matrices. It is interesting to 
observe that the unique displacement field, obtained from this approach, satisfies equations 
that have exactly the same forms as the standard equations for force and moment equi- 
librium! 
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