
SIAM J. MATRIX ANAL. APPL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 918–946

A RANK-REVEALING METHOD WITH UPDATING,
DOWNDATING, AND APPLICATIONS∗

T. Y. LI† AND ZHONGGANG ZENG‡

Abstract. A new rank-revealing method is proposed. For a given matrix and a threshold for
near-zero singular values, by employing a globally convergent iterative scheme as well as a deflation
technique the method calculates approximate singular values below the threshold one by one and
returns the approximate rank of the matrix along with an orthonormal basis for the approximate
null space. When a row or column is inserted or deleted, algorithms for updating/downdating the
approximate rank and null space are straightforward, stable, and efficient. Numerical results exhibit-
ing the advantages of our code over existing packages based on two-sided orthogonal rank-revealing
decompositions are presented. Also presented are applications of the new algorithm in numerical
computation of the polynomial GCD as well as identification of nonisolated zeros of polynomial
systems.

Key words. matrix, rank, rank-revealing, null space, singular value, updating, downdating,
GCD, nonisolated solution, polynomial system

AMS subject classifications. 12D05, 15A03, 15A18, 65F30, 65H10

DOI. 10.1137/S0895479803435282

1. Introduction. The numerical rank determination arises in many applications
that involve matrix computations, such as those discussed in a series of proceedings,
SVD and Signal Processing, I, II, III [5, 13, 18]. While the singular value decom-
position (SVD) is undoubtedly the most reliable method of determining the rank
numerically, there are certain drawbacks. Among them, it is quite expensive when
matrices become large. Moreover, it may not be able to take the matrix structure into
account, and it is not easy to update or downdate when rows/columns are inserted or
deleted. Alternative methods have been proposed, such as rank-revealing QR decom-
position (RRQR) [2, 3, 4] and rank-revealing two-sided orthogonal decompositions
(UTV, or URV/ULV) [6, 16, 17].

In this paper, a new rank-revealing algorithm is presented. For a given m × n
matrix A, instead of calculating a decomposition that reveals the approximate rank,
our method calculates the approximate rank and null space of A directly. We briefly
outline the method as follows. Without loss of generality, we assume m ≥ n, and let
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of A. Since the smallest singular value
σmin ≡ σn satisfies

σmin = min
‖x‖2=1

‖Ax ‖2,

the problem of finding σmin can be converted to solving the overdetermined system(
τx�

A

)
x =

(
τ
0

)
, where τ > σn,(1.1)

∗Received by the editors September 24, 2003; accepted for publication (in revised form) by H. A.
van der Vorst August 5, 2004; published electronically May 6, 2005.

http://www.siam.org/journals/simax/26-4/43528.html
†Department of Mathematics, Michigan State University, East Lansing, MI 48824 (li@

math.msu.edu). This author’s research was supported in part by NSF grant DMS-0104009.
‡Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625 (zzeng@

neiu.edu). This author’s research was supported in part by NSF grant DMS-0412003.

918

A RANK-REVEALING METHOD 919

for its least squares solution x. For this purpose, one may use the Gauss–Newton
iteration [3] ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xj+1 =xj −
(

2τx�
j

A

)+(
τx�

j xj − τ
Axj

)
,

ςj+1 =
‖Axj+1 ‖2

‖xj+1 ‖2

, j = 0, 1,

(1.2)

Here and throughout, for an arbitrary matrix B of full column rank, B+ stands
for its pseudo-inverse. It can be shown that (Lemma 4.1 in section 4) the Gauss–
Newton iteration in (1.2) is essentially the inverse iteration on the matrix A�A without
undesirable matrix multiplication. The global convergence of the iteration is therefore
warranted, and (ςj ,xj) will converge to the singular pair (σn,vn). In this article,
unless otherwise mentioned, we always use “singular vector” to represent the right
singular vector. After σn = σmin is calculated along with its associated singular
vector vn, the matrix

A� =

(
�v�

n

A

)
, � ∈ R,(1.3)

has the same set of singular values along with the associated singular vectors as
those of A except the smallest singular value σn of A is replaced by the singular
value

√
�2 + σ2

n of A� with associated singular vector vn (Corollary 5.2 in section 5).

Therefore, if we choose � = ‖A‖F , then the replacement
√

�2 + σ2
n becomes the

largest singular value of A�. In the meantime, the second smallest singular value
σn−1 of A becomes the smallest one of A�, and iteration (1.2) for finding the smallest
singular pair of A can be applied to A� to calculate the singular pair (σn−1,vn−1)
of A. This process can be continued recursively to calculate as many singular values
of A as desired in ascending order σn ≤ σn−1 ≤ · · · , along with their associated
singular vectors vn,vn−1, Once σk is larger than the prescribed threshold θ > 0,
we will admit k as the approximate rank of A and the computed vk+1, . . . ,vn as an
orthonormal basis for the approximate null space of A.

Our method has been implemented as a MATLAB package RankRev and applied
to many applications. In section 7 we present comprehensive numerical results of our
code compared with UTV Tools [6] and the MATLAB SVD function. To calculate
the approximate rank and null space of a given matrix that has a low rank deficit,
our code can be 20 times faster than the full SVD when the matrix size becomes
very large. Compared with UTV Tools, our method seems to be more robust and
accurate in general, especially when the singular value gap at the rank threshold is
relatively small. Moreover, row/column updating and downdating in our method,
elaborated in section 8, are quite simple and straightforward. Separate numerical
results are presented in section 8.5 comparing our method with UTV Tools in this
respect. While UTV Tools may return incorrect ranks in certain difficult cases, our
code always produces accurate results on all the matrices tested.

While rank-revealing has a large variety of applications, the development of our
algorithm follows the needs of two important applications which emerged recently: a
stable numerical algorithm for the computation of the GCD of univariate polynomials
and the identification of nonisolated numerical solutions of polynomial systems. The
details of those applications will be illustrated in section 9.

920 T. Y. LI AND ZHONGGANG ZENG

2. Notation, terminology, and definitions. The terms rank, nullity, and null
space are used in the exact sense as in common linear algebra textbooks. In numerical
linear algebra, the approximate rank, also known as the numerical rank, has a specific
meaning given in Definition 2.1 below. Since the approximate rank, approximate null
space, and approximate nullity are important concepts in our discussion, to be more
clear and concise we shall use the specific terms approxi-rank, approxi-null space, and
approxi-nullity for those notions. The usual notation rank(A) remains the exact rank
of a matrix A.

Throughout this paper, matrices are denoted by upper-case letters such as A, B,
Q, R, etc. Lower-case boldface letters like u, v, and x represent column vectors. The
notation (·)� denotes the transpose of a matrix or vector (·), and vector spaces are
denoted by a boldface upper-case letters like W with W⊥ denoting its orthogonal
complement.

The definition of approxi-rank was first given by Golub, Klema, and Stewart [7].
We shall use a somewhat simplified definition.

Definition 2.1. For a given threshold θ > 0, a matrix A ∈ R
m×n has approxi-

rank k within θ, denoted by rankθ(A) = k, if k is the smallest rank of all matrices
within a 2-norm distance θ of A. Namely,

k = min
‖A−B‖2≤θ

{rank(B)}.(2.1)

In this case, we also say the approxi-nullity of A within θ is n− k.

Notice that the exact rank of a matrix may be considered the approxi-rank of the
matrix within zero.

The minimum in (2.1) is attainable [7, 12]: For θ > 0, let A = UΣV � be the SVD
of A with singular values satisfying

σ1 ≥ · · · σk > θ ≥ σk+1 ≥ · · · ≥ σn.(2.2)

Let Ak = UΣkV
� with Σk = diag{σ1, . . . , σk, 0, . . . , 0}; then ‖A − Ak‖2 = σk+1 ≤ θ

and rank(Ak) = rankθ(A) = k (see [7]). Moreover, Ak is nearest to A (with respect
to the 2-norm) with rank k. In other words, for

�
σ= inf

{
μ | rankμ(A) = k

}
,(2.3)

we have ‖A−Ak‖2 =
�
σ . Let

�
σ= sup

{
η | rankη(A) = k

}
.

We call the ratio γ =
�
σ/

�
σ the approxi-rank gap. The size of this gap strongly in-

fluences the difficulties in achieving the accuracy of rank-revealing computation as
shown in numerical examples in sections 7 and 8.5. If the singular values of A and

the threshold θ satisfy (2.2), then clearly
�
σ = σk and

�
σ = σk+1. When rankθ(A) = k,

we called the null space of Ak the approxi-null space of A within θ since Ak is the
nearest matrix to A with rank k. Let v1, . . . ,vn be the singular vectors of A (and
Ak) associated with singular values σj , j = 1, . . . , n; the approxi-null space of A is
spanned by {vk+1, . . . ,vn}. The approxi-nullity of A equals the dimension of the
approxi-null space. Any vector v satisfying ‖Av‖2 ≤ θ is called an approxi-null vector
of A within θ.

A RANK-REVEALING METHOD 921

3. The basic algorithm. As before, let A ∈ R
m×n (m ≥ n) with singular

values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We first establish the equivalence between finding the
smallest singular value σmin ≡ σn of A and solving the least squares problem of the
quadratic system (

τx�

A

)
x =

(
τ
0

)
with τ > σn.(3.1)

Proposition 3.1. Let u ∈ R
n be a vector satisfying∥∥∥∥(τu�

A

)
u −

(
τ
0

)∥∥∥∥2

2

= min
x∈Rn

∥∥∥∥(τx�

A

)
x −

(
τ
0

)∥∥∥∥2

2

with a scaling factor τ > σn. Then u is in the subspace W spanned by the singular
vector(s) of A associated with the smallest singular value(s).

Proof. Let A = UΣV � be the SVD of A with orthogonal U and V . Let z = V �x
or x = V z, where x = (x1, . . . , xn)� and z = (z1, . . . , zn)�. Let

f(x1, . . . , xn) =

∥∥∥∥(τx�

A

)
x −

(
τ
0

)∥∥∥∥2

2

=

∥∥∥∥(τx�x − τ
Ax

)∥∥∥∥2

2

;

then

f(x1, . . . , xn) = τ2
(
x�x − 1

)2
+ ‖Ax ‖2

2 = τ2
(
z�z − 1

)2
+ ‖Σz ‖2

2

= τ2
(
z2
1 + · · · + z2

n − 1
)2

+ σ2
1z

2
1 + · · · + σ2

nz
2
n ≡ g(z1, . . . , zn).

Assume g(z) reaches its minimum at z = y ≡ (y1, . . . , yn)�. Then

∂g

∂zj

∣∣∣∣∣
z=y

= 0, j = 1, . . . , n, i.e., 4τ2
(
y2
1 + · · · + y2

n − 1
)
yj + 2σ2

j yj = 0.

If y �= 0, let J = {1 ≤ j ≤ n | yj �= 0}. Then for j ∈ J , σ2
j = 2τ2(1 −

∑
l∈J y2

l).

Hence, σ2
j ≤ 2τ2, and σj = σ for all j ∈ J for certain σ ∈ {σ1, . . . , σn} with σ <

√
2τ .

It follows that

g(y1, . . . , yn) = τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+
∑
j∈J

σ2
j y

2
j = τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+ σ2
∑
j∈J

y2
j

= τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+ σ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠+ σ2

= τ2

(
− σ2

2τ2

)2

+ σ2

(
− σ2

2τ2

)
+ σ2 = σ2 − σ4

4τ2
.

Therefore, the possible minimum values of g(z) are σ2
j − σ4

j

4τ2 , j = 1, . . . , n, and,

perhaps, g(0, . . . , 0) = τ2. Those values are all attainable since, for every singular

pair (σj ,vj), letting z = sV �vj with s2 = 1 − σ2
j

2τ2 yields

g(z) = τ2(s2 − 1)2 + σ2
j s

2 = τ2
σ4
j

4τ4
+ σ2

j

(
1 −

σ2
j

2τ2

)
= σ2

j −
σ4
j

4τ2
.

922 T. Y. LI AND ZHONGGANG ZENG

The function h(β) = β2 − β4

4τ2 is increasing in [0, τ], so

min
j=1,...,n

{
σ2
j −

σ4
j

4τ2

}
= σ2

n − σ4
n

4τ2
≤ σ2

n < τ2

and g(z1, . . . , zn) reaches the minimum if σ = σn. Consequently, σj = σn for all
j ∈ J , and u =

∑
j∈J yjvj , where vj is the singular vector associated with σj ,

j = 1, . . . , n.
Based on Proposition 3.1, the smallest singular value of A can be calculated via

solving system (3.1) by the Gauss–Newton iteration [3]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
xj+1 =xj −

(
2τx�

j

A

)+(
τx�

j xj − τ
Axj

)
,

ςj+1 =
‖Axj+1 ‖2

‖xj+1 ‖2

, j = 0, 1,

(3.2)

We shall prove in section 4 that the scalar sequence ςj , j = 1, 2, . . . , always converges
to the smallest singular value σmin of A. And if σmin is a simple singular value, namely,
σn−1 �= σn, then the vector sequences 1

ςj
Axj and xj , j = 1, 2, . . . , converge to the

corresponding left and right singular vectors, respectively. When σmin is not simple,
ςj still converges to σmin, while 1

ςj
Axj and xj converge into left and right singular

subspaces associated with σmin.

When A has more than one zero singular values, the matrix (2τx�
j

A
) becomes

rank deficient and its pseudoinverse is undefined. While exact rank deficiency rarely
happens in real computation, when it occurs, replacing A by A+E with tiny ‖E‖2 will
ensure the existence of the pseudoinverse. Such substitution has virtually no effect
on the computing results. For details, see [8].

In the remainder of this paper, we shall frequently refer to the iteration (3.2)
above as “applying the Gauss–Newton iteration on matrix A” for solving the least
squares quadratic system in (3.1).

4. The convergence theory. The theory of the Gauss–Newton iteration war-
rants its local convergence under some restrictions, and the convergence rate is at
least linear. The following lemma shows that the Gauss–Newton iteration (3.2) on
the overdetermined quadratic system (3.1) is essentially the inverse iteration on the
matrix A�A, and the convergence is therefore global.

Lemma 4.1. Let A ∈ R
m×n be of full column rank, and let {xj} be a vector

sequence generated by iteration (3.2). Then there are constants cj, j = 0, 1, . . . , such
that

xj+1 = cj
(
A�A

)−1
xj .(4.1)

Proof. For simplicity, let x and y denote xj and xj+1, respectively. Now,

y = x −
(

2τx�

A

)+(
τx�x − τ

Ax

)
= x −

[(
2τx, A�)(2τx�

A

)]−1 (
2τx, A�)(τx�x − τ

Ax

)
= x −

(
4τ2xx� + A�A

)−1 [(
2τ2xx� + A�A

)
x − 2τ2x

]

A RANK-REVEALING METHOD 923

= x −
(
4τ2xx� + A�A

)−1 [(
4τ2xx� + A�A

)
x − 2τ2x(x�x) − 2τ2x

]
=
(
4τ2xx� + A�A

)−1
2τ2

(
1 + x�x

)
x.

This yields (
4τ2xx� + A�A

)
y = 2τ2

(
1 + x�x

)
x,(

A�A
)
y = τ2

(
2 + 2x�x − 4x�y

)
x,

y = 2τ2
(
1 + x�x − 2x�y

) (
A�A

)−1
x.(4.2)

So, y = c(A�A)−1x with c = 2τ2 (1+x�x)
1+4τ2 x�(A�A)−1x

.

For a given matrix A ∈ R
m×n and a threshold θ > 0, we assume rankθ(A) = k

and the singular values of A satisfy

σ1 ≥ · · · ≥ σk =
�
σ >θ ≥�

σ = σk+1 ≥ · · · ≥ σn.

Then W = span{vk+1, . . . ,vn} is the approxi-null space of A, where vj is the singular
vector associated with σj for j = k + 1, . . . , n. The orthogonal complement W⊥ of

W is span{v1, . . . ,vk}, and every vector z ∈ R
n can be written as z=

�
z +

�
z with

�
z ∈ W⊥ and

�
z ∈ W. We say a sequence of nonzero vectors {zj} converges into W if

lim
j→∞

‖ �
z j ‖2

‖ �
z j ‖2

= 0, ‖ �
z j ‖2 �= 0, j = 0, 1,

The approxi-rank depends critically on the threshold θ > 0 one chooses, and the

approxi-rank gap γ =
�
σ/

�
σ dictates its computing difficulties. The following proposi-

tion ensures that the vector sequence {xj} generated by iteration (3.2) converges into
the approxi-null space of A.

Proposition 4.2. Suppose A ∈ R
m×n and rankθ(A) = k with a nontrivial

approxi-null space W and approxi-rank gap γ. Then for x0 not orthogonal to W, the
iteration (3.2) generates a vector sequence {xj} and a scalar sequence {ςj}, where xj

converges into W linearly in the sense∥∥∥�
xj

∥∥∥
2∥∥∥�

xj

∥∥∥
2

≤
(

1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

, j = 0, 1, . . . ,(4.3)

and ςj satisfies

σn ≤ ςj ≤
�
σ +

(
1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.(4.4)

Proof. Let x0 = u1v1 + · · · + unvn. From Lemma 4.1,

x1 = η

(
u1

σ2
1

v1 + · · · + un

σ2
n

vn

)
for certain η ∈ R, and with α = η

�
σ

2 ,

x1 = α

(
�
σ

2

σ2
1

u1v1 + · · · +
�
σ

2

σ2
n

unvn

)
=

�
x1 +

�
x1,

924 T. Y. LI AND ZHONGGANG ZENG

where ∥∥∥�
x1

∥∥∥
2

=

∥∥∥∥∥α
(

�
σ

2

σ2
1

u1v1 + · · · +
�
σ

2

σ2
k

ukvk

)∥∥∥∥∥
2

≤ |α|
(

1

γ

)2 ∥∥∥�
x0

∥∥∥
2
,

∥∥∥�
x1

∥∥∥
2

=

∥∥∥∥∥α
(

�
σ

2

σ2
k+1

uk+1vk+1 + · · · +
�
σ

2

σ2
n

unvn

)∥∥∥∥∥
2

≥ |α|
∥∥∥�

x0

∥∥∥
2
.

Since ‖�
x0 ‖2 �= 0, we have ‖

�
x1 ‖2

‖
�
x1 ‖2

≤ (1
γ)2 ‖

�
x0 ‖2

‖
�
x0 ‖2

. By a simple induction, inequality

(4.3) follows. For inequality (4.4),

σn ≤
‖Axj ‖2

‖xj ‖2

≤

∥∥∥A �
xj

∥∥∥
2

‖xj ‖2

+

∥∥∥A �
xj

∥∥∥
2

‖xj ‖2

≤

∥∥∥∥∥∥A
⎛⎝ �

xj∥∥∥�
xj

∥∥∥
2

⎞⎠∥∥∥∥∥∥
2

+

∥∥∥∥∥∥A
⎛⎝ �

xj∥∥∥�
xj

∥∥∥
2

⎞⎠∥∥∥∥∥∥
2

≤ σ1

⎡⎣(1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

⎤⎦+
�
σ.

As an important special case, if there is a significant gap in magnitude between
σn−1 and σn, then the iteration (3.2) converges to σn and its associated singular
vector vn.

Corollary 4.3. If σn−1 > σn and x0 satisfies x�
0 vn �= 0, then for each j the

matrix Bj = (2τx�
j

A
) in the Gauss–Newton iteration in (3.2) is of full rank with a

well-defined pseudoinverse. Moreover, the sequences {ςj} and { xj

‖xj ‖2
} converge to σn

and vn, respectively, with

∥∥∥∥ xj

‖xj ‖2

− vn

∥∥∥∥
2

≤
(

σn

σn−1

)2j
[
1 +

(
σn

σn−1

)2j
] ∥∥∥�

x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

,

∣∣∣ςj − σn

∣∣∣ ≤ (
σn

σn−1

)2j

σ1

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

, j = 1, 2,

Proof. Since σn−1 > σn ≥ 0, Avj �= 0 for j = 1, . . . , n − 1. So, B0 is of full
rank because of the assumption x�

0 vn �= 0. Similarly Bj is of full rank for all j > 0
since x�

j vn �= 0 from (4.3). The proof of the remaining assertions is a straightforward
verification.

5. Computing the approxi-null space. The iteration (3.2) produces a vector
w1 in the approxi-null space W of A. When the approxi-nullity of A is bigger than
one, we may stack a scalar multiple of w�

1 on top of A to form a new matrix B. We will
show in this section that when iteration (3.2) is applied to B it may produce another
approxi-null vector w2 of A that is orthogonal to w1. This deflation-iteration process
can be continued recursively to produce an orthonormal basis for the approxi-null
space W.

A RANK-REVEALING METHOD 925

Proposition 5.1. Under the same assumptions of Proposition 4.2, for any unit
vector w ∈ W, the matrix

B =

(
�w�

A

)
with � ≥�

σ(5.1)

has singular values {σ′
j}nj=1 satisfying

σ′
1 ≥ · · · ≥ σ′

k+1 ≥�
σ >

�
σ ≥ σ′

k+2 ≥ · · · ≥ σ′
n,(5.2)

and its approxi-null space W′ spanned by the singular vectors of B associated with
σ′
k+2, . . . , σ

′
n is a subspace of W.

Proof. Since w ∈ W, we can write w = ρk+1vk+1 + · · ·+ ρnvn with ρ2
k+1 + · · ·+

ρ2
n = 1. The SVD A = UΣV � yields

(
1

U�

)
BV

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 �ρk+1 · · · �ρn
σ1

. . .

σk

σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .

σk

�ρk+1 · · · �ρn
σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P

(
Ik×k

Û

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .

σk

σ̂k+1

. . .

σ̂n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

Ik×k

V̂ �

)
,

where P is a permutation matrix with Û and V̂ being orthogonal matrices in the SVD
of

D =

⎛⎜⎜⎜⎜⎜⎝
�ρk+1 · · · �ρn
σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎠ = Û

⎛⎜⎜⎜⎜⎜⎝
σ̂k+1

. . .

σ̂n

⎞⎟⎟⎟⎟⎟⎠ V̂ �.

We claim that

σ̂k+1 ≥ � and σ̂j ≤ σj−1, j = k + 2, . . . , n.(5.3)

926 T. Y. LI AND ZHONGGANG ZENG

In fact, σ̂k+1 is the largest singular value of D which is larger than or equal to � since

σ̂k+1 = max
x∈Rn−k, ‖x‖2=1

‖Dx ‖2 ≥

∥∥∥∥∥∥∥D
⎛⎜⎝ ρk+1

...
ρn

⎞⎟⎠
∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎝
�
ρk+1σk+1

...
ρnσn

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥
2

≥ �.

On the other hand, let y = (0, . . . , 0, yn−1, yn)� ∈ R
n−k such that ‖y ‖2 = 1 and

yn−1ρn−1 + ynρn = 0. Then

σ̂n = min
x∈Rn−k, ‖x‖2=1

‖Dx ‖2 ≤ ‖Dy ‖2 =
√

(σn−1yn−1)2 + (σnyn)2 ≤ σn−1.

Denote the columns of V̂ by v̂k+1, . . . , v̂n. For any fixed j ∈ {k + 1, . . . , n − 2}, let
z = (0, . . . , 0, zj , . . . , zn)� with ‖ z ‖2 = 1, where v̂�

l z = 0 for l = j + 2, . . . , n, and
Σn

i=jρizi = 0. Then

σ̂j+1 = min
{
‖Dx ‖2 | ‖x‖2 = 1,x�v̂l = 0, l = j + 2, . . . , n

}
≤ ‖Dz ‖2 =

√
(zjσj)2 + · · · + (znσn)2 ≤ σj

and inequalities (5.3) hold. Consequently, they lead to the validity of the inequalities
in (5.2) with{

σ′
1, . . . , σ

′
k+1

}
=
{
σ1, . . . , σk, σ̂k+1

}
, σ′

l = σ̂l, l = k + 2, . . . , n.

In practice, we may choose � = ‖A‖∞. In applying iteration (3.2) on B, as the
least squares solution of ⎛⎝ τw�

2

�w�
1

A

⎞⎠w2 =

⎛⎝ τ
0
0

⎞⎠,

w2 ∈ W, is approximately orthogonal to w1. Continuing this process recursively, an
orthonormal basis for W can be constructed.

As an important special case, if σn−1 	 σn, iteration (3.2) converges to w = vn

and ς = σn. In this case, stacking �v�
n on top of A makes σn−1 the smallest singular

value of the resulting matrix.

Corollary 5.2. Let σ be a singular value of A with associated singular vector
v. The matrix

Aρ =

(
ρv�

A

)
(5.4)

has the same singular values and corresponding singular vectors as those of A, except
the singular value σ of A is replaced by the singular value

√
ρ2 + σ2 of Aρ associated

with the same singular vector v.

A RANK-REVEALING METHOD 927

Proof. For simplicity, let σ = σn and A = UΣV � be the SVD of A. We have

(
1

U�

)(
ρv�

A

)
V =

(
ρv�V
U�AV

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ρ
σ1

. . .

σn−1

σ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By applying a Givens transformation from the left on ρ and σ, it is clear that the
singular value σ of A is replaced by the singular value

√
ρ2 + σ2 of Aρ, while the

associated singular vector remains the same.

6. The overall algorithm. As mentioned before, the approxi-rank k of matrix
A depends critically on the chosen threshold θ > 0 for which singular values of A
satisfy

σ1 ≥ · · · ≥ σk > θ > σk+1 ≥ · · · ≥ σn.(6.1)

There is no uniform threshold for all applications. The user must make a decision on
the threshold θ > 0 based on the nature of the application.

The approxi-rank gap γ = σk

σk+1
may be considered a condition number for this

rank-revealing problem. If γ is large, say, 103, then every iterative step in (3.2) will
improve the convergence by six digits because in Proposition 4.2 the sequences {xj}
and {ςj} satisfy∥∥∥�

xj

∥∥∥
2∥∥∥�

xj

∥∥∥
2

≤
(
10−3

)2j ∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

and σn ≤ ςj ≤ σk+1 +
(
10−3

)2j ∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.

After three iteration steps they become∥∥∥�
x3

∥∥∥
2∥∥∥�

x3

∥∥∥
2

≤ 10−18

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

and σn ≤ ς3 ≤ σk+1 + 10−18

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.

Since the machine epsilon of IEEE standard double precision is about 2.2× 10−16, in
this case x3 is sufficiently accurate to be an approxi-null vector unless the randomly
chosen initial vector x0 is almost orthogonal to the approxi-null space.

Let (σ1,v1), . . . , (σn,vn) be the singular pairs of A with σj ’s satisfying (6.1).
For an input threshold θ > 0, our algorithm begins with calculating the smallest
singular pair (σ̂n, v̂n). If σ̂n > θ, A will be classified as being of full approxi-rank, and
the process stops. Otherwise, the algorithm continues by calculating singular pairs
(σ̂n−1, v̂n−1), (σ̂n−2, v̂n−2), Once we reach σ̂k > θ, the process will be terminated
with k being the approxi-rank of A and span{v̂k+1, . . . , v̂n} the approxi-null space. If
the approxi-rank gap γ = σ̂k

σ̂k+1
is not as large, it may need more than three iteration

steps in (3.2) for each singular value. The users can set the number of iteration steps
based on the nature of the application. The overall algorithm RankRev is shown in
a pseudocode in Figure 6.1.

928 T. Y. LI AND ZHONGGANG ZENG

Pseudocode RankRev:

input: Matrix A ∈ R
m×n, threshold θ > 0

output: approxi-rank k, orthonormal basis {wk+1, . . . ,wn}
for the approxi-null space.

Compute the QR decomposition A = QR
Initialize B = R, τ = ‖A‖∞
For k = n, n− 1, . . . , 1 do

generate a random unit vector x0

for j = 0, 1, 2 do

D =

[
2τx�

j

B

]
, b =

[
τx�

j xj − τ
Bxj

]
Hessenberg QR decomposition D = QR
backward substitution to solve Rz = Q�b for z

xj+1 = xj − z, ς = ‖Rxj+1 ‖2 ‖xj+1 ‖−1
2

if ς < θ then

wk = xj+1/ ‖xj+1 ‖2
break j-loop

end if

end do

if ς > θ then

break k-loop
else

Hessenberg QR decomposition [τw�
k ; B] = QR

update B = R
end if

end do

Fig. 6.1. Pseudocode of RankRev.

Practically, the iteration (3.2) is carried out by finding a least squares solution
Δx (= xj+1 − xj) to the linear system(

2τx�
j

A

)
Δx = −

(
τ
(
x�
j xj − 1

)
Axj

)
(6.2)

at the jth stage. To avoid unnecessary QR decomposition of the full matrix at each
step, we may calculate the QR decomposition of A before the iteration and update
the QR decomposition at each step.

With QR factorization A = Q(R0), finding the least squares solution to (6.2) is
equivalent to solving the least squares problem of(

2τx�
j

R

)
Δx = −

(
τx�

j xj − τ
Rxj

)
(6.3)

for Δx = xj+1−xj , in which one uses the QR decomposition of the upper Hessenberg

matrix (2τx�
j

R
). Updating the QR factorization of an n-column upper Hessenberg

matrix requires n Givens transformations which cost O(n2) flops in total. After QR

A RANK-REVEALING METHOD 929

updating, solving (6.3) for its least squares solution requires a total of O(n2) flops in
backward substitutions.

The final QR factorization of (2τx�
j

R
) can be used as the QR decomposition of the

matrix B in (5.1) with ρ = 2τ and w = xj . The computations are all on the order of
O(n2) except the first QR factorization of A which costs O(mn2). Actually, on many
occasions the QR decomposition of A had already been calculated for other purposes.

7. Numerical experiments and comparisons. Our rank-revealing algorithm
is implemented as a MATLAB module RankRev that is electronically available from
the authors upon request. Here we compare its efficiency, robustness, and accuracy
with the MATLAB built-in SVD function as well as hurv in UTV Tools implemented
by Fierro, Hansen, and Hansen [6]. The package UTV Tools is perhaps the only pub-
lished comprehensive rank-revealing package with updating/downdating capabilities.
All tests are carried out in MATLAB 6.1 on a Dell personal computer with a Pentium
4 CPU of 1.8 Mhz, 768 Mb of memory, and machine precision ε ≈ 10−16.

The main objective of our code RankRev is to calculate the approxi-rank and the
approxi-null space of a matrix A that has a low approxi-nullity (equivalently, A is close
to being of full approxi-rank) within a user-specified threshold. If the given matrix A
is of approxi-rank about n/2, the full SVD can be more efficient. For low approxi-rank
(i.e., high approxi-nullity) cases, UTV Tools function lurv and SVDPACK based on
Lanczos method [1] are efficient options.

When A ∈ R
m×n has an approxi-rank k within threshold θ > 0, then A is often

considered to be under a perturbation of a “noise” matrix E with ‖E‖2 ≤ θ such
that A − E has exact rank k. The 2-norm of E is often referred to as noise level.
Usually, we consider a perturbation magnitude near machine precision, say, 1.0e-12,
a low noise level, perturbation near 1, say, 1.0e-3, a high noise level, and the median
noise level is around 1.0e-8.

7.1. Type 1: Low approxi-nullity, median noise level, small gap. Matri-
ces for this test are of size 2n×n with approxi-nullity fixed at 10 within threshold 10−8.
The singular values range from ε to ‖A‖2 = 20 with approxi-rank gap σn−10

σn−9
= 103.

Each matrix A is constructed using those specified singular values to form a diagonal
matrix Σ and by setting A = UΣV � with randomly generated orthogonal matrices
U and V with proper sizes. We use this type of matrix to test the efficiency and
accuracy of RankRev compared with SVD and hurv for increasing n.

All three algorithms output accurate approxi-ranks. Table 7.1 lists the times and
errors in executing SVD, hurv, and RankRev. The time measures are in seconds,
and the error measures the distances of the computed approxi-null spaces to the
spaces spanned by the right singular vectors associated with the ten smallest singular
values. The results show that our RankRev is at least as efficient as hurv with
significantly higher accuracy. When matrix sizes are in the thousands, both hurv

Table 7.1

Results for Type 1 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

SVD 0.67 1e-15 5.6 2e-15 43.6 1e-15 1166.9 2e-15

hurv 1.41 1e-06 3.4 2e-06 11.6 1e-05 79.2 7e-06

RankRev 1.23 2e-09 3.3 2e-09 11.3 2e-09 48.8 2e-09

930 T. Y. LI AND ZHONGGANG ZENG

Table 7.2

Results for Type 2 matrices. The computed approxi-ranks in parentheses are inaccurate results
from hurv.

Matrix column size n 100 200 300 400 500

Approxi-rank 50 100 150 200 250

hurv Computed approxi-rank 50 100 150 (234) (294)

Approxi-null space error 1e-10 1e-05 3e-05 — —

RankRev Computed approxi-rank 50 100 150 200 250

Approxi-null space error 3e-10 6e-10 3e-08 5e-08 6e-08

Table 7.3

The accuracy measures on Type 3 matrices without refinement. Due to the fixed size of the test
matrices, the execution time is close to a constant for each code. We therefore list only the average
time in the parentheses next to the code name.

Approxi-rank gaps γ

Code (time) 106 105 104 103 102 101

hurv (4.86) 7.4e-11 2.7e-09 3.4e-08 1.6e-06 1.1e-04 1.8e-02

RankRev (4.58) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-08 2.6e-04

and RankRev are more than ten times faster than standard SVD even with the
interpretation overhead in MATLAB codes.

7.2. Type 2: Median approxi-nullity, median noise level, small gap.
Matrices used for this test are of 2n× n with approxi-rank n

2 within threshold 10−8.
They are constructed in the same way as Type 1 above except for different singular
values. The singular values range from ε to ‖A‖2 = 20 with approxi-rank gap γ = 103.
While computing approxi-ranks of matrices of this sort is not the main goal of either
RankRev or hurv; we simply use them to test the robustness of both codes since
both algorithms must recursively deflate n

2 times here. As shown in Table 7.2, the
approxi-null space accuracy for hurv seems to deteriorate when n increases and it
fails to provide accurate approxi-ranks for n = 400 and n = 500 even when its
refinement option is activated.1 In contrast, our code RankRev always outputs
accurate approxi-ranks and tiny errors in computed approxi-null spaces.

7.3. Type 3. Decreasing gaps, fixed size, low approxi-nullity, median
noise level. Matrices Aj , j = 6, 5, . . . , 2, 1, used in this test are of size 1000 × 500
with an approxi-nullity fixed at 10 within the same threshold 10−8. The singular
values range from ε to ‖Aj‖2 = 20. However, the approxi-rank gaps are set at 10j for
j = 6, 5, . . . , 2, 1, respectively.

Table 7.3 lists the accuracy measures on computed approxi-null spaces with de-
creasing approxi-rank gaps. While the accuracy in computing the approxi-null spaces
of both RankRev and hurv deteriorate when the approxi-rank gap diminishes, our
code RankRev achieves a higher accuracy level with slightly faster speed. When
tighter accuracy on the approxi-null space is required in application, while UTV Tools
has its own refinement strategy [6, 11], we may simply set tighter criteria for stopping
the Gauss–Newton iteration. Table 7.4 shows both codes are about equally accurate
with their refinements.

1In a recent correspondence, the authors of UTV Tools indicated that the source of the problem
leading to those failures has been identified and will be dealt with in future releases.

A RANK-REVEALING METHOD 931

Table 7.4

The accuracy measures on Type 3 matrices with refinement.

Approxi-rank gaps

Code (time) 106 105 104 103 102 101

hurv (9.74) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-09 1.6e-08

RankRev (7.82) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-09 1.8e-08

Table 7.5

Results for Type 4 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

hurv 1.55 8.3e-05 3.42 3.2e-03 15.8 1.4e-04 71.9 2.6e-03

RankRev 1.27 8.5e-11 3.05 6.8e-11 12.9 4.0e-10 48.5 1.6e-10

Table 7.6

Results for Type 5 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

hurv 1.40 1.2e-15 3.47 9.0e-16 23.7 1.1e-15 — failed

RankRev 1.16 2.0e-14 3.11 4.1e-14 18.9 9.5e-14 53.7 6.5e-13

7.4. Type 4. High noise level, low approxi-nullity, small gap. The series
of matrices used in this test are of 2n × n with singular values in the interval [1, 2]
except ten small singular values in the interval [0, 10−2]. Those matrices are used to
test the accuracy and robustness of the rank-revealing computation in the presence
of high noise level.

The results exhibited in Table 7.5 show the significant advantage of RankRev

over hurv in accuracy without refinement. If both codes activate the refinement
option, however, hurv achieves slightly higher accuracy (2.9e-15) over RankRev

(4.3e-14), while RankRev is slightly faster in speed by about 15%.

7.5. Type 5. Near-zero noise level, low approxi-nullity, large gap. This
series of test matrices has singular values in the interval [1, 2], except for the smallest
ten, which are in the magnitude of machine precision. Table 7.6 shows that hurv

consistently achieves slightly higher accuracy when the approxi-ranks are correctly
determined, while our code maintains the advantage in efficiency. Nonetheless, hurv

did not report an accurate approxi-rank for the 3200×1600 matrix. (The error appears
to be machine-dependent. The authors of hurv are currently investigating it.)

8. Updating and downdating. For A ∈ R
m×n, the algorithm RankRev in

Figure 6.1 produces an approxi-rank k, a matrix W = [wk+1,wk+2, . . . ,wn] whose
columns form an orthonormal basis of the approxi-null space W of A, and a QR
decomposition (

τW�

A

)
= Q

(
R

0

)
.(8.1)

932 T. Y. LI AND ZHONGGANG ZENG

When a row/column is inserted in A, the determination of a new set of k, W , Q, and
R of the new matrix using the information already available is called updating. It is
called downdating if a row/column is deleted from A instead.

One of the main motivations in seeking alternatives to SVD in determining
approxi-ranks is its difficulties in updating and downdating. The UTV decomposition
possesses good updating capabilities, but its downdating seems somewhat compli-
cated. In contrast, both updating and downdating in our method are straightforward
and also quite stable and efficient.

In elaborating our procedure for updating and downdating, we shall repeatedly
use the following QR downdating strategy [8, section 12.5.3].

We wish to compute the QR decomposition of the submatrix B̂ in

B =

[
b�

B̂

]
1

m − 1

= Q

(
R

0

)
∈ R

m×n,

where the QR decomposition of B is available as given above. Let q� be the first row
of Q and G1, . . . , Gm−1 be Givens rotations such that

G1 · · ·Gm−1q = e1.

Notice that

H = G1 · · ·Gm−1

(
R

0

)
=

⎡⎢⎣v�

R̂

0

⎤⎥⎦1

n

m − n − 1

is upper Hessenberg and

QG�
m−1 · · ·G�

1 =

[
1

Q̂

]
1

m − 1

,

where Q̂ is orthogonal. Thus, for G = G1 · · ·Gm−1,

(
b�

B̂

)
=
[
QG�] [G (

R

0

)]
=

[
1

Q̂

]⎡⎢⎣ b�(
R̂

0

)⎤⎥⎦,(8.2)

and therefore

B̂ = Q̂

(
R̂

0

)
.

This QR downdating process requires O(n2) flops.

8.1. Column updating. For A = (a1, . . . ,an) ∈ R
m×n and an+1 ∈ R

m, let Â =

(a1, . . . ,an,an+1). Clearly the approxi-null space Ŵ of Â contains {ŵk+1 . . . , ŵn},
where

ŵj =

(
wj

0

)
, j = k + 1, . . . , n.

A RANK-REVEALING METHOD 933

Those ŵj ’s remain orthonormal. The approxi-rank of Â is either k or k + 1. Only

when it stays at k, the orthonormal basis of Ŵ contains an additional vector which
is the only approxi-null vector of the matrix

Ă =

(
τŴ�

Â

)
=

(
τW� 0

A an+1

)
,(8.3)

where Ŵ = [ŵk+1, . . . , ŵn]. For the QR decomposition(
τW�

A

)
= Q

(
R

0

)

in (8.1), let

Q�Ă = Q�

(
τW� 0

A an+1

)
=

(
R d1

0 d2

)

and H be the Householder transformation satisfying

Hd2 = (ζ, 0, . . . , 0)�.

Then

Ă =

(
τW� 0

A an+1

)
=

[
Q

(
In×n 0

0 H�

)]
⎡⎢⎢⎢⎢⎢⎢⎣

(
R d1

0 ζ

)
0 0
...

...

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ = Q̃

(
R̃

0

)
,(8.4)

and we may obtain the possible additional approxi-null vector by

solving Rx = −d1 for x ∈ R
n

and setting y =

(
x

1

)
, ŵn+1 =

1

‖y‖2
y.

(8.5)

Clearly,

Ŵ�ŵn+1 = 0 and
∥∥∥ Âŵn+1

∥∥∥
2

=
|ζ|

‖y‖2
.

When |ζ|
‖y‖2

is below the threshold θ, ŵn+1 becomes the additional approxi-null vector

and {ŵk+1, . . . , ŵn+1} constitutes an orthonormal basis for the approxi-null space Ŵ
of Â.

For further updating or downdating, if needed, we also update the QR decompo-
sition in (8.1): ⎛⎜⎝ τŵ�

n+1

τŴ�

Â

⎞⎟⎠ =

(
1

Q̃

)⎡⎢⎣ τŵ�
n+1(
R̃

0

) ⎤⎥⎦ = Q̂

(
R̂

0

)
.(8.6)

934 T. Y. LI AND ZHONGGANG ZENG

Computing Q̂ and R̂ requires O(n2) additional flops since R̃ is already upper-
triangular.

If the new column is inserted between the (l − 1)th and the lth column of A
where l < n, we may first append the new column as the last (i.e., the (n + 1)th)
column and complete the computation described above. Then by switching its lth
and (n + 1)th components for each approxi-null vector ŵj , j = k + 1, . . . , n + 1, we

obtain an orthonormal basis for the approxi-null space of Â, the new matrix with a
new lth column inserted.

For further updating and/or downdating, the QR decomposition in (8.6) needs
to be revised. We illustrate the process for n = 4 and l = 2 as

(
τŴ�

Â

)
= Q̂

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

× + +

× +

×

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̂G�

1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

× + +

∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= Q̂G�
1 G

�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

∗ ∗ ∗
0 ∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̂G�

1 G
�
2 G

�
3

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̌

(
Ř

0

)
,(8.7)

where the Gj ’s are the Givens rotations. The new Q̌ and Ř are then available for
further use.

We summarize the column updating process as follows.
• Input: matrix A, approxi-rank k, scaling factor τ , rank threshold θ, orthonor-

mal basis for the approxi-null space W, the QR decomposition Q and R as
in (8.1), a new column an+1, and its location l to be inserted.

• Append Â = (a1, . . . ,an,an+1), form Ă as in (8.3).

• Update the QR decomposition Q̃ and R̃ of Ă as in (8.4).

• Calculate ŵn+1 as in (8.5), and obtain the residual |ζ|
‖y‖2

.

• If the residual |ζ|
‖y‖2

> θ, then

– Set k = k + 1, Ŵ =
[
ŵk+1, . . . , ŵn

]
, Q̂ = Q̃, R̂ = R̃

else

– Calculate Q̂ and R̂ as in (8.6), set Ŵ =
[
ŵk+1, . . . , ŵn, ŵn+1

]
end if

• If l �= n + 1, then

– Swap the lth and the (n+ 1)th components of every approxi-null vector
as columns of Ŵ

– Calculate Q̌ and Ř as in (8.7), set as Q̂ and R̂, respectively.

A RANK-REVEALING METHOD 935

end if

• Output updated k, Ŵ , Q̂, R̂.
While the only significant cost of updating is solving an upper-triangular system

Rx = −d1 in (8.5) with n2 +O(n) flops when Q̂ and R̂ are not needed, the cost stays
at O(mn + n2) with output Q̂ and R̂.

8.2. Column downdating. Let Ã = (a1, . . . ,al−1,al+1, . . . ,an) where the lth
colum al of A is deleted and W̃ be its approxi-null space. If the approxi-nullity of A,
or the dimension n− k of its approxi-null space W, is zero, then the approxi-nullity
of Ã remains zero, requiring no further computations. We therefore assume n−k ≥ 1
and write

W = [wk+1, . . . ,wn] =

⎛⎜⎜⎝
w1,k+1 · · · w1,n

...
. . .

...

wn,k+1 · · · wn,n

⎞⎟⎟⎠ ∈ R
n×(n−k).

Let H ∈ R
(n−k)×(n−k) be the Householder transformation satisfying

H

⎛⎜⎜⎜⎜⎝
wl,k+1

wl,k+2

...

wl,n

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
η

0
...

0

⎞⎟⎟⎟⎟⎠.(8.8)

This yields

WH� = [ŵk+1, . . . , ŵn] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗
η 0 · · · 0

∗ ∗ · · · ∗
...

...
. . .

...

∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
←− lth row.

Because (
WH�)� (WH�) = H

(
W�W

)
H� = H�In−kH = In−k,

the columns of WH� also form an orthonormal basis for W. By removing the lth
component of ŵj for each j = k + 1, . . . , n, we obtain a set of vectors w̃k+1, . . . , w̃n

satisfying

Ãw̃k+1 = Aŵk+1 − η al, Ãw̃j = Aŵj , j = k + 2, . . . , n.

Apparently, {w̃k+2, . . . , w̃n} is a subset of an orthonormal basis for W̃, and the mag-
nitude of ‖ Ãw̃k+1 ‖2 determines the possible existence of an additional approxi-null
vector: when it is small enough, the normalization of w̃k+1 completes {w̃k+1, . . . , w̃n}
as an orthonormal basis for W̃ .

936 T. Y. LI AND ZHONGGANG ZENG

To downdate the QR decomposition in (8.1) for further updating/downdating,
since (

τH W�

A

)
=

[(
H

I

)
Q

](
R

0

)
,

we have (
τW̃�

Ã

)
=

[(
H

I

)
Q

](
R̂

0

)
=

[(
H

I

)
QG�

l · · ·G�
n−1

](
Ř

0

)
,(8.9)

where R̂ is obtained from R by deleting its lth column and Gl, · · ·Gn−1 are the Givens
rotations that transform R̂ into upper-triangular Ř. Applying the QR downdating
technique in (8.2) yields ⎛⎜⎜⎜⎜⎝

τw̃�
k+2

...

τw̃�
n

Ã

⎞⎟⎟⎟⎟⎠ = Q̃

(
R̃

0

)
.(8.10)

The column downdating process stops here if w̃k+1 is not an approxi-null vector.
Otherwise, we will stack τw̃�

k+1 as the top row and update the QR decomposition in
(8.10): ⎛⎜⎜⎜⎜⎜⎜⎝

τw̃�
k+1

τw̃�
k+2

...

τw̃�
n

Ã

⎞⎟⎟⎟⎟⎟⎟⎠ =

(
1

Q̃

)⎛⎜⎝ τw̃n

R̃

0

⎞⎟⎠(8.11)

=

[(
1

Q̃

)(
G�

I

)](
R̆

0

)
= Q̆

(
R̆

0

)
,

where G is a product of n− 1 Givens rotations that transforms the upper Hessenberg

matrix (
τw̃k+1

R̃
) into upper triangular form R̆.

The column downdating algorithm can be summarized as follows:
• Input: matrix A, approxi-rank k, scaling factor τ , threshold θ, orthonormal

basis {wk+1, . . . ,wn} for the approxi-null space W, the QR decomposition
Q and R as in (8.1), a column index l indicating the lth column of A is to be
deleted.

• Form W = [wk+1, . . . ,wn] and the Householder transformation H in (8.8).

• Set Ŵ = W H� and η as in (8.8).

• Get W̃ = [w̃k+1, . . . , w̃n] by deleting the lth row of Ŵ and normalizing the
first column afterward.

• Form the QR decomposition (8.9).

• Apply the QR downdating process (8.2) on (8.9) to obtain Q̃ and R̃ in (8.10).

• If ‖ Ãw̃k+1 ‖2 > θ, then

A RANK-REVEALING METHOD 937

– Output k, W̃ = [w̃k+2, . . . , w̃n], Q̃, R̃, the approxi-rank stays at k.

else

– Update the QR decomposition as in (8.11).
– Output k = k− 1, W̃ = [w̃k+1, . . . , w̃n], Q̆, R̆, the approxi-rank reduces

by one.

end if
It requires O(n2) flops to carry out the column downdating process.

8.3. Row updating. Inserting a row b� into A for a new matrix Â, the approxi-
rank of Â will remain the same unless the approxi-rank k of A is less than n. In such
cases, it is clear that the approxi-null space Ŵ of Â is a subset of the approxi-null space
W of A, and they are equal if b is approximately orthogonal to W. Namely, W = Ŵ
if ‖W�b ‖2 ≤ θ, where W = [wk+1, . . . ,wn] ∈ R

n×(n−k), whose columns form an
orthogonal basis of W. When ‖W�b ‖2 > θ, the approxi-rank of the new matrix Â

becomes k+1. To find an orthonormal basis of Ŵ in this case, we first let y = W�b ∈
R

n−k and H ∈ R
(n−k)×(n−k) be the Householder transformation such that Hy =

(‖y‖2, 0, . . . , 0)�. Denoting H = [yk+1, . . . ,yn], we have {y}⊥ = span{yk+2, . . . ,yn}.
For E = [yk+2, . . . ,yn] ∈ R

(n−k)×(n−k−1), let WE = [ŵk+2, . . . , ŵn] ∈ R
n×(n−k−1).

The columns {ŵk+2, . . . , ŵn} form an orthonormal basis for Ŵ because

(WE)
�

(WE) = E� (W�W
)
E = I(n−k−1)×(n−k−1),

and for j = k + 2, . . . , n, ‖ Âŵj ‖2 = ‖Aŵj ‖2 since b� W E = y�E = 0.
To update the QR decomposition in (8.1), we apply the QR downdating strategy

in (8.2) on (
τHW�

A

)
=

[(
H

I

)
Q

](
R

0

)
= Q̆

(
R

0

)
(8.12)

to delete its first row, yielding(
τE�W�

A

)
= Q̂

(
R̂

0

)
.(8.13)

When inserting a new row b� into A, let P be the permutation matrix that swaps
the new row to the top. It follows that

(
τE�W�

Â

)
= P

⎛⎜⎝ b�

τE�W�

A

⎞⎟⎠ = P

(
1

Q̆

)⎛⎜⎝b�

R̂

0

⎞⎟⎠ = Q̃

(
R̃

0

)
,(8.14)

where

Q̃ = P

(
1

Q̆

)
G�, G

⎛⎜⎝b�

R̂

0

⎞⎟⎠ =

(
R̃

0

)
,

and G is the product of n Givens rotations.
Our row-updating algorithm can be summarized as follows:

938 T. Y. LI AND ZHONGGANG ZENG

• Input: matrix A, approxi-rank k, scaling factor τ , threshold θ, orthonormal
basis {wk+1, . . . ,wn} for the approxi-null space W, the QR decomposition
Q and R as in (8.1), a new row b�, and the row index l indicating b� will
be inserted above the lth row of A.

• Form W = [wk+1, . . . ,wn].

• If ‖W�b ‖2 < θ, then

– Update the QR decomposition (8.1) for inserting b�

– Output k, W and the updated Q, R.

else

– Construct the Householder transformation H such that H(W�b) =
(∗, 0, . . . , 0)�.

– Use H to get Q̆ as in (8.12).
– Downdate the QR decomposition (8.12) to obtain Q̂ and R̂ in (8.13)
– Insert b� into A and update the QR decomposition (8.13) to obtain Q̃

and R̃ in (8.14)
– Output k = k + 1, W̃ = WE, Q̃, R̃, the approxi-rank increases by one.

end if

8.4. Row downdating. Let Ǎ be the matrix obtained from A by deleting its
lth row r�. For a proper permutation matrix P , we have, from (8.1),⎛⎜⎝ r�

τW�

Ǎ

⎞⎟⎠ = P

(
τW�

A

)
= [PQ]

(
R

0

)
.(8.15)

Applying the QR downdating algorithm (8.2) on this QR decomposition yields

Ã =

(
τW�

Ǎ

)
= Q̌

(
Ř

0

)
.(8.16)

Obviously, the approxi-null space Ŵ of Â contains the approxi-null space W of A. For
the possible emergence of an extra approxi-null vector of Â, we may apply the Gauss–
Newton iteration (3.2) on the matrix Ř to calculate the singular vector. As explained
earlier, if this singular vector is indeed an extra approxi-null vector, it is orthogonal
to columns of W and forms an orthonormal basis for Ŵ along with columns of W .
We omit the pseudocode since the process is a straightforward application of QR
downdating algorithm.

Remark. As mentioned in [6], row downdating may be difficult and complex
for UTV decomposition: “. . . [W]e want to emphasize that numerically stable UTV
downdating algorithms have become very complex, and the computational overhead
can become quite large, especially when the exact rank decreases. It may be worth
to consider whether recomputation of the ULV decomposition . . . is to be preferred.”
In comparison, row downdating in our algorithm seems quite straightforward.

8.5. Numerical results on updating and downdating. Our updating and
downdating algorithms have been thoroughly tested for all circumstances of insert-
ing/deleting rows or columns. Since UTV Tools [6] contains only row updating and
row downdating modules, we shall restrict our comparisons with UTV Tools to those
situations only. The results of our method on column updating and downdating are
quite similar.

A RANK-REVEALING METHOD 939

Table 8.1

Comparisons on random row updating with changing approxi-ranks.

Number of random rows inserted

1 2 3 · · · 8 9 10

Time urv up 0.66 0.64 0.63 · · · 0.67 0.67 0.49

(seconds) rowup 1.00 0.98 0.95 · · · 0.98 0.98 0.98

Approxi-null space urv up 1e-8 1e-8 1e-8 · · · 3e-8 1e-8 0.0

accuracy rowup 3e-9 2e-8 2e-8 · · · 4e-8 2e-9 0.0

The two modules in UTV Tools for row updating and row downdating are urv up

and urv dw, respectively. The updating module urv up works on inserting a row
at the bottom, and the downdating module urv dw applies to deleting the top row.
Row inserting/deleting may or may not change the approxi-rank. Our tests show that
there seems to be a significant difference in performance for both modules of UTV
Tools in rank invariant and rank altering cases.

All tests in this section are conducted on the same computer listed in section 7.
Both urv up and urv dw are set to use their default control parameters, while our
codes rowup and rowdown are set to optimize the speed.

8.5.1. Row updating with changing approxi-ranks. The test matrix is ini-
tially a 1000 × 500 matrix having an approxi-nullity 10 with threshold 10−8. The
approxi-rank gap is γ = 104. After executing our RankRev and hurv on this ini-
tial matrix separately, a random vector is inserted at the bottom in each updating
step. Therefore, every update results in an increase in the approxi-rank by one.
Both urv up in UTV Tools and our rowup have no difficulty identifying the in-
creasing approxi-ranks with nearly identical accuracy in the updated approxi-null
space. As shown in Table 8.1, urv up is considerably faster than our rowup in this
case.

8.5.2. Row updating without changing approxi-ranks. When no changes
in the approxi-rank occur for row updating, the code urv up in UTV Tools seems
to have difficulties in identifying the approxi-ranks during the recursive updating,
especially when the approxi-rank gap is not large enough. Even when the gap is
large, urv up is still prone to miscalculating the approxi-rank at certain points. In
contrast, our code rowup always outputs accurate approxi-ranks in all occasions and
runs more than twice as fast.

Table 8.2 shows this event in a typical example. The initial matrix has the same
features as the one in section 8.5.1 except the approxi-rank gap γ is increased to
106 since urv up fails too soon for the gap 104. A sequence of rows consisting of
linear combinations of the existing rows are inserted at the bottom one at a time.
The approxi-rank should stay at 490. However, after certain steps in the recursive
updating, urv up outputs inaccurate approxi-ranks.

8.5.3. Row downdating without changing approxi-ranks. When deleting
a row does not change the approxi-rank, our code rowdown and its counterpart
urv dw in UTV Tools show similar performance in both efficiency and accuracy. The
test starts by constructing an initial matrix A ∈ R

1000×500 with the same features as
in the initial matrix in section 8.5.1. Then 20 rows that are linear combinations of
the existing rows of A are generated and stacked on top of A. Deleting those rows
one by one does not alter the approxi-rank. Table 8.3 shows the results.

940 T. Y. LI AND ZHONGGANG ZENG

Table 8.2

Comparisons on random row updating without changing approxi-ranks. Data in parentheses
indicate inaccurate computation.

Number of linearly dependent rows inserted

1 2 · · · 5 6 7 · · · 10

Time urv up 1.09 1.14 · · · 1.11 0.69 0.69 · · · 1.11

(seconds) rowup 0.39 0.50 · · · 0.39 0.48 0.59 · · · 0.42

Approxi-null urv up 2e-6 4e-6 · · · 3e-6 (0.15) (0.06) · · · (0.14)

space error rowup 1e-9 1e-9 · · · 2e-9 2e-9 3e-9 · · · 3e-9

Approxi-rank urv up 490 490 · · · 490 (491) (492) · · · (492)

output rowup 490 490 · · · 490 490 490 · · · 490

Table 8.3

Comparisons on random row downdating without changing approxi-ranks.

Number of linear dependent rows deleted

1 2 3 · · · 8 9 10

Time urv dw 0.75 0.73 0.78 · · · 0.75 0.72 0.72

(seconds) rowdown 0.78 0.78 0.89 · · · 0.76 0.70 0.70

Approxi-null urv dw 6e-8 1e-7 1e-7 · · · 4e-7 4e-7 4e-7

space error rowdown 6e-8 1e-7 1e-7 · · · 4e-7 4e-7 4e-7

8.5.4. Row downdating with decreasing approxi-ranks. As mentioned in
[6], UTV decomposition may have difficulties in downdating especially when it reduces
the approxi-ranks. This phenomenon does occur in the experiment we conducted
below. We downdate a matrix of 1030 × 500 obtained by stacking 30 random rows
on top of a matrix A of size 1000× 500 with an approxi-nullity 30 within a threshold
of 10−8. The approxi-rank gap is set at a relatively large threshold 106. During the
test, the 30 random rows are deleted one-by-one and both urv dw and rowdown

are used to downdate the approxi-rank and the approxi-null space. The approxi-rank
should decrease by one at every downdating step.

Table 8.4 shows that when downdating the approxi-rank accurately as in steps
1 to 15, both urv dw and rowdown exhibit similar efficiency and accuracy. At
step 16, urv dw miscalculates the approxi-rank by one and this error is carried on
in remaining downdating steps, whereas our code rowdown always produces the
correct approxi-rank.

It is not clear whether the inaccurate outputs of UTV Tools in those difficult tests
in both sections 7 and 8.5 are inherent in the UTV decomposition or the results of
coding errors. They are under investigation by the authors of UTV Tools.

9. Applications.

9.1. Computing polynomial GCD. A new method for computing the GCD
of univariate polynomials plays a key role in establishing a novel algorithm that accu-
rately calculates polynomial roots and their multiplicities without using multiprecision
arithmetic even if the polynomial is inexactly given [19]. This root-finding method is
implemented in the MATLAB package MultRoot [20]. Our rank-revealing method
and recursive column updating constitute indispensable components in the new GCD
finder and the root finder.

For any polynomial h(x) = h0x
k + h1x

k−1 + · · · + hk, its coefficient vector is

A RANK-REVEALING METHOD 941

Table 8.4

Comparisons on random row downdating with changing approxi-ranks. Data in parentheses
indicate inaccurate computation.

Number of linearly independent rows deleted

1 · · · 15 16 17 · · · 30

Approxi-null urv dw 9e-10 · · · 6e-10 (0.89) (0.89) · · · (0.87)

space error rowdown 9e-10 · · · 2e-9 3e-9 3e-9 · · · 6e-8

Approxi-rank urv dw 499 · · · 485 (485) (484) · · · (471)

output rowdown 499 · · · 485 484 483 · · · 470

Time urv dw 1.06 · · · 1.17 — — · · · —

(seconds) rowdown 0.95 · · · 1.03 1.03 1.05 · · · 1.03

denoted by h = (h0, h1, . . . , hk)
�. Let p(x) and q(x) be polynomials of degrees n and

m, respectively. Write

p(x) = p0x
n + p1x

n−1 + · · · + pn,

q(x) = q0x
m + q1x

m−1 + · · · + qm,

with n ≥ m. A polynomial u(x) is a GCD of p(x) and q(x), denoted by GCD (p, q),
if there are polynomials v(x) and w(x) such that

u(x)v(x) = p(x),

u(x)w(x) = q(x),
(9.1)

where v(x) and w(x) share no common roots (or, equivalently, no common factors).
The (n + r) × (n−m + 2r) matrix

Sr(p, q) =

r︷ ︸︸ ︷ n−m+r︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1
. . .

...
. . . p0

pn p1

. . .
...

pn

q0

q1
. . .

...
. . . q0

qm q1
. . .

...

qm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, n ≥ m, r = 1, 2, . . . ,m,

is called the rth Sylvester subresultant matrix of p and q. The following results are
well known [14, 19]:

• Sm(p, q) is of rank n + m− 2l + 1 if and only if deg(GCD (p, q)) = l ≥ 1.
• Sr(p, q) has full rank if and only if deg(GCD (p, q)) ≤ m− r.
• If Sr−1(p, q) is of full rank and Sr(p, q) is rank deficient, then the null space

of Sr(p, q) is spanned by the vector
(

w
−v

)
whose components v ∈ R

n−m+r and w ∈ R
r

are coefficient vectors of v(x) and w(x) in (9.1), respectively. Also, deg(GCD (p, q)) =
m− r + 1.

From those results, one may calculate GCD (p, q) by finding the first approxi-rank
deficient Sylvester matrix Sr(p, q) in the sequence

S1(p, q), S2(p, q), . . . , Sm(p, q)

942 T. Y. LI AND ZHONGGANG ZENG

and a (single vector) basis of the approxi-null space. A GCD finder constructed in
this way can be illustrated in the following process.

First, we form S1(p, q), set the first permutation P1 = I(n−m+2)×(n−m+2), and
calculate its QR decomposition

T1 = S1(p, q)P1

= Q .

R

1

1

If S1(p, q) is approxi-rank deficient, then GCD (p, q) = q. The process needs to con-
tinue only if S1(p, q) is of full approxi-rank. In general, if Sj(p, q) is of full approxi-rank
with its pivoted QR decomposition Tj = Sj(p, q)Pj = QjRj being available, we attach
one zero row to the bottom of Tj and add two columns

[
Q�

j

1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

q0
...

qm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

[
Q�

j

1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

p0

...

pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
to the right of the resulting matrix to form Tj+1. With a proper permutation matrix
Pj+1, we have Tj+1P

�
j+1 = Sj+1(p, q). Therefore,

Tj = Sj(p, q)Pj

=

Rj

jQ

Rj

jQ
1

=

Rj+1

Q j+1 = Sj+1(p, q)Pj+1 = Tj+1.

A RANK-REVEALING METHOD 943

Updating the QR decomposition of Tj+1 = Sj+1(p, q)Pj+1 requires only O(n + m)
additional flops. We apply the iteration (3.2) on Rj+1 for an approxi-null vector. If
Rj+1 (or, equivalently, Sj+1(p, q)) remains in full approxi-rank, the process continues
to j + 2 in a similar way. It stops at the (column permuted) kth Sylvester resultant
matrix Tk = Sk(p, q)Pk, the first to be approxi-rank deficient.

It can be shown that the null space of Tk is of dimension one with a single null
vector z ∈ R

n−m+2k in its basis. Let(
w

−v

)
= P�

k z with w ∈ R
k and v ∈ R

n−m+k.

Then v and w are coefficient vectors of v(x) and w(x) satisfying (9.1). Now u(x) =
GCD (p, q) is the quotient of p(x) and v(x). However, it is numerically unstable to
use polynomial synthetic division p(x) ÷ v(x) for finding u(x) [19]. Instead, we use
the “least squares division” [19] which solves the coefficient vector u of u(x) as a least
squares solution to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

v1
. . .

...
. . . v0

vs v1

. . .
...

vs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

...

...

...

pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u ∈ R

m−k+2, s = n−m + k − 1.(9.2)

The procedure listed in Figure 9.1 illustrates the calculation of deg(GCD (p, q)) and
the coefficients of u(x), v(x), and w(x) in (9.1). To achieve highest attainable accu-
racy, the Gauss–Newton iteration on a quadratic system based on (9.1) can be applied
to refine the GCD [19].

9.2. Nonisolated solutions to a polynomial system. When a numerical
solution x0 of a system of polynomial equations

P (x) =
(
p1(x), . . . , pn(x)

)
= 0, where x = (x1, . . . , xn)� ∈ C

n,

is obtained, we wish to identify whether x0 is an isolated solution of P (x) = 0. While
in the previous sections we mainly focused our attention on the development of our
method and algorithm in the real vector space R

n, the entire content remains valid
in C

n with proper adjustments.
If the Jacobian of P (x), denoted by Px(x), at x0 allows no small (relative to

‖Px(x0)‖∞) singular values, x0 is of course an isolated solution. When our rank-
revealing algorithm is applied to Px(x0) and the result shows it admits very small
singular values, x0 may lie on a solution component of P (x) = 0 with positive di-
mension or it may still be an isolated zero with multiplicity ≥ 2. Our strategy to
distinguish those cases is given below.

If Px(x0) permits only one singular value that appears tiny and if x0 is not an iso-
lated solution, then x0 must lie on a one- (complex) dimensional solution component
M of P (x) = 0. We will begin to identify this path to a substantial length by a path
following scheme developed in [9]. If this attempt fails, no such solution component
M may exist and x0 will be classified as an isolated solution of P (x) = 0.

944 T. Y. LI AND ZHONGGANG ZENG

Pseudocode GCD:

input: coefficient vectors for p(x), q(x)
output: d = deg(GCD (p, q)),

coefficients of v(x) and w(x) in (9.1)

QR decomposition QR = S1(p, q)
For j = 1, 2, . . . ,m do

Gauss--Newton iteration (3.2) on R, get � and x
if � is small enough, then

extract coefficients of v(x) and w(x) from x
solve (9.2) for the coefficients of u(x)
exit

else

if j ≤ m then

update Qj+1Rj+1 = Sj+1(p, q)Pj+1

else

deg(GCD (p, q)) = 0, v(x) = p(x), w(x) = q(x)
end if

end if

end do

Fig. 9.1. Pseudocode of GCD.

When Px(x0) has k > 1 very small singular values as a result of our rank-revealing
algorithm, we augment P (x) = 0 with k − 1 generic hyperplanes

aH
j (x − x0) = 0, j = 1, . . . , k − 1,

at x0. The enlarged system

P̂ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (x) = 0,

aH
1 (x − x0) = 0

...

aH
k−1(x − x0) = 0

(9.3)

will produce a one-dimensional component M̂ of P̂ (x) = 0 if the solution component
M of P (x) = 0 to which x0 belongs is of dimension k. Thus, the assertion that

dim(M) = k is valid only if we can identify M̂ by following this path to a satisfactory

length. If the path following cannot be carried out successfully, such a component M̂
may not exist. We will then remove hyperplane aH

k−1(x−x0) = 0 in (9.3) and restart

our effort to identify the one-dimensional component
̂̂
M produced by

̂̂
P (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (x) = 0,

aH
1 (x − x0) = 0

...

aH
k−2(x − x0) = 0.

(9.4)

A RANK-REVEALING METHOD 945

The existence of such a component
̂̂
M of

̂̂
P = 0 implies the solution component M of

P (x) = 0 containing x0 is of dimension k−1. If it fails, the process may be continued
in the same manner and the dimension of M will ultimately (very soon in practice) be
determined. Of course, when dim(M) = 0, x0 is an isolated zero even though Px(x0)
may have very small singular values from our rank-revealing algorithm.

Example (see [15]). Consider the polynomial system P (x) = (p1(x), p2(x), p3(x)),
x = (u, v, w) ∈ C

3, where

p1(x) = (v − u2) · (u2 + v2 + w2 − 1)(u− 0.5),

p2(x) = (w − u3)(u2 + v2 + w2 − 1)(v − 0.5),

p3(x) = (v − u2)(w − u3)(u2 + v2 + w2 − 1)(w − 0.5).

Obviously, the solution set of P (x) = 0 consists of
1. a two-dimensional component u2 + v2 + w2 = 1;
2. four one-dimensional components

(a) line u = 0.5, v = (0.5)3;
(b) line u =

√
0.5, v = 0.5;

(c) line u = −
√

0.5, v = 0.5;
(d) twisted cubic v = u2, w = u3;

3. one isolated solution (u, v, w) = (0.5, 0.5, 0.5).
When the polyhedral homotopy continuation method [10] was used to solve P (x) = 0,
129 numerical solutions were obtained. We applied our method to all those solutions,
and the result shows

• 112 of them lie on the two-dimensional component,
• 16 of them lie on one-dimensional components (four on line 2a, four on line

2b, four on line 2c, four on line 2d),
• one isolated solution.

When we classified a solution x0 that is lying on a two-dimensional component of
P (x) = 0, for instance, we substituted x0 into u2 +v2 +w2 = 1 to verify the accuracy
of our identification, and the results were all accurate.

Acknowledgments. The authors wish to thank R. D. Fierro, P. C. Hansen,
and P. S. K. Hansen for making UTV Tools freely available. In particular, the second
author is grateful to P. C. Hansen for his helpful e-correspondence.

REFERENCES

[1] M. W. Berry, Large scale sparse singular value computation, Internat. J. Supercomput. Appl.,
6 (1992), pp. 13–49.

[2] C. H. Bischof and G. Quintana-Orti, Algorithm 782: Codes for rank-revealing QR factor-
izations of dense matrices, ACM Trans. Math. Software, 24 (1998), pp. 254–257.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[4] T. R. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
[5] F. Deprettere, SVD and Signal Processing, Algorithms, Applications, and Architectures,

North–Holland, Amsterdam, 1988.
[6] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen, UTV tools: MATLAB templates for

rank-revealing UTV decompositions, Numer. Algorithms, 20 (1999), pp. 165–194.
[7] G. H. Golub, V. Klema, and G. W. Stewart, Rank Degeneracy and Least Squares Problems,

Tech. rep. TR 456, University of Maryland, Baltimore, MD, 1976.
[8] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University

Press, Baltimore, MD, 1996.
[9] Y. C. Kuo and T. Y. Li, Determining Whether a Zero of a Polynomial System is Isolated,

preprint, 2003.

946 T. Y. LI AND ZHONGGANG ZENG

[10] T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation
methods, in Acta Numerica, Acta Numer. 6, Cambridge University Press, Cambridge, UK,
199, pp. 399–436.

[11] R. Mathias and G. W. Stewart, A block QR algorithm and the singular value decomposition,
Linear Algebra Appl., 182 (1993), pp. 91–100.

[12] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford
Ser. (2), 11 (1960), pp. 50–59.

[13] M. Moonen and B. De Moor, SVD and Signal Processing, III, Algorithms, Applications, and
Architectures, Elsevier, Amsterdam, 1995.

[14] D. Rupprecht, An algorithm for computing certified approximate GCD of n univariate poly-
nomials, J. Pure Appl. Algebra, 139 (1999), pp. 255–284.

[15] A. J. Sommese, J. Verschelde, and C. W. Wampler, Numerical decomposition of the so-
lution sets of polynomial systems into irreducible components, SIAM J. Numer. Anal., 38
(2001), pp. 2022–2046.

[16] G. W. Stewart, UTV decompositions, in Numerical Analysis 1993, D. F. Griffith and G. A.
Watson, eds., Pitman Res. Notes Math. Ser. 303, Longman, Harlow, UK 1994, pp. 225–236.

[17] G. W. Stewart, Matrix Algorithms: Basic Decompositions, SIAM, Philadelphia, 1998.
[18] R. Vaccaro, SVD and Signal Processing, II, Algorithms, Applications, and Architectures,

Elsevier, Amsterdam, 1991.
[19] Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005), pp. 869–

903.
[20] Z. Zeng, Algorithm 835: MultRoot—a MATLAB package for computing polynomial roots and

multiplicities, ACM Trans. Math. Software, 30 (2004), pp. 218–236.

