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Abstract In this paper, a semi-analytical approach for the
eigenproblem of circular plates with multiple circular holes is
presented. Natural frequencies and modes are determined by
employing the null-field integral formulation in conjunction
with degenerate kernels, tensor rotation and Fourier series. In
the proposed approach, all kernel functions are expanded into
degenerate (separable) forms and all boundary densities are
represented by using Fourier series. By uniformly collocating
points on the real boundary and taking finite terms of Fourier
series, a linear algebraic system can be constructed. The
direct searching approach is adopted to determine the natural
frequency through the singular value decomposition (SVD).
After determining the unknown Fourier coefficients, the cor-
responding mode shape is obtained by using the boundary
integral equations for domain points. The result of the annular
plate, as a special case, is compared with the analytical solu-
tion to verify the validity of the present method. For the cases
of circular plates with an eccentric hole or multiple circu-
lar holes, eigensolutions obtained by the present method are
compared well with those of the existing approximate analyt-
ical method or finite element method (ABAQUS). Besides,
the effect of eccentricity of the hole on the natural frequency
and mode is also considered. Moreover, the inherent prob-
lem of spurious eigenvalue using the integral formulation is
investigated and the SVD updating technique is adopted to
suppress the occurrence of spurious eigenvalues. Excellent
accuracy, fast rate of convergence and high computational
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efficiency are the main features of the present method thanks
to the semi-analytical procedure.
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1 Introduction

Circular plates with multiple holes, including annular or
annular-like plate, are often used to model mechanical ele-
ments and structural components for some applications.
Compared with circular plates, these introduced holes result
in significant changes in the natural frequency and mode
shape. Free vibration analysis of this kind component is help-
ful to the work of mechanical design and flight control of the
structure. As quoted by Leissa [19]: “the free vibrations of
circular plates have been of practical and academic interest
for at least a century and a half”, most of research works have
focused on the free vibration analysis of circular and annular
plates [2,3,19,24–28]. However, only few studies have con-
ducted the problem of plate with an eccentric hole [17] or
multiple holes.

In the past, some analytical solutions [24] for natural fre-
quencies of circular and annular plates were solved. Equa-
tions in frequency domain are obtained by substituting the
general solution, which satisfies the governing equation of
plates, into the boundary conditions. Since the analytical
determination of natural frequencies requires the solution of
transcendental functions (e.g., Bessel and modified Bessel
functions), Vera et al. [25–27] obtained the desired eigenval-
ues by implementing the same procedure as [24] in the Maple
V system and pointed out some inaccurate results in [18].
Recently some researchers intended to extend annular plate
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[27,28] to the plate with an eccentric hole. Cheng et al. [11]
encountered difficulty and resorted to finite element method
(FEM) to implement the vibration analysis of annular-like
plates due to the complicated expression for this kind of plate.
Laura et al. [20] determined the natural frequencies of circu-
lar plate with an eccentric hole by using the Rayleigh–Ritz
variational method where the coordinate function does not
satisfy the natural boundary condition in the inner free edge.
This approximate analytic solution can provide good results,
but the accuracy of some results is insufficient after careful
comparisons in this paper.

On the other hand, diverse numerical methods were
resorted to the solution of plate problems, which include
finite difference method (FDM), FEM and boundary ele-
ment method (BEM). BEM has some advantages in com-
parison with domain discretization methods (FEM, FDM).
The main gain is that the BEM reduces the dimension of
the original problem by one, thus, the number of the intro-
duced unknowns is much less than that of the traditional
domain type methods. In addition, the domain mesh gener-
ation is not required, which is generally the most difficult
and time-consuming task. For BEM applications to plate
problems, readers may consult with the review article [21].
It is noted that improper integrals on the boundary should
be handled particularly when the BEM is used. In the past,
many researchers proposed several regularization techniques
to deal with the singularity and hypersingularity. The deter-
mination of the Cauchy principal value (CPV) and the
Hadamard principal value (HPV) in the singular and hyper-
singular integrals are critical issues in BEM/BIEM [4,23].
For the plate problem, it is more difficult to calculate the
principal values since the kernels are involved with tran-
scendental complex functions. In this paper, instead of using
the previous concepts, the kernel function is recast into the
degenerate kernel which is expanded into a series form on
each side (interior and exterior) of the boundary by employ-
ing the addition theorem since the double-layer potential is
discontinuous across the boundary. In reality, addition theo-
rems are expansion formulae for the special functions (e.g.,
Bessel function, spherical harmonics, etc.) in a selected coor-
dinate system [12]. Therefore, degenerate kernel, namely
separable kernel, is a vital tool to study the perforated plate.
Based on direct boundary integral formulation, Chen et al.
[5–7] recently proposed the null-field integral equations in
conjunction with degenerate kernels and Fourier series to
solve boundary value problems with circular boundaries. By
introducing the degenerate (separable) kernel, BIE involves
nothing more than the linear algebra. Some applications were
done in the static stress calculations of anti-plane [5] and
plate problems [6]. The introduction of degenerate kernel
in companion with Fourier series was proved to yield the
exponential convergence [15] instead of the linear algebraic
convergence in BEM.

This paper presents a semi-analytical approach to solve
natural frequencies and modes of circular plates with mul-
tiple circular holes by using the null-field integral formu-
lation in conjunction with degenerate kernels and Fourier
series. A linear algebraic system is constructed by taking
finite terms of Fourier series after uniformly collocating the
null-field points exactly on the real boundary. By match-
ing the boundary condition, the determinant of the influence
matrix is zero to obtain the non-trivial eigensolution. The
direct searching approach [16] is adopted to determine the
natural frequency by using the singular value decomposition
(SVD) [14]. After determining the Fourier coefficients, the
corresponding mode shape of the circular plate with multi-
ple circular holes is obtained by using the boundary integral
equations for the domain point. For the plate problem, the
slope (bending angle) and moment in the normal and tangen-
tial directions for the non-concentric domain are determined
with care under the adaptive observer system. Therefore, the
operator of transformation matrix for the slope and moment is
adopted to deal with the problem for the non-concentric plate.
Finally, the obtained result of the annular plate, as our special
case, is compared with the analytical solution [18,25,27] to
verify the validity of the present method. The results of the
circular plate with an eccentric circular hole and/or multi-
ple circular holes are compared with those of approximate
analytical solution [20] and FEM using the ABAQUS [1] pro-
gram to demonstrate the generality of the proposed method.
The effect of eccentricity of the hole on the vibration charac-
teristics of such plates subject to several boundary conditions
is also addressed. Moreover, the inherent problem of spurious
eigenvalues using BEM is investigated and the SVD updat-
ing technique [2] is employed to suppress the appearance of
spurious eigenvalues.

2 Problem statement and boundary integral formulation

2.1 Problem statement of plate eigenproblems

The governing equation for the free flexural vibration of a
uniform thin plate with non-overlapping circular holes as
shown in Fig. 1 is written as follows:

∇4u(x) = λ4u(x), x ∈ �, (1)

where ∇4 is the biharmonic operator, u is the lateral displace-
ment; λ4 = ω2ρ0h/D, λ is the frequency parameter; ω is the
circular frequency; ρ0 is the volume density; h is the plate
thickness; D = Eh3/12(1 − ν2) is the flexural rigidity of
the plate; E denotes the Young’s modulus; ν is the Poisson
ratio of the elastic material; and � is the domain of the thin
plate.
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Fig. 1 Problem statement for an eigenproblem of a circular plate with
multiple circular holes

2.2 Boundary integral equation for the domain point

The integral representation for the plate eigenproblem can be
derived from the Rayleigh–Green identity [16] as follows:

u(x) = −
∫

B

U (s, x)υ(s)d B(s) +
∫

B

�(s, x)m(s)d B(s)

−
∫

B

M(s, x)θ(s)d B(s) +
∫

B

V (s, x)u(s)d B(s),

x ∈ �, (2)

θ(x) = −
∫

B

Uθ (s, x)υ(s)d B(s) +
∫

B

�θ(s, x)m(s)d B(s)

−
∫

B

Mθ (s, x)θ(s)d B(s) +
∫

B

Vθ (s, x)u(s)d B(s),

x ∈ �, (3)

m(x) = −
∫

B

Um(s, x)υ(s)d B(s) +
∫

B

�m(s, x)m(s)d B(s)

−
∫

B

Mm(s, x)θ(s)d B(s) +
∫

B

Vm(s, x)u(s)d B(s),

x ∈ �, (4)

υ(x) = −
∫

B

Uv(s, x)υ(s)d B(s) +
∫

B

�v(s, x)m(s)d B(s)

−
∫

B

Mv(s, x)θ(s)d B(s) +
∫

B

Vv(s, x)u(s)d B(s),

x ∈ �, (5)

where B is the boundary of the domain �, u(x), θ(x), m(x)

and v(x) are the displacement, slope, moment and shear
force. The notations s and x mean the source and field points,
respectively. The kernel functions U (s, x), �(s, x), M(s, x),
V (s, x), Uθ (s, x), �θ(s, x), Mθ (s, x), Vθ (s, x), Um(s, x),
�m(s, x), Mm(s, x), Vm(s, x), Uυ(s, x), �υ(s, x), Mυ(s, x)

and Vυ(s, x) in Eqs. (2)–(5) can be expanded to degenerate
kernels by separating the source and field points and will be
elaborated later. The kernel function U (s, x) in Eq. (2) is the
fundamental solution which satisfies

∇4U (s, x) − λ4U (s, x) = δ(s − x), (6)

where δ(s − x) is the Dirac-delta function. Considering the
two singular solutions (Y0(λr) and K0(λr), which are the
zeroth-order of the second-kind Bessel and modified Bessel
functions, respectively) [13] and the two regular solutions
(J0(λr) and I0(λr), which are the zeroth-order of the first-
kind Bessel and modified Bessel functions, respectively) in
the fundamental solution, we have the complex-valued
kernel,

U (s, x) = 1

8λ2

[
Y0(λr) + i J0(λr)

+ 2

π
(K0(λr) + i I0(λr))

]
, (7)

where r ≡ |s − x | and i2 = −1. The other three kernels
�(s, x), M(s, x) and V (s, x) in Eq. (2) can be obtained by
applying the following slope, moment and effective shear
operators defined by

K� = ∂(·)
∂n

, (8)

KM = ν∇2(·) + (1 − ν)
∂2(·)
∂n2 , (9)

KV = ∂

∂n
∇2(·) + (1 − ν)

∂

∂t

[
∂

∂n

(
∂

∂t
(·)

)]
(10)

to the kernel U (s, x) with respect to the source point, where
∂/∂n and ∂/∂t are the normal and tangential derivatives,
respectively, and ∇2 means the Laplacian operator. In the
polar coordinate of (R, θ ), the normal and tangential deriva-
tives can be expressed by ∂

∂ R and 1
R

∂
∂θ

, respectively and then
the three kernel functions can be rewritten as:

�(s, x) = K�,s(U (s, x)) = ∂U (s, x)

∂ R
, (11)

M(s, x) = KM,s(U (s, x)) = ν∇2
s U (s, x)

+(1 − ν)
∂2U (s, x)

∂ R2 , (12)

V (s, x) = KV,s(U (s, x)) = ∂

∂ R

(
∇2

s U (s, x)
)

+(1 − ν)

(
1

R

)
∂

∂θ

[
∂

∂ R

(
1

R

∂U (s, x)

∂θ

)]
.

(13)
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The expressions for θ(x), m(x) and v(x) in Eqs. (3)–(5),
obtained by applying the operators in Eqs.(8)–(10) to u(x)

in Eq. (2) with respect to the field point x(ρ, φ), are

θ(x) = K�,x (u(x)) = ∂u(x)

∂ρ
, (14)

m(x) = KM,x (u(x)) = ν∇2
x u(x) + (1 − ν)

∂2u(x)

∂ρ2 , (15)

v(x) = KV,x (u(x)) = ∂

∂ρ

(
∇2

x u(x)
)

+(1 − ν)

(
1

ρ

)
∂

∂φ

[
∂

∂ρ

(
1

ρ

∂u(x)

∂φ

)]
. (16)

By the same way, the kernel functions Uθ (s, x), �θ(s, x),
Mθ (s, x),Vθ (s, x), Um(s, x), �m(s, x), Mm(s, x),Vm(s, x),
Uυ(s, x), �υ(s, x), Mυ(s, x) and Vυ(s, x) can be obtained
by applying the operators in Eqs.(8)–(10) respectively to the
kernel functions U , �, M and V with respect to the field
point x(ρ, φ).

2.3 Null-field integral equations

The null-field integral equations derived by collocating the
field point outside the domain (including the boundary point
if exterior degenerate kernels are properly adopted) are shown
as follows:

0 = −
∫

B

U (s, x)υ(s)d B(s) +
∫

B

�(s, x)m(s)d B(s)

−
∫

B

M(s, x)θ(s)d B(s) +
∫

B

V (s, x)u(s)d B(s),

x ∈ �C ∪ B, (17)

0 = −
∫

B

Uθ (s, x)υ(s)d B(s) +
∫

B

�θ(s, x)m(s)d B(s)

−
∫

B

Mθ (s, x)θ(s)d B(s) +
∫

B

Vθ (s, x)u(s)d B(s),

x ∈ �C ∪ B, (18)

0 = −
∫

B

Um(s, x)υ(s)d B(s) +
∫

B

�m(s, x)m(s)d B(s)

−
∫

B

Mm(s, x)θ(s)d B(s) +
∫

B

Vm(s, x)u(s)d B(s),

x ∈ �C ∪ B, (19)

0 = −
∫

B

Uυ(s, x)υ(s)d B(s) +
∫

B

�υ(s, x)m(s)d B(s)

−
∫

B

Mυ(s, x)θ(s)d B(s) +
∫

B

Vυ(s, x)u(s)d B(s),

x ∈ �C ∪ B, (20)

where �C is the complementary domain of �. Once kernel
functions are expressed in proper degenerate forms, which
will be described in the next subsection, the collocation
points can be exactly located on the real boundary, that is
x ∈ �C ∪ B. Since the four equations of Eqs. (17)–(20) in
the plate formulation are provided, there are 6 (C4

2 , C(4, 2)

or

(
4
2

)
) options for choosing any two equations to solve the

problems. Kernels in Eq. (20) involve higher-order deriv-
atives, which may decrease both the convergence rate and
computational efficiency. For the convergence rate, compu-
tational efficiency and treatment of the spurious eigenvalue,
the Eqs. (17)–(19) are used to analyze the plate problem.

2.4 Degenerate kernels and Fourier series for boundary
densities

In the polar coordinate, the field point and source point can be
expressed as (ρ, φ) and (R, θ), respectively. By employing
the separation technique for the source and field points, the
kernel functions U (s, x) are expanded in the series form as
follows:

U :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U I (s, x)= 1

8λ2

∞∑
m=0

εm

{
Jm(λρ)[Ym(λR)+i Jm(λR)]

+ 2

π
Im(λρ)[Km(λR)+i(−1)m Im(λR)]

}

× cos [m (θ − φ)] , ρ < R,

U E (s, x)= 1

8λ2

∞∑
m=0

εm

{
Jm(λR)[Ym(λρ)+i Jm(λρ)]

+ 2

π
Im(λR)[Km(λρ)+i(−1)m Im(λρ)]

}

× cos [m (θ − φ)] , ρ ≥ R,

(21)

where εm is the Neumann factor (εm = 1, m = 0; εm = 2,
m = 1, 2, . . . ,∞) and the superscripts “I ” and “E” denote
the interior and exterior cases for degenerate kernel U (s, x)

to distinguish ρ < R and ρ > R, respectively as shown in
Fig. 2. The degenerate kernels �(s, x), M(s, x) and V (s, x)

in the null-field boundary integral equations can be obtained
by applying the operators of Eqs. (11)–(13) to the degenerate
kernel U (s, x) of Eq. (21).

In order to fully utilize the geometry of circular bound-
ary, the displacement u(s), slope θ(s), moment m(s) and
shear force υ(s) along the circular boundary in the null-field
integral equations are expanded in terms of Fourier series,
respectively, as shown below:

u(s) = c0 +
M∑

n=1

(cn cos nθ + dn sin nθ), s ∈ B, (22)

123



Comput Mech (2008) 42:733–747 737

R

EU

O

IU

s
x

x

Fig. 2 Degenerate kernel for U (s, x)

θ(s) = g0 +
M∑

n=1

(gn cos nθ + hn sin nθ), s ∈ B, (23)

m(s) = a0 +
M∑

n=1

(an cos nθ + bn sin nθ), s ∈ B, (24)

υ(s) = p0 +
M∑

n=1

(pn cos nθ + qn sin nθ), s ∈ B, (25)

where a0, an, bn, c0, cn, dn, g0, gn, hn, p0, pn and qn are the
Fourier coefficients and M is the number of Fourier series
terms. The number of terms M in Fourier series for the
circular boundaries can be, in general, different for each
boundary circle. For simplicity, we used the same number
of Fourier terms for each circular boundary. By using degen-
erated kernels, Fourier series and orthogonal property, all the
improper integrals in Eqs. (17)–(20) can be transformed to
series sum and then be calculated easily, since the potential
across the boundary can be described in each side by using
the degenerate kernel with series form. Successful experi-
ences on Laplace problems [7], Helmholtz problems [8] and
biharmonic problems [6] can be found.

3 Adaptive observer system and transformation
of tensor components

3.1 Adaptive observer system

Consider a plate problem with circular boundaries as shown
in Fig. 1. Since the direct boundary integral equations are
frame indifferent (i.e., rule of objectivity), the origin of the
observer system can be adaptively located on the center of the
corresponding boundary contour under integration. Adaptive
observer system is chosen to fully employ the circular prop-

Fig. 3 Collocation point and boundary contour integration in the
boundary integral equation in the adaptive observer system

erty, which takes the full advantage of both Fourier series to
represent boundary variables and degenerate-kernel expres-
sion in polar coordinate. Figure 3 shows the boundary inte-
gration for the circular boundaries in the adaptive observer
system. The dummy variable in the circular contour inte-
gration is the angle (θ ) instead of radial coordinate (R). By
using the adaptive system, all the boundary integrals can be
determined analytically free of principal value senses.

3.2 Transformation of tensor components

Since the slope, moment and effective shear force are calcu-
lated in the plate problem, potential gradient or higher-order
gradient need to be manipulated with care. For the non-
concentric case, special care for determining the potential
gradient should be taken as the source and field points locate
on different circular boundaries. As shown in Fig. 4, the angle
φi of the collocation point xi is described in the center of the
circle under integration and the angle φc is described in the
center of the circle on which collocation point is located.
According to the transformation of the component of tensor,
we have [22][

(·)n

(·)t

]
=

[
cos(δ) sin(δ)

− sin(δ) cos(δ)

] [
(·)r

(·)θ
]

, (26)

[
(·)nn

(·)nt

]
=

[
cos2(δ) sin2(δ) 2 sin(δ) cos(δ)

− sin(δ) cos(δ) sin(δ) cos(δ) cos2(δ)−sin2(δ)

]

⎡
⎣ (·)rr

(·)θθ

(·)rθ

⎤
⎦ . (27)
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Fig. 4 Transformation of tensor components

Based on Eqs. (26) and (27), the operators in Eqs. (14) and
(15) can be transformed as follows:

K R
� = cos (δ)

∂(·)
∂n

+ sin (δ)
∂(·)
∂t

, (28)

K R
M =

[
υ + (1 − ν) sin2(δ)

]
∇2(·) + cos(2δ)(1 − ν)

∂2(·)
∂n2

+ sin(2δ)(1 − ν)
∂

∂n

(
∂(·)
∂t

)
, (29)

where δ = φc − φi . When the angle φc equals to the angle
φi or the angle difference δ equals to zero, Eqs. (28) and (29)
are simplified to the Eqs. (14) and (15). Considering the non-
concentric case, the degenerate kernels, Uθ (s, x), �θ(s, x),
Mθ (s, x), Vθ (s, x)Um(s, x), �m(s, x) and Mm(s, x) can be
obtained by applying the operators of Eqs. (28)–(29) to the
degenerate kernel U (s, x),�(s, x), M(s, x) and V (s, x)with
respect to the field point x .

4 Linear algebraic system

Consider the circular plate containing H non-overlapping
circular holes centered at the position vector o j ( j = 1, 2,

. . . , L), (L = 1 + H and o1 is the position vector for the
center of the outer circular boundary), as shown in Fig. 3 in
which R j denotes the radius of the j th circular region, x j is
the collocation point on the j th circular boundary and B j is
the boundary of the j th circular hole. By uniformly collocat-
ing the N (= 2M + 1) points on each circular boundary in
Eqs. (17)–(19), we have

0 =
L∑

j=1

∫

B j

{−U (s, x)v(s) + �(s, x)m(s)

− M(s, x)θ(s) + V (s, x)u(s)} d B j (s), x ∈ B, (30)

0 =
L∑

j=1

∫

B j

{−Uθ (s, x)v(s) + �θ(s, x)m(s)

− Mθ (s, x)θ(s) + Vθ (s, x)u(s)} d B j (s), x ∈ B.

(31)

0 =
L∑

j=1

∫

B j

{−Um(s, x)v(s) + �m(s, x)m(s)

− Mm(s, x)θ(s) + Vm(s, x)u(s)} d B j (s), x ∈ B.

(32)

It must be noted that U , �, M , Uθ , �θ and Um are weakly
singular, V , Mθ and �m are singular and Vθ , Mm and Vm

are hypersingular [29] since we select the null-field point
on the boundary in the real computation. The main gain by
using the degenerate kernel in the BIE is that singular inte-
grals due to the kernels can be transformed to the series sum
free of facing principal values. The selection of interior or
exterior degenerate kernel depends on ρ < R or ρ > R,
respectively, according to the observer system. Besides, the
path is counterclockwise for the outer circle; otherwise, it is
clockwise. For the B j circular boundary integrals, the degen-
erate kernels of U (s, x), �(s, x), M(s, x), V (s, x), Uθ (s, x),
�θ(s, x), Mθ (s, x) and Vθ (s, x) are utilized and boundary
densities u (s), θ (s), m (s) andv (s) along the circular bound-
ary are substituted by using the Fourier series of Eqs. (22)–
(25), respectively. In the B j integration, the origin of the
observer system is adaptively set to collocate at the center
o j from which the degenerate kernels and Fourier series are
described. Considering the computational efficiency and the
outer clamped and inner free boundary condition, we firstly
chose Eqs. (30) and (31) to establish a linear algebraic system
as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−U 11 �11 −M12 V 12 · · · −M1L V 1L

−U 11
θ �11

θ −M12
θ V 12

θ · · · −M1L
θ V 1L

θ

−U 21 �21 −M22 V 22 · · · −M2L V 2L

−U 21
θ �21

θ −M22
θ V 22

θ · · · −M2L
θ V 2L

θ
...

...
...

...
. . .

...
...

−U L1 �L1 −M L2
θ V L2 · · · −M L L V L L

−U L1
θ �L1

θ −M L2
θ V L2

θ · · · −M L L
θ V L L

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

m1

θ2

u2

...

θ L

uL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
...

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

by using orthogonal property, where L denotes the number
of circular boundaries (the superscript 1 denotes the outer
boundary and the other number stands for the inner hole).
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For brevity, a unified form [Ui j ] (i = 1, 2, 3, . . . , L and
j = 1, 2, 3, . . . , L) denote the response of U (s, x) kernel on
the i th circle due to the source on the j th circle. Otherwise,
the same definition is for [�i j ], [Mi j ], [V i j ], [Ui j

θ ], [�i j
θ ],

[Mi j
θ ] and [V i j

θ ] kernels. The explicit expressions for sub-
vectors [ui ], [θ i ],[mi ] and [vi ] can be described as follows:

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ci
0

ci
1

di
1
...

ci
M

di
M

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

θ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gi
0

gi
1

hi
1
...

gi
M

hi
M

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ai
0

ai
1

bi
1
...

ai
M

bi
M

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pi
0

pi
1

qi
1
...

pi
M

qi
M

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(34)

The explicit expressions for the sub-matrices of [Ui j ],
[�i j ], [Mi j ], [V i j ], [Ui j

θ ], [�i j
θ ], [Mi j

θ ] and [V i j
θ ] can be

written in the following form

K i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K i j
0C (ρ1, φ1) K i j

1C (ρ1, φ1) K i j
1S(ρ1, φ1) · · · K i j

M S(ρ1, φ1)

K i j
0C (ρ2, φ2) K i j

1C (ρ2, φ2) K i j
1S(ρ2, φ2) · · · K i j

M S(ρ2, φ2)
...

...
...

...
...

...
...

...

K i j
0C (ρN , φN ) K i j

1C (ρN , φN ) K i j
1S(ρN , φN ) · · · K i j

M S(ρN , φN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

, (35)

where K can be either one of U , �, M , V , Uθ , �θ , Mθ and
Vθ . The notations φk and ρk(k = 1, 2, 3, . . . , N ) shown in
Fig. 3 are the angle and radius of the kth collocation point on
the i th circular boundary with respect to the center of the j th
circular boundary (the origin of the observer system) and the
element of the sub-matrices can be determined by

K i j
nc(ρk, φk) =

2π∫

0

K (R j , θ j ; ρk, φk) cos(nθ j )(R j dθ j ),

n = 0, 1, 2, . . . , M, (36)

K i j
ns(ρk, φk) =

2π∫

0

K (R j , θ j ; ρk, φk) sin(nθ j )(R j dθ j ),

n = 1, 2, . . . , M (37)

in which the selection of interior or exterior degenerate ker-
nel depends on the position of collocation point with respec-
tive to the center of circle under integration as presented in
Fig. 3. According to the direct-searching scheme, the eigen-
value can be obtained by applying the SVD technique to
the matrix in Eq. (33). Once the eigenvalues are found, the
associated mode shape can be obtained by substituting the
corresponding boundary eigenvectors (i.e., eigenvectors for
the boundary data) into the boundary integral equations for

Case 1:  

Geometric data: 

R1=1m 

R2=0.4m 

e=0.0 ~ 0.5m

thickness=0.002m 

Boundary condition: 

Inner circle : free 

Outer circle: clamped, simply 

-supported and free 

R1

R2

e
o1 o2

Fig. 5 A circular plate with one circular hole

the domain point.

5 Spurious eigenvalue of multiply-connected plate
eigenproblems and its remedy–SVD updating
technique

For the 2-D multiply-connected problem [9,10], spurious
eigenvalues occur when using BEM or BIEM even though
the complex-valued kernel function is employed to solve the
eigenproblem. This may cause the present method to obtain
the additional spurious solutions. Therefore, SVD updating
technique is adopted to suppress the appearance of spuri-
ous eigenvalue. The concept of this technique is to provide
sufficient constrains to overcome the rank deficiency of the
system.

The approach to suppress the appearance of spurious fre-
quency is the criterion of satisfying all Eqs. (17)–(20) at the
same time. Consider the circular plate with an eccentric hole
and the outer clamped boundary and inner free boundary.
Eqs. (30) and (31) reduce to

⎡
⎢⎢⎣

−U 11 �11 −M12 V 12

−U 11
θ �11

θ −M12
θ V 12

θ

−U 21 �21 −M22 V 22

−U 21
θ �21

θ −M22
θ V 22

θ

⎤
⎥⎥⎦

4N×4N

⎧⎪⎪⎨
⎪⎪⎩

v1

m1

θ2

u2

⎫⎪⎪⎬
⎪⎪⎭

4N×1

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

4N×1

.

(38)
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Similarly, Eqs. (30) and (32) yield

⎡
⎢⎢⎣

−U 11 �11 −M12 V 12

−U 11
m �11

m −M12
m V 12

m
−U 21 �21 −M22 V 22

−U 21
m �21

m −M22
m V 22

m

⎤
⎥⎥⎦

4N×4N

⎧⎪⎪⎨
⎪⎪⎩

v1

m1

θ2

u2

⎫⎪⎪⎬
⎪⎪⎭

4N×1

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

4N×1

. (39)

To obtain an overdetermined system, we can combine Eqs.
(38) and (39) by using the SVD technique of updating terms
as shown below:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−U 11 �11 −M12 V 12

−U 11
θ �11

θ −M12
θ V 12

θ

−U 21 �21 −M22 V 22

−U 21
θ �21

θ −M22
θ V 22

θ

−U 11 �11 −M12 V 12

−U 11
m �11

m −M12
m V 12

m
−U 21 �21 −M22 V 22

−U 21
m �21

m −M22
m V 22

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8N×4N

⎧⎪⎪⎨
⎪⎪⎩

v1

m1

θ2

u2

⎫⎪⎪⎬
⎪⎪⎭

4N×1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

8N×1

, (40)

Eq. (40) can filter out spurious eigenvalues.

6 Numerical results and discussions

Natural frequencies and modes for circular plates with cir-
cular holes are determined by using the present method and
FEM using the ABAQUS for comparison. In all cases, the
inner boundary is subject to the free boundary condition. The
thickness of plate is 0.002 m and the Poisson ratio ν = 1/3.
The general-purpose shell elements with reduced integration,
S4R, of ABAQUS were used to model the plate problem.
Although the thickness of the plate is 0.002 m, these ele-
ments do not suffer from transverse shear locking based on
the theoretical manual of ABAQUS [1].

6.1 A circular plate with one circular hole [18,20,25,27]

A circular plate with one circular hole where the center is
located along a radial axis from 0.0 to 0.5 m is considered
to see the effect on true and spurious eigenvalues as shown
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3.6743 

7.9906

8.1231

8.1231

8.1808

8.4766

8.4766

4.4033

5.5981

6.8451

6.8451

5.5981

4.4033

(b)

(a)

Fig. 6 The first and second minimum singular values versus the fre-
quency parameter for the clamped-free annular plate (R1 = 1.0,
R2 = 0.4 and e = 0.0)

in Fig. 5. The outer and inner radii are 1 m (R1 = 1 m), and
0.4 m (R2 = 0.4 m), respectively.

6.1.1 A circular plate with the eccentricity of e/R1 = 0

When the eccentricity equals to zero, this concentric case,
i.e., annular plate, has the configuration of axial symmetry.
Figure 6a, b shows the first and the second minimum sin-
gular values of the influence matrix of Eq. (33) versus the
frequency parameter λ. Since the direct-searching scheme is
used, the drop location indicates possible eigenvalues (true
and spurious). The simultaneous appearance of drop indi-
cates the multiplicities, e.g., 4.4033, as given in Fig. 6b.
Figure 7 shows the first seven eigenvalues and eigenmodes.
Values of m and n in the mode type M (m, n) are numbers of
diametrical nodal lines and circular nodal lines, respectively.
Diametrical node locates on a diametrical nodal line while
circular node locates on a circular nodal line. In this case,
the repeated eigenvalues always occur due to the axial sym-
metry. The corresponding mode shape has the same number
of diametrical nodal lines, which can be rotated by an angle
with respect to each other. From the convergence analysis,
the required number of Fourier series of the present method
equals to that of diametrical nodal lines of the mode con-
sidered due to its analytical nature. Consequently, only four
terms (M = 4) in the Fourier series is sufficient to capture
the first seven modes. In this case, 7788 elements and 8008
nodes were used to generate the corresponding FEM model.
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Fig. 7 The first seven natural frequency parameters, mode types and mode shapes for the clamped-free annular plate by using the present method
and FEM (R1 = 1.0, R2 = 0.4 and e = 0.0)
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7.9906 

ss: spurious eigenvalue 

Fig. 8 The minimum singular value versus the frequency parameter
for the clamped-free annular-like plate (R1 = 1.0, R2 = 0.4 and
e = 0.5)

Comparing the numbers of unknowns and equations, it is
obvious that the present method has a better computational
efficiency than FEM does. Table 1 shows the first eight natural
frequency parameters by using several methods. It is shown
that the natural frequency parameters obtained by the present
method are same as the analytical solutions up to four digits.
By the way, the additional terms of the Fourier series play
the role to determine which mode appears and not to affect
its corresponding eigenvalue within four digits. Specifically,
with only one term (M = 1), the present method can predict
well the eigenvalues of mode (0, 0), mode (0, 1), mode (1, 0)
and mode (1, 1). The main reason is the analytical nature of
our method.

0 2 4 6 8 10 12
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

No. of terms of Fourier series

rete
marap ycneuqer

F

mode(0,0) 

mode1(1,0) 

mode2(1,0) 

mode1(2,0) 

mode(0,1) 

mode2(2,0) mode(3,0) 

mode(1,1) 

Fig. 9 Natural frequency parameter versus the number of terms of
Fourier series for the clamped-free annular-like plate (R1 = 1.0, R2 =
0.4 and e = 0.5)

6.1.2 A circular plate with the eccentricity of e/R1 = 0.5

When the center of circular hole is shifted along x-axis to
0.5 m from the center of outer circle, the significant changes
in natural frequency and mode shape are examined here.
Figure 8 indicates the minimum singular value of the influ-
ence matrix versus the frequency parameter λ using ten terms
of Fourier series (M = 10). The multiplicity is only one
due to the lack of axial symmetry. For the first eight eigen-
modes, Fig. 9 shows the required number of terms of Fourier
series to achieve the acceptable convergence of natural fre-
quency parameter. For the mode (m, 0) in Fig. 9, two corre-
sponding modes are clearly distinguished by the subscript.
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Table 1 The first eight natural frequency parameters (λ) for a clamped-free annular-like plate with the radius of R2/R1 = 0.4 and the eccentricity
e/R1 changing from 0.0 to 0.5 by using different methods

Eccentricity Methoda 1 2 3 4 5 6 7 8

e/R1 = 0.0 1 3.6743 4.4033 4.4033 5.5981 5.5981 6.8451 6.8451 8.1231

2 3.6738 4.4034 4.4034 5.6001 5.6002 6.8498 6.8500 8.1307

3 3.6743 4.4033 4.4033 5.5981 5.5981 N/A N/A N/A

4 3.6743 4.4033 4.4033 5.5981 5.5981 6.8451 6.8451 8.1231

e/R1 = 0.1 1 3.5981 4.4071 4.5638 5.6304 5.6351 6.8610 6.8617 7.4873

2 3.5979 4.4073 4.5639 5.6325 5.6373 6.8665 6.8665 7.4926

3 3.6122 N/A 4.5854 N/A 5.6527 6.8725 N/A N/A

e/R1 = 0.2 1 3.4624 4.4180 4.8946 5.7182 5.8140 6.8495 6.9217 6.9414

2 3.4624 4.4184 4.8951 5.7201 5.8158 6.8535 6.9260 6.9457

3 3.4763 N/A 4.9141 N/A 5.8522 6.5264 N/A N/A

e/R1 = 0.3 1 3.3397 4.4342 5.0938 5.8223 6.2441 6.4615 7.0523 7.1270

2 3.3398 4.4349 5.0952 5.8235 6.2459 6.4645 7.0556 7.2200

3 3.3527 N/A 5.1063 N/A 6.2588 6.4565 N/A N/A

e/R1 = 0.4 1 3.2428 4.4539 5.0684 5.8784 6.1638 6.5758 7.2259 7.6069

2 3.2431 4.4549 5.0699 5.8796 6.1667 6.5789 7.2291 7.6138

3 3.2554 N/A 5.0809 N/A 6.1729 6.6194 N/A N/A

e/R1 = 0.5 1 3.1721 4.4753 4.9281 5.8689 6.0762 6.5875 7.3031 7.5835

2 3.1723 4.4765 4.9293 5.8704 6.0797 6.5915 7.3079 7.5903

3 3.1847 N/A 4.9428 N/A 6.0881 6.6494 N/A N/A

The mesh sizes of FEM model for the eccentricity in the range of e/a = 0.0 to 0.5 are (8008, 7788), (8122, 7902), (8068, 7848), (7812, 7596),
(7890, 7676) and (7828, 7618), respectively, where the data in the brackets denote the number of node and element for the FEM model
a Methods 1, 2, 3 and 4 denote the present method, FEM using ABAQUS, Laura [20,25] and Leissa [18] (analytical method), respectively

Fig. 10 The first seven natural frequency parameters, mode types and mode shapes for the clamped-free annular-like plate by using the present
method and FEM (R1 = 1.0, R2 = 0.4 and e = 0.5)

Subscript 1 denotes the straight diametrical nodal line, while
subscript 2 denotes the curved diametrical nodal line. Not
only do the appearances of eigenmodes not follow the rules
for the concentric case as stated above, but also the more the

number of the Fourier series terms is, the more accurate the
natural frequency parameter is. From the convergence analy-
sis, eight terms of the Fourier series are required to capture
the first eight eigenmodes. Figure 10 shows the first seven
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Fig. 11 Effect of the eccentricity e on the natural frequency parameter
for the clamped-free annular-like plate (R1 = 1.0, R2 = 0.4)

eigenvalues and eigenmodes by using the present method
and FEM and indicates excellent agreement in this eccentric
case.

6.1.3 Effect of eccentricity on the true and spurious
eigensolutions

The effect of eccentricity of e/R1 on the frequency parame-
ter is shown in Fig. 11. It shows that the repeated frequen-
cies occurring in the annular case are gradually separated
into two different values, e.g., mode1 (1,0) (straight nodal
line) and mode2 (1,0) (curved nodal line), as the eccentricity
increases due to the loss of original axial symmetry. From
viewing Fig. 9, the mode (1,1) falls into the first eight eigen-
modes when the eccentricity increases. This indicates that a
large eccentricity decrease the radial stiffness for the circular
mode. True eigenvalues depends on the eccentricity. How-
ever, the spurious eigenvalue (7.9906) is always there and
independent of the eccentricity. This finding indicates that
spurious eigenvalues are independent of the eccentricity but
depends on the radius of inner circle. In summary, the eccen-
tricity causes not only the separation of multiple eigenvalues
but also the appearing sequence of mode types.

6.1.4 Effect of boundary conditions on spurious
eigenvalues and their remedy

The case of eccentricity e/R1 = 0.2 and three different
boundary conditions ((a) clamped-free, (b) simply supported-
free and (c) free-free) are considered here. By using three
different methods (U�, UM and SVD updating formula-
tion), the minimum singular value of the influence matrix
versus the frequency parameter λ is shown in Fig. 12. Three
types of line, dash-dot, dot and solid, are used to represent
the results for the U�, UM and SVD updating formulation,
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Fig. 12 The minimum singular value versus the frequency parameter
by using three different methods (U�,UM and SVD updating formula-
tion) under three kind of boundary conditions (a clamped-free, b simply
supported-free, c free-free)

respectively, in the same figure for comparison. The U�

formulation means that both Eqs. (30) and (31) are used to
construct the influence matrix of Eq. (33) in the boundary
integral formulation. Similarly, the UM formulation adopted
both Eqs. (30) and (32). Figure 12 indicates that the spurious
eigenvalue (7.9906) is independent of the specified boundary
condition and its value happens to be the true eigenvalue of
circular clamped plate with a radius of 0.4 m. When the UM
formulation is applied to solve the same problem, similar
results are given except for the spurious eigenvalue (5.5811)
which just equals to the true eigenvalue of simply-supported
circular plate with a radius of 0.4 m. The numerical result
shows that the occurrence of spurious eigenvalue depends on
the size of the circular hole and the formulation employed.
The specified type of boundary condition and the location
of the center of the hole (i.e., eccentricity) can not change
spurious eigenvalues. Figure 12 also shows that the SVD
updating technique can successfully suppress the appearance
of spurious eigenvalue and the present method can obtain
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Table 2 The first eight frequency parameters (λ) for a simply supported-free annular-like plate with the radius of R2/R1 = 0.4 and the eccentricity
e/R1 changing from 0.0 to 0.5 by using different methods

Eccentricity Methoda 1 2 3 4 5 6 7 8

e/a = 0.0 1 2.1780 3.4506 3.4506 4.8060 4.8060 6.1049 6.1049 6.8777

2 2.1780 3.4510 3.4510 4.8078 4.8079 6.1085 6.1085 6.8814

3 2.1780 3.4506 3.4506 4.8060 4.8060 N/A N/A N/A

4 2.1780 3.4506 3.4506 4.8060 4.8060 6.1049 6.1049 6.8777

e/a = 0.1 1 2.1747 3.4537 3.4859 4.8122 4.8126 6.1056 6.1056 6.3851

2 2.1747 3.4542 3.4863 4.8141 4.8145 6.1093 6.1093 6.3878

3 2.1791 N/A 3.5004 N/A 4.8185 6.1068 6.1068 N/A

e/a = 0.2 1 2.1657 3.4629 3.5894 4.8290 4.8370 5.8969 6.1110 6.1141

2 2.1657 3.4634 3.5899 4.8307 4.8387 5.8991 6.1142 6.1176

3 2.1693 N/A 3.6040 N/A 4.8484 5.9587 N/A N/A

e/a = 0.3 1 2.1530 3.4775 3.7433 4.8501 4.9036 5.5672 6.1320 6.1463

2 2.1531 3.4779 3.7436 4.8514 4.9050 5.5692 6.1351 6.1496

3 2.1553 N/A 3.7571 N/A 4.9279 5.5801 N/A N/A

e/a = 0.4 1 2.1393 3.4961 3.8790 4.8654 5.0682 5.3981 6.1819 6.2796

2 2.1394 3.4966 3.8794 4.8663 5.0691 5.4003 6.1845 6.2823

3 2.1404 N/A 3.8886 N/A 5.1045 5.4048 N/A N/A

e/a = 0.5 1 2.1271 3.5163 3.9060 4.8639 5.2061 5.4315 6.2404 6.6531

2 2.1272 3.5170 3.9067 4.8649 5.2080 5.4337 6.2430 6.6563

3 2.1274 N/A 3.9128 N/A 5.2272 5.4424 N/A N/A

The mesh sizes of FEM model for the eccentricity in the range of e/a = 0.0 to 0.5 are (8008, 7788), (8122, 7902), (8068, 7848), (7812, 7596),
(7890, 7676) and (7828, 7618), respectively, where the data in the brackets denote the number of node and element for the FEM model
a Methods 1, 2, 3 and 4 denote the present method, FEM using ABAQUS, Laura [20,25] and Leissa [18] (analytical method), respectively

very accurate semi-analytic solutions as listed in Tables 1, 2
and 3.

6.1.5 Discussions of accuracy

The obtained eigenvalues using FEM of ABAQUS in
Tables 1, 2 and 3 are greater than the other data except for
the first eigenvalue of plate with eccentricities of 0.0 and 0.1
listed in Table 1. The effects of the mesh size of FEM model
on the frequency parameter for the annular plate subject to
clamped-free boundary condition are shown in Table 4. It is
found that the first eigenvalue approaches the exact solution
from the lower direction but the other eigenvalue approaches
the exact solution from the upper direction when the mesh
of FEM model is refined. But some eigenvalues decrease
down the exact solution when the mesh size of FEM model
still increases. For the sixth eigenvalue of the eccentricity
e/R1 = 0.2 shown in Table 1, the Laura’s data is signifi-
cantly different from the other results when a careful com-
parison is carried out. For this case, the mesh of FEM model
is refined to see the tendency of this eigenvalue. This eigen-
value changes from 6.8535 to 6.8514 when the number of
elements increases from 7788 to 13732. Furthermore, when
the number of elements eventually increasing to 29948, the
corresponding eigenvalue changes to 6.8498 which is very

close to 6.8495 predicted by using the present method. In
general, the results of the present method match better with
those of ABAQUS than those of the Laura’s method. The
same trend can be observed from Tables 2 and 3 when differ-
ent boundary conditions are considered. To our knowledge,
the present method yields more accurate eigensolutions for
the circular plate with an eccentric circular hole so far.

6.2 A circular plate with three circular holes

In order to demonstrate the generality of the present method,
a circular plate with three holes is considered as shown in
Fig. 13. The radii of holes are 0.4, 0.2 and 0.2 m and the
coordinates of the center are (0.5 m, 0), (−0.3 m, 0.4 m) and
(−0.3 m, −0.4 m), respectively, in the coordinate system with
the origin at the center of outer circle. By using the UM for-
mulation and eight terms of Fourier series (M = 8), the
minimum singular value of the influence matrix versus the
frequency parameter λ is shown in Fig. 14. The spurious
eigenvalue of 5.5811 occurs when using the UM formulation
and it is found to be the true eigenvalue of a clamped cir-
cular plate with a radius of 0.4 m. The spurious eigenvalues
of the whole plate with three holes equal to the true eigen-
values of circular plate with the radius of inner holes. The
smaller the radius is, the higher the eigenvalue is. So the spu-
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Table 3 The first eight frequency parameters (λ) for a free-free annular-like plate with the radius of R2/R1 = 0.4 and the eccentricity e/R1
changing from 0.0 to 0.5 by using different methods

Eccentricity Method 1 2 3 4 5 6 7 8

e/a=0.0 1 2.1290 2.1290 2.9242 3.4301 3.4301 4.1283 4.1283 4.6110
2 2.1291 2.1291 2.9242 3.4307 3.4307 4.1287 4.1287 4.6124
3 2.1290 2.1290 2.9242 N/A N/A 4.1283 4.1283 N/A
4 2.1290 2.1290 2.9242 3.4301 3.4301 4.1283 4.1283 4.6110

e/a=0.1 1 2.1303 2.1304 2.9099 3.4260 3.4260 4.1322 4.1924 4.6051
2 2.1304 2.1305 2.9099 3.4265 3.4265 4.1328 4.1929 4.6064

e/a=0.2 1 2.1342 2.1354 2.8745 3.4143 3.4144 4.1439 4.3690 4.5881
2 2.1343 2.1355 2.8746 3.4149 3.4150 4.1445 4.3697 4.5894

e/a=0.3 1 2.1406 2.1471 2.8327 3.3972 3.3983 4.1626 4.5569 4.5627
2 2.1407 2.1472 2.8329 3.3976 3.3988 4.1633 4.5580 4.5639

e/a=0.4 1 2.1488 2.1718 2.7969 3.3772 3.3843 4.1876 4.5291 4.5327
2 2.1489 2.1719 2.7971 3.3777 3.3847 4.1885 4.5299 4.5341

e/a=0.5 1 2.1566 2.2225 2.7795 3.3552 3.3948 4.2175 4.5010 4.5093
2 2.1568 2.2224 2.7798 3.3561 3.3940 4.2186 4.5040 4.5067

* Methods 1, 2, 3 and 4 denote the present method, FEM using ABAQUS, Laura [27] and Leissa [28] (analytical method), respectively.
The mesh sizes of FEM model for the eccentricity in the range of e/a=0.0 to 0.5 are (8008, 7788), (8122, 7902), (8068, 7848), (7812, 7596), (7890,
7676) and (7828, 7618), respectively, where the data in the brackets denote the number of node and element for the FEM model

Table 4 The effect of mesh size of FEM model on the frequency para-
meter for clamped-free annular plate with condition (R1 = 1.0, R2 =
0.4)

Mode no. (8008,7788)a (13755,13462) (29444,29005) Exact

1 3.6738 3.6741 3.6742 3.6743

2 4.4034 4.4031 4.4028 4.4033

3 4.4034 4.4031 4.4028 4.4033

4 5.6001 5.5991 5.5982 5.5981

5 5.6002 5.5991 5.5982 5.5981

6 6.8498 6.8477 6.8460 6.8451

7 6.8500 6.8477 6.8460 6.8451

8 8.1307 8.1274 8.1250 8.1231

a The mesh size of FEM model denotes (no. of node, no. of element)

rious eigenvalues corresponding to inner circle of the mini-
mum radius 0.2 m are too large to appear in the range of λ

in Fig. 14. It also demonstrates that the spurious eigenvalue
can be filtered out by using the SVD updating technique. The
same problem is also solved by using ABAQUS. The num-
bers of node and element of FEM model are 7570 and 7296,
respectively. After Comparing with the present method, the
high efficiency can also be observed for this case. Figure 15
shows the first six natural frequency parameters and modes
by using ABAQUS and the present method. Excellent agree-
ment between the results of the present method and those of
ABAQUS is observed.

7 Concluding remarks

A semi-analytical approach for solving the natural frequen-
cies and modes of the circular plate with multiple circular

R1
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R3

R4

o2o1

o4

o3

Case 2:  

Geometric data: 

R1=1m 

R2=0.4m 

R3=0.2m 

R4=0.2m 

o1=(0.0,0.0)

o2=(0.5,0.0)

o3=(-0.3,0.4)

o4=(-0.3,-0.4)

Thickness=0.002m 

Boundary conditions: 

Inner circles: free 

Outer circle: clamped  

Fig. 13 A circular plate with three circular holes
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Fig. 14 The minimum singular value versus the frequency parameter
by using the U M formulation and the SVD updating technique for a
circular clamped plate with three circular free holes (R1 = 1.0, R2 =
0.4, R3 = 0.2 and R4 = 0.2)
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Fig. 15 The first six natural frequency parameters and mode shapes for a circular clamped plate with three circular free holes by using the present
method and FEM (R1 = 1.0, R2 = 0.4, R3 = 0.2 and R4 = 0.2)

holes was proposed. Natural frequencies and modes were
determined by employing the null-field integral formula-
tion in conjunction with degenerate kernels, tensor rotation
and Fourier series. The improper integrals in the null-field
integral formulation were avoided by using the degenerate
kernels and were easily calculated through the series sum.
For the non-concentric general case, the rotated degenerate
kernels have been derived on the adaptive observer system.
Once the Fourier coefficients of boundary densities have been
determined, the corresponding mode shape can be obtained
by using the boundary integral equations for domain points.
The effects of eccentricity of the hole and type of boundary
condition on true and spurious eigenvalues are examined. The
natural frequencies and mode shapes for multiply-connected
plate problems with multiple circular holes have been solved
easily and efficiently by using the present method in compar-
ison with the available approximate analytic solutions and
FEM results using ABAQUS. Excellent agreement between
the results of the present method and those of ABAQUS is
observed. The value of spurious eigenvalue depends on the
radius of the inner hole and the formulation. The specified
boundary condition and the location of the hole influence
the true eigenvalue. Finally, the SVD technique of updating
terms can successfully suppress the appearance of spurious
eigenvalue and the present method can obtain very accurate
semi-analytic solutions. To avoid the contamination of spuri-
ous eigenvalues, we recommend the SVD updating technique
to obtain all the eigenvalues instead of SVD only in real
computation. As can be seen from the numerical results, the
present method provides more accurate semi-analytic eigen-
solutions for the circular plate with an eccentric circular hole
or multiple holes so far.
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