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A Mechanical Fourier Series
Generator: An Exact Solution
A vibrating system is constructed such that its natural frequencies are exact integer
multiples of a base frequency. This system requires little energy to produce a periodic
motion whose period is determined by the base frequency. The ability to amplify integer
multiples of a base frequency makes this device an effective mechanical Fourier series
generator. The proposed topology makes use of symmetry to assign poles and zeros at
optimal frequencies. The system zeros play the role of suppressing the energy at certain
frequencies while the poles amplify the input at their respective frequencies. An exact,
non-iterative procedure is adopted to provide the stiffness and mass values of a discrete
realization. It is shown that the spatial distributions of mass and stiffness are smooth;
thus it is suggested that a continuous realization of a mechanical Fourier series genera-
tor is a viable possibility. A laboratory experiment and numerical examples are briefly
described to validate the theory. �DOI: 10.1115/1.3085892�
Introduction
Mechanical structures consume the smallest amount of energy

or a given displacement when they are operated at resonance
1,2�. Indeed, many engineering designs make use of an oscillator
o produce sinusoidal motions whereby the stiffness and the mass
istribution are tuned such that a particular natural frequency co-
ncides with the desired excitation and response frequencies.

A problem arises when one wishes to design an energy efficient
echanical system that produces periodic, nonsinusoidal motion

escribed by a Fourier series of the form

x�t� = �
n

Cn cos�n�0t + �n� �1�

here n can attain even or odd values �or both� depending on the
otion that one seeks to represent. In any case, the series is finite

nd the highest term �highest harmonic� equals N+1.
Equation �1� describes a periodic function, which is completely

etermined by the coefficients Cn and �n and it describes the
esired oscillation pattern of a structural element within an elastic
tructure. The number of terms, N+1, is related to the number of
egrees of freedom in the vibrating system, which is shown sche-
atically in Fig. 1. Indeed, from Fig. 1 it is clear that this work

estricts itself to systems whose topology consists of a series of
asses and springs. This topology has been studied extensively in

iterature, and this work is based on some previously obtained
esults, e.g., Refs. �3,4�. Structural modifications leading to the
ssignment of zeros and natural frequencies have been dealt with
n the past �5–7�, but these methods have limited capabilities be-
ause they are implemented on existing structures with a prede-
ermined topology.

Although damping is neglected in the present analysis, it is
mplicitly assumed that the final structure does contain a very
mall amount of damping. This level of damping is sufficiently
mall to affect the natural frequencies by a negligible amount and
till it restricts the vibration amplitudes even when the excitation
requencies coincide with the natural frequencies. Damping does
ause a phase shift, but this can be rectified by pre-adjusting the
xcitation’s phase �14�.

A structure that draws a minimal amount of energy, or equiva-
ently, uses the smallest possible magnitude of excitation levels,
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should be compliant at the frequencies n�0, and therefore these
must all be natural frequencies, i.e., �n=n�0 �2�. It is possible to
set the natural frequencies at any multiple of �0, but for the sake
of brevity, only odd multiples are discussed in this work and in the
examples.

The task of designing a mechanical structure, which is compli-
ant at the frequencies n�0, proves generally difficult, but for a
class of discrete systems this problem seems to have been solved
�3,4�. Often, it is also necessary to assign the frequencies �5–7� at
which the system is not compliant, i.e., the system zeros �5,8� or
antiresonance frequencies �9�, so that the designed structure is
robust and it attenuates certain spectral contents.

The problem at hand is an inverse problem where the relevant
parameters, e.g., mass and stiffness, need to be recovered from
some required spectra.

In this work, the proposed topology consists of a series of
masses and springs that produce linear or angular �torsional� mo-
tion. This topology has been studied in the past and it gives rise to
a tridiagonal stiffness matrix often addressed as Jacobi matrix �4�.
Reference �10� has coined the term oscillatory matrices, and nu-
merous authors, some of which are cited in a survey �3�, and a
book �4�, following their footsteps, have addressed the reconstruc-
tion of Jacobi matrices and mass and stiffness values from a given
desired spectrum. A much cited work by Boley and Golub �3�
surveys the connections between the theory of orthogonal polyno-
mials, in particular, Sturm sequence �based on the Sturm theorem
dated 1835�, and between matrix eigenvalue problems. The well
known Lanczos algorithm �11� presenting the important matrix
algorithm is the main tool in performing this reconstruction. Ref-
erence �12� has made an important contribution with which the
Jacobi matrix can now be reconstructed from a given spectrum
under two interlacing spectra, see also Ref. �10�. A symmetric
topology that gives rise to persymmetric matrices �see Refs.
�13,4�� conforms to the abovementioned matrix reconstruction
theories. These theories are being used in the sequel to develop a
matrix reconstruction algorithm from which the topology of the
vibrating system is found. The individual values of mass and
spring elements are computed, so a physical system can thus be
formed.

The present theory and its derivatives were used to produce
working systems �14,15�. At that time, the theory was not fully
developed and therefore this paper fills the gap.

This paper begins with an introduction and a survey. Section 2
provides a description of the problem and develops the necessary
theory and main ideas while indicating the relevant references. In

Sec. 3, the inverse problem’s solution stages are outlined and ref-
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rences are being made to the theory and to existing algorithms
hat were used. Some computer code and pseudocode implement-
ng the algorithm are provided too. Several examples are de-
cribed in Sec. 4 from small discrete systems through a system
ith many degrees of freedom to a continuous structure that was

ealized in the laboratory.

Problem Definition and Proofs
Consider a symmetric vibrating system consisting of a spring
ass series, as shown in Fig. 1. The system has 2N+1 degrees of

reedom and it is symmetric around the center mass �mN+1�.
The steady state response, at the middle mass, to sinusoidal

xcitation, f =Q0 sin �t, acting at the same point, can be written
s �16,1�

xN+1�t� = eN+1
T �K − �2M�−1eN+1Q0 sin �t=

�

����Q0 sin �t �2�

here eN+1 is the �N+1�th column of the identify matrix, K ,M
R�2N+1���2N+1� are the stiffness and mass matrices, ���� is the

oint receptance at the middle mass, and Q0 is the force ampli-
ude.

Having predetermined values for the center mass mN+1 and for
he basis frequency �0, the current problem seeks the mass �mi�i=1

N

nd stiffness �ki�i=1
N+1 elements for which the receptance has the

orm

���� = �0

�
n=1

N

��2n�2�0
2 − �2�

�
n=1

N+1

��2n − 1�2�0
2 − �2�

�3�

Examination of Eq. �3� reveals that the receptance becomes
nfinitely large at odd multiples of the basis frequency, i.e., at
iscrete excitation frequencies where �= �2n−1��0. In addition,
he receptance becomes zero at the midpoint between the maxima,
.e., at excitation frequencies where �=2n�0. �0 is a scaling fac-
or depending on the force and sensor transducers.

It turns out that this goal can be achieved by employing known
lgorithms that assign the natural frequencies of two subsystems
f Fig. 1. These subsystems are shown in Fig. 2.

This decomposition is central to the construction of the “me-
hanical Fourier series generator” �MFSG�, as described in Sec.
.1.

Fig. 1 Topology of the spring mass series

ig. 2 Right: A dissected left half of Fig. 1 with N+1DOF; left:

eft half of Fig. 1, clamped at the middle thus leaving N DOF
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2.1 Decomposition of the Symmetric System:
Persymmetry. In this subsection, it is shown that the spectra of
the subsystems in Fig. 2 determine the poles and zeros of the
receptance ����. It will be shown that one can assign the spectra
of these two subsystems to produce the required frequency re-
sponse, which is given in Eq. �3�.

Owing to the symmetry of Fig. 1, the mass and stiffness matri-
ces in Eq. �2� can be decomposed into submatrices. These subma-
trices are a manifestation of Fig. 2. As proved below, they are
jointly equivalent to the system in Fig. 1.

Define JN�RN�N as a reflection matrix having ones on the
secondary diagonal �13�. The operation JNx reverses the order of
the elements in the vector—x.

It can be shown that both the mass and stiffness of Fig. 1 are
persymmetric, i.e.,

K = � K0 − kN+1eN 0N

− kN+1eN
T 2kN+1 − kN+1eN

TJN

0N − kN+1eNJN JNK0JN
	 ,

�4�

M = �M0 0 0N

0 mN+1 0

0N 0 JNM0JN
	

Here 0N is a N�N zero matrix.
The operations K=J2N+1KJ2N+1 and M =J2N+1MJ2N+1 flip both

matrices around the two main diagonals showing that they are
indeed persymmetric. Equation �4� makes use of partial mass and
stiffness to represent the left system in Fig. 2:

M0 = �
m1 0 ¯ 0

0 m2 � ]

] � � 0

0 ¯ 0 mN

	 ,

�5�

K0 = �
k1 + k2 − k2 ¯ 0

− k2 k2 + k3 � ]

] � � − kN

0 ¯ − kN kN + kN+1

	 � RN�N

With these definitions it is now possible to develop an expression
for the receptance.

From matrix and linear systems theories it is possible to write

���� = eN+1
T �K − �2M�−1eN+1 =

eN+1
T adj�K − �2M�eN+1

det�K − �2M�
�6�

or, using Eq. �4�,

���� =
det�K0 − �2M0�det�JN+1K0JN+1 − �2JN+1M0JN+1�

det�K − �2M�
�7�

Now, since JN+1 is orthonormal, and due to persymmetry, Eq. �7�
can be simplified into

���� =
det�K0 − �2M0�2

det�K − �2M�
�8�

Define �n , 	n as the solutions of

�K − �nM�	n = 0, n = 1, . . . ,2N + 1 �9�

And 
n as the solutions of

�K0 − 
nM0�an = 0, n = 1, . . . ,N �10�
It is now possible to express the receptance in terms of the
natural frequencies of the two subsystems in Fig. 2:
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���� = �0

�
n=1

N

�
n − �2� �
n=1

N

�
n − �2�

�
n=1

2N+1

��n − �2�
�11�

aving established these relations it remains to assign


n = 2n�0, n = 1, . . . ,N
�12�

�n = n�0, n = 1, . . . ,2N + 1

ith this assignment, some of the poles in Eq. �11� cancel out
ith the zeros to yield Eq. �3�.
It is now required to study the eigenvalues and eigenvectors of

he vibrating system whose mass and stiffness are defined in Eqs.
4� and �5� and to find a method to assign Eq. �12�.

2.2 Eigenvectors and Eigenvalues of a Symmetric Spring
ass Series. It will now be shown how the symmetric system in

ig. 1 can be represented by the two systems in Fig. 2. Defining a
ransformation matrix L,

L =
1

2�IN 0 IN

0 1 0

JN 0 − JN
	 �13�

he mass and stiffness can be transformed in the spirit of Ref. �13�
nto

K̃=
�

LTKL = � K0 − kN+1eN 0

− kN+1eN
T kN+1 0

0 0 K0
	 ,

�14�

M̃ = LTML = �
M0 0 0

0
1

2
mN+1 0

0 0 M0

	
he transformed matrices have two sets of eigenpairs. The first
ne, �� ,a�, is found from the lower diagonal block, providing N
igenvalues, via


M0a = K0a, a � RN �15�

Since the eigenvalues in Eq. �15� are distinct �10�, the N related
igenvectors must be a linear combination of the third column of
q. �13� and therefore these eigenvectors of Eq. �9� have the form

	 = � I 0 I

0 1 0

JN 0 − JN
	�0

0

a
� = � I

0

− JN
�a = � a

0

− JNa
� �16�

Equation �16� clearly shows that these modes have a nodal
oint at the middle mass and are antisymmetric, i.e., 	�N+1�=0
nd 	�i�=−	�N+2− i�.

The eigenvalues, being a subset of those obtained from Eq. �9�,
elong to the eigenvectors with a nodal point at the middle, for
hese

�2n = 
n, n = 1, . . . ,N �17�
.e., the even numbered eigenvalues of Eq. �9�.

ournal of Vibration and Acoustics

ded 15 May 2009 to 140.121.146.148. Redistribution subject to ASM
The remaining N+1 eigenpairs are the solution of the remain-
ing diagonal blocks in Eq. �14�:

 K0 − kN+1eN

− kN+1en
T kN+1

��b

c
� = ��M0 0

0
1

2
mN+1 	�b

c
� ,

�18�
b � RN, c � R

As before, the eigenvectors are a linear combination of the two
leftmost columns of Eq. �13�,

	 = � I 0 I

0 1 0

JN 0 − JN
	�b

c

0
� = � b

c

JNb
� �19�

Equation �19� shows that these modes are symmetric, i.e., 	�i�
=	�N+2− i� , i=1, . . . ,N+1.

To summarize, the recent development stated that the system in
Fig. 1 �and Eq. �9�� has two types of eigenvectors �modes of
vibration�. There are N antisymmetric modal vectors for which the
center mass does not move; these have the eigenvalues denoted by

n. In addition, there are N+1 eigenvectors that are symmetric
around the center mass; these are denoted by �2n−1. Both are
eigenpairs of the mass and stiffness in Eq. �4�. This fact reported
in the past leads to the desired form of the receptance.

Now, using Eq. �17�, it can be shown that several terms cancel
out in Eq. �11� to yield

���� = �0

�
n=1

N

�
n − �2�

�
n=1

N+1

��2n−1 − �2�
= �0

�
n=1

N

��2n − �2�

�
n=1

N+1

��2n−1 − �2�
�20�

Enforcing Eq. �12�, Eq. �20� will become identical to the desired
form, i.e., to Eq. �11�.

It is worth mentioning that the even eigenvalues are zeros of the
transfer function in this case.

Recalling the fact that 
n �=�2n� and �2n−1 �strictly� interlace
�4�, it is indeed possible to assign the desired values to the natural
frequencies, as indicated in Eq. �12�. This subproblem has already
been solved in literature �12,3�, and the algorithm with which the
particular values of this problem are obtained is outlined below.
The algorithm is implemented in a MATLAB™ program that makes
use of symbolic computation and is provided in the Appendixes.

3 Solving the Inverse Problem
Having established that the proposed topology in Fig. 1 can

indeed produce the desired frequency response once the matrices
in Eq. �4� are assigned the desired eigenvalues, it now remains to
find the mass and stiffness elements for which these conditions
exist.

Denoting

K1=
� K0 − kN+1eN

− kN+1eN
T kN+1

�, M1=
��M0 0

0
1

2
mN+1 	 � R�N+1���N+1�

�21�

by defining

	 = M1
−1/2u �22�

and substituting into Eq. �9�, an equivalent Jacobi �tridiagonal�
matrix B with identical eigenvalues to Eq. �9� can be defined

�3,4,12� as
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B=
�

M1
−1/2K1M1

−1/2 = �
a1 − b1

− b1 a2 − b2

− b2 a3 �

� �

	 � R�N+1���N+1�

�23�

here �see Ref. �4��

K1 = ET�
k1 0 ¯ 0

0 k2 � ]

] � 0

0 ¯ 0 kN+1

	E, E=
��

1 − 1 0 0

0 1 − 1 0

0 0 1 �

0 0 0 �

�
�24�

bserving that M0 , K0 can be obtained from M1 , K1 by deleting
he last row and column, the method that reconstructs B and the
ystem in Fig. 1 is, in fact, available in literature �3,12,4�.

The reconstruction method makes use of pre-assigned values
�n=n�0 , n=1, . . . ,2N+1�, mN+1, and �0.

The first step reconstructs the �N+1�th left eigenvector of B, as
xplained below.

Use is being made of the identity �see proof in Appendix A and
ef. �4��

ui
2�N + 1� =

�
k=1

N

��2i−1 − 
k�

�
k=1

k�i

N+1

��2i−1 − �2k−1�
, i = 1, . . . ,N + 1 �25�

n the present case, this expression can be simplified into

ui
2�N + 1� =

�
k=1

N

��2i − 1�2�0
2 − 4k2�0

2�

�
k=1

k�i

N+1

��2i − 1�2�0
2 − �2k − 1�2�0

2�

=

�
k=1

N

��2i − 1�2 − 4k2�

�
k=1

k�i

N+1

��2i − 1�2 − �2k − 1�2�
�26�

t is important to observe that ui
2�N+1� is independent of �0.

quation �26� remains unchanged as long as the eigenvalues are
n integer multiple of �1.

3.1 Reconstruction Algorithm. The reconstruction algorithm
onsists of three steps.

�i� Given �0 , N, use Eq. �26� to compute ui�N+1�, i
=1, . . . ,N+1.

�ii� Run the Lanczos algorithm, described in Appendix B, to
retrieve B.

�iii� Run the algorithm described below to recover M and K
and mi , ki.

3.1.1 Algorithm to Recover M and K From B . Define

P � diag�p� = diag�
m1

m2 ¯


mN+1/2 �T � R�N+1���N+1�

�27�
t can be shown that �4�

31012-4 / Vol. 131, JUNE 2009
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Bp =
k1


m1

e1 �28�

Solving Bt=e1 for t, it is possible to obtain a vector proportional
to p:

t =

m1

k1
�
m1


m2 ¯

mN+1/2 �T =


m1

k1
pT �29�

Squaring Eq. �29�,

m1

k1
2 M1 = �diag t�2 �30�

Ignoring the scaling factor for now, one can combine the outcome
of Eq. �30� with Eq. �24� to compute

�diag t�B�diag t� =
m1

k1
2 K1 �31�

Having recovered M1 ,K1, up to a scaling factor, Eq. �4� can be
used to construct M and K.

The individual but scaled springs are computed from Eq. �24�
via

�
�1

�2

�

�N+1

	 = E−TK1E−1 �32�

Now, the scaling factor is eliminated by assigning values for the
middle mass and the base frequency of m̄N+1 and �̄0.

The final values of the mass and spring elements, m̄i , k̄i, are
computed with

m̄i = ti
2 m̄N+1

2tN+1
2 , i = 1, . . . ,N, k̄i = �i

�̄0
2

2tN+1
2 , i = 1, . . . ,N + 1

�33�
The entire calculation process is formulated in a MATLAB™ pro-
gram provided in the Appendixes.

4 Solving the Inverse Problem: Examples
Consider using the proposed algorithm to produce an approxi-

mation of a square-wave-like motion by driving the mechanical
system at several natural frequencies simultaneously. The trun-
cated Fourier series representation of a square wave is

xN+1�t� = �
n=1

N+1
sin�2n − 1��0t

�2n − 1�
�34�

Having frequency terms at odd multiples of the basis frequency,
it is possible to employ the proposed algorithm with a different
number of terms. Sample solutions are tabulated below.

The eigenpairs for the case where 2N+1=5, as computed by

the program in the Appendixes, are
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diag � = �0
2 diag�1 22 32 42 52 � ,

�35�

� =�
1 −

3

2
−

9

4
1 1

4

3
− 1 1 − 2 − 4

10

7
0

5

2
0 6

4

3
1 1 2 − 4

1 −
3

2
−

9

4
− 1 1

�
t can be observed from Eq. �35� that the eigenvectors behave as
xpected, and the odd numbered ones contain a nodal point at the
iddle. It is also possible to examine the frequency response of

he reconstructed system to inspect the locations of poles and
eros.

Figure 3 indeed shows that the reconstructed structure has
trong amplification levels at odd multiples of the basis frequency
nd complete attenuation at even multiples. The computed re-
ponse agreed exactly with the desired form in Eq. �3� and with
q. �20�. The outcome of this reconstruction is examined for sev-
ral cases in Table 1.

4.1 Toward a Continuous Mechanical Fourier Generator.
n order to study the topology of a MFSG when the number of
erms approaches infinity, the algorithm in Appendix B was run
ith N=12 �total 2N+1=25DOF�.
The stiffness and mass distributions along the structure seem

mooth in this case �e.g., Fig. 4�, as they appear for any realization
ith a large number of DOF. The smoothness of mass and stiff-
ess distributions could possibly suggest that a continuous struc-
ure having the same properties can be realized.

To illustrate the topology and shape of the MFSG in this case, it
as realized numerically by a conceptual torsional system. The
asses are represented by the displacement of mass-balls from the

xis of rotation, and the stiffness is inversely proportional to the
pacing between the mass elements �see Eq. �34��. Two eigenvec-
ors are depicted in Fig. 5 to demonstrate the spatial behavior of
his system.

Figure 6 visually demonstrates the smooth distribution of mass.

ig. 3 Frequency response magnitude for a 2N+1=5DOF
tructure scaled for �0=15,000 Hz
The response to torque excitation at the middle mass has, in this

ournal of Vibration and Acoustics
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case, evenly spaced natural frequencies, as shown in Fig. 7. The
zeros appear at even multiples of first natural frequency.

Numerical and analytical verifications have shown that the pro-
posed algorithm works as expected and that a system with a large

Table 1 Values of springs and masses for the mechanical Fou-
rier series generators supporting Eq. „34…

2N+1 3 5 7

m1

mN+1

6

5

10

7

700

429
m2

mN+1

1
15

14

350

297
m3

mN+1

1
28

27
k1

�0
2mN+1

9

5

25

7

2450

429
k2

�0
2mN+1

3 45

7

350

33
k3

�0
2mN+1

15

2

350

27
k4

�0
2mN+1

14
Fig. 4 Stiffness and mass elements for a 25DOF MFSG
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umber of degrees of freedom has smooth distributions of mass
nd stiffness.

To conclude the examples, a microscale realization of the
FSG is described.

4.2 Micromechanical Realization. A miniature system made
f silicon has been designed and manufactured using micro elec-
romechanical systems �MEMS� manufacturing techniques
15,17�. The structure operates in torsion and it is driven by means
f a split electrode acting under the middle mass to create the
xcitation torque. A possible application of this device is to form
n optical scanning mirror, as described in Ref. �14�.

ig. 5 Antisymmetric and symmetric eigenvectors of a 25DOF
FSG

Fig. 6 Pictorial realization of a 25DOF MFSG
Fig. 7 Frequency response amplitude of a 25DOF MFSG

31012-6 / Vol. 131, JUNE 2009
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Modeling the springs as rectangular cross-section torsional
beams and the masses as rectangular rigid plates with the same
thickness as the beam yields the following expressions �18� for the
stiffness and mass elements:

ki =
cGhi

3t

Li
, mi =

aibit��bi
2 + t2�

12
�36�

where c is the warping function correction coefficient �18�, G is
the material shear module, hi is the individual beam’s cross-
section width, t=30
 is the structure’s thickness, Li is the indi-
vidual beam length, ai is the plate length �parallel to rotation axis�,
bi is the plate width �perpendicular to the rotation axis�, and � is
the material density.

The structure is designed according to Eq. �36� and using the
proposed algorithm under the constraints that �0=15,000 Hz and
the center mass is m3=500
�500
��� t.

A photograph of the structure, taken under a microscope with
the indication of the main dimensions, is shown in Fig. 8.

The structure was simulated by a finite element �FE� model
created by the structural dynamics toolbox in MATLAB™ �19�. Two
mode shapes that are plotted in Fig. 9 demonstrate that the struc-
ture does behave as a discrete 5DOF system and the rectangular
plates do remain rigid.

Examining the left part of Fig. 9 it can be seen that the central
mass does not move at this frequency �4�0� despite the fact that
the excitation operates at the same location. The right part of the
figure shows an eigenvector �5�0� that is symmetric.

Finally, a more visual validation showing that no other dynam-
ics affect the MFSG uses a comparison of the computed and mea-
sured frequency response functions in Fig. 10.

Clearly, the fabricated device shows a near perfect behavior and
it agrees well with the simulated model. The accuracy of the ob-
tained natural frequencies is affected by manufacturing tolerances,
but still an agreeable accuracy was obtained here. The problem of
accommodating manufacturing tolerances is treated in some detail
in Ref. �15�. More details about the manufacturing process are
provided in Ref. �17�.

5 Conclusion
An inverse problem allowing designers to create vibrating

structures that can produce a periodic nonsinusoidal response with
small power consumption was described. The proposed structure
requires a small excitation torque and power as it amplifies all the
discrete spectral lines that appear in the response while attenuat-
ing other spectral contents. In addition to setting the natural fre-
quencies at desired locations, the algorithm chooses frequencies
where the excitation would be attenuated; these frequencies �even
multiples� often appear in electrostatic and electromagnetic sys-
tems as parasitic terms. It was demonstrated that the algorithm
leads to mechanical systems having smooth distributions of mass
and stiffness when the number of degrees of freedom becomes
high and it suggests that a continuous implementation can be a

Fig. 8 Photograph of a miniature DFG
viable option. A small micromechanical device was manufactured
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ccording to the present algorithm proving the theory, thus show-
ng possible applications as an optical scanning device.

ppendix A: Proof of Eq. (25)
This appendix proves Eq. �25� in a slightly different way than

revious references �i.e., Refs. �12,4��.
Considering the eigenvalues of M1 ,K1 can be expressed with

ig. 10 Measured and computed by finite element and fre-
uency response amplitude

ig. 9 Antisymmetric „left… and symmetric „right… modes of the
iniature structure FE model
q. �24� as
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��iI − B�ui = 0 �A1�

Since B is symmetric, U= �u1 u2¯uN+1��R�N+1���N+1� is or-
thogonal, and thus we have UTU= I and U−1=UT. U contains the
eigenvectors of B as its columns.

Using the spectral decomposition of B, it is possible to express
the resolvent as

��iI − B�−1 = ��iI − UUT�−1 = �U��iI − �UT�−1 = U��iI − �−1UT

�A2�

with

��iI − B�−1 =
1

��iI − B�
adj��iI − B� �A2��

One can write

adj��iI − B� = ��iI − B���iI − B�−1 = � �
k=1

N+1

��i − �k��U��iI − �−1UT

�A3�

or

adj��iI − B� = � �
k=1

N+1

��i − �k����
p=1

N+1
1

��i − �p�
upup

T� �A4�

and

adj��iI − B� =��
p=1

p�i

N+1

�
k=1

k�i

N+1

��i − �k�

��i − �p�
upup

T� = �
k=1

k�i

N+1

��i − �k�uiui
T

�A5�

Now treat the �N+1,N+1�th element of the left hand side of Eq.
�A5�. Indeed the �N+1,N+1�th element of adj��iI−B� is com-
puted by taking the determinant of this matrix with the �N+1�th
row and column removed and therefore let B0 consist of the first N
rows and columns of B. Thus,

��iI − B0� = �
k=1

N

��i − 
k� �A6�

Substituting Eq. �A6� into �N+1,N+1�th entry of Eq. �A5�,

�
k=1

N

��i − 
k� = �
k=1

k�i

N+1

��i − �k�ui
2�N + 1� �A7�

and finally the

ui
2�N + 1� =

�
k=1

N

��i − 
k�

�
k=1

k�i

N+1

��i − �k�
, i = 1, . . . ,N + 1 �A8�

Relating the eigenvalues of B and B0 to those of M ,K it is clear
that Eq. �A8� is identical to Eq. �25�. Therefore Eq. �A8� can be
used to retrieve ui

2�N+1�, which is the �N+1�th column of L
=UT �also known as the left eigenvector matrix or the reciprocal
base�.

Appendix B: MATLAB Programs
This appendix lists several MATLAB™ programs that realize the

proposed algorithm. One should run part i that calls other subpro-

grams that listed below.
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%Part i–Complete reconstruction—calls other sub-programs
=2; % Fourier series would have 2N+1 terms

ambda2n=sym��1:2 :2�N+1� . ∧2�; %N+1 poles—at odd multiples
u=sym��2:2 :2�N� . ∧2�; % N zeros—at even multiples

u_N�=compute_un�lambda2n,mu�; % compute vector
bn,an,x�=reverse_lanczos�u_N, lambda2n�; % compute diagonals of Jacobi matrix
=diag�an�-diag�bn,1�-diag�bn,−1�; % form Jacobi matrix

M,K,m0,k0�=jacobi_ to_mk�B�; % convert to M,K

m_Np1=1; �0=2�pi�15000; %scaling, central mass m�N+1� and w0 �Rad/s�
temp=M�N+1,N+1�; M=M�m0�N+1� / temp; K=K��0∧2 / temp; % apply scaling

Phi w2�=eig�M\K�; % compute eigenvalues/vectors to verify
requencies_Hz=sqrt�diag�w2�� /2 /pi % convert eignevalues to frequencies in Hz

% Part ii—implement Eq. �25�
unction �u_N�=compute_un�lambda,mu�
p1=length�lambda�; %N+1, no. of eigenvalues in M1, Eq. �21�
or i=1:Np1
=1:Np1; j�i�= � �; % indices vector, enforce j� � i
_N_squared2�i�=prod�mu-lambda�i�� /prod�lambda�j�-lambda�i��;
nd
_N=sqrt�u_N_squared2�;

% Part iii - reconstruct the B-Jacobi matrix using the
Lanczos algorithm �4� �Eq. 4.2.12-Eq. 4.2.17�

unction �bn,an,x�=reverse_lanczos�u_N, lambda�

p1=length�lambda�; N=Np1−1; %N+1 and N, eigenvalues of B
=sym �zeros�Np1��;
�: ,Np1�=u_N�:�; %make vector a column �u_N�;
n�Np1�=sum�lambda.�u_N. ∧2�; %x�N�.��diag�p��x�N�
N=an�Np1��x�: ,Np1�-diag�lambda��x�: ,Np1�;
n�N�=sqrt�sum�dN. �dN��;
�: ,N�=dN /bn�N�;
or i=N:−1:2

an�i�=x�: , i�.��diag�lambda��x�: , i�;
d=an�i��x�: , i�-diag�lambda��x�: , i�-bn�i��x�: , i+1�;
bn�i−1�=sqrt�sum�d. �d��;
x�: , i−1�=d /bn�i−1�;

nd
n�1�=x�: ,1� . ��diag�lambda��x�: ,1�;

% Part iv–convert Jacobi matrix to Mass and Stiffness of Fig. 1
unction �M,K,m0,k0�=jacobi_ to_mk�B�

M,K–realization of Fig. 1
m0,k0–reconstructed mass and stiffness elements

p1=size�B,1�; N=Np1−1;
=inv�B�;
= t�1, :�.’; % see Eq. �29�

K=sym�zeros�2�N+1��;
M=sym�zeros�2�N+1��;
M�1:Np1,1 :Np1�=diag�t . ∧2�; % Eq. �30�

% see Fig. 2 and Fig. 1—make M from two halves
�Np1:2�Np1−1,Np1:2�Np1−1�=M�Np1:2�Np1−1,Np1:2�Np1−1�+diag�flipud�t . ∧2��;

K0=diag�t��B�diag�t�; % Eq. �31�
�1:Np1,1 :Np1�=K0;
�Np1:2�Np1−1,Np1:2�Np1−1�=K�Np1:2�Np1−1,Np1:2�Np1−1�+K0�Np1:−1:1 ,Np1:−1:1�;
% compute spring and mass elements

E1=triu�ones�Np1��; % inverse of E % see Eq. �24�

0=E1�K0�E1.�;
%K0=E��Kv�E--�Kv=inv�E.���K0�inv�E�; Eq. �24�
inverted

0=diag�k0�; % diagonal of springs
0= �k0;k0�end:−1:1��; % complement second half, Fig. 2→Fig. 1
0=sym�zeros�2�N+1,1��;
0�1:Np1�=t . ∧2;m0�Np1:end�=m0�Np1:end�+flipud�t . ∧2�;

• Comment:
he same algorithm can support Fourier series consisting of both odd and even multiples
f the basis frequency. As an example, use these lines to obtain the desired natural
requencies
=2; % choose any even value for N

ambda=sym���1:1 :N+1�� . ∧2�; % poles
u=sym���3 /2:1 :N+1�� . ∧2�; % zeros
31012-8 / Vol. 131, JUNE 2009 Transactions of the ASME
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