# **Izhak Bucher**

Mechanical Engineering, Technion, Haifa 32000, Israel e-mail: bucher@technion.ac.il

# A Mechanical Fourier Series Generator: An Exact Solution

A vibrating system is constructed such that its natural frequencies are exact integer multiples of a base frequency. This system requires little energy to produce a periodic motion whose period is determined by the base frequency. The ability to amplify integer multiples of a base frequency makes this device an effective mechanical Fourier series generator. The proposed topology makes use of symmetry to assign poles and zeros at optimal frequencies. The system zeros play the role of suppressing the energy at certain frequencies while the poles amplify the input at their respective frequencies. An exact, non-iterative procedure is adopted to provide the stiffness and mass values of a discrete realization. It is shown that the spatial distributions of mass and stiffness are smooth; thus it is suggested that a continuous realization of a mechanical Fourier series generator is a viable possibility. A laboratory experiment and numerical examples are briefly described to validate the theory. [DOI: 10.1115/1.3085892]

# 1 Introduction

Mechanical structures consume the smallest amount of energy for a given displacement when they are operated at resonance [1,2]. Indeed, many engineering designs make use of an oscillator to produce sinusoidal motions whereby the stiffness and the mass distribution are tuned such that a particular natural frequency coincides with the desired excitation and response frequencies.

A problem arises when one wishes to design an energy efficient mechanical system that produces periodic, nonsinusoidal motion described by a Fourier series of the form

$$x(t) = \sum_{n} C_n \cos(n\omega_0 t + \beta_n)$$
(1)

where *n* can attain even or odd values (or both) depending on the motion that one seeks to represent. In any case, the series is finite and the highest term (highest harmonic) equals N+1.

Equation (1) describes a periodic function, which is completely determined by the coefficients  $C_n$  and  $\beta_n$  and it describes the desired oscillation pattern of a structural element within an elastic structure. The number of terms, N+1, is related to the number of degrees of freedom in the vibrating system, which is shown schematically in Fig. 1. Indeed, from Fig. 1 it is clear that this work restricts itself to systems whose topology consists of a series of masses and springs. This topology has been studied extensively in literature, and this work is based on some previously obtained results, e.g., Refs. [3,4]. Structural modifications leading to the assignment of zeros and natural frequencies have been dealt with in the past [5–7], but these methods have limited capabilities because they are implemented on existing structures with a predetermined topology.

Although damping is neglected in the present analysis, it is implicitly assumed that the final structure does contain a very small amount of damping. This level of damping is sufficiently small to affect the natural frequencies by a negligible amount and still it restricts the vibration amplitudes even when the excitation frequencies coincide with the natural frequencies. Damping does cause a phase shift, but this can be rectified by pre-adjusting the excitation's phase [14].

A structure that draws a minimal amount of energy, or equivalently, uses the smallest possible magnitude of excitation levels, should be compliant at the frequencies  $n\omega_0$ , and therefore these must all be natural frequencies, i.e.,  $\omega_n = n\omega_0$  [2]. It is possible to set the natural frequencies at any multiple of  $\omega_0$ , but for the sake of brevity, only odd multiples are discussed in this work and in the examples.

The task of designing a mechanical structure, which is compliant at the frequencies  $n\omega_0$ , proves generally difficult, but for a class of discrete systems this problem seems to have been solved [3,4]. Often, it is also necessary to assign the frequencies [5–7] at which the system is not compliant, i.e., the system zeros [5,8] or antiresonance frequencies [9], so that the designed structure is robust and it attenuates certain spectral contents.

The problem at hand is an inverse problem where the relevant parameters, e.g., mass and stiffness, need to be recovered from some required spectra.

In this work, the proposed topology consists of a series of masses and springs that produce linear or angular (torsional) motion. This topology has been studied in the past and it gives rise to a tridiagonal stiffness matrix often addressed as Jacobi matrix [4]. Reference [10] has coined the term oscillatory matrices, and numerous authors, some of which are cited in a survey [3], and a book [4], following their footsteps, have addressed the reconstruction of Jacobi matrices and mass and stiffness values from a given desired spectrum. A much cited work by Boley and Golub [3] surveys the connections between the theory of orthogonal polynomials, in particular, Sturm sequence (based on the Sturm theorem dated 1835), and between matrix eigenvalue problems. The well known Lanczos algorithm [11] presenting the important matrix algorithm is the main tool in performing this reconstruction. Reference [12] has made an important contribution with which the Jacobi matrix can now be reconstructed from a given spectrum under two interlacing spectra, see also Ref. [10]. A symmetric topology that gives rise to persymmetric matrices (see Refs. [13,4]) conforms to the abovementioned matrix reconstruction theories. These theories are being used in the sequel to develop a matrix reconstruction algorithm from which the topology of the vibrating system is found. The individual values of mass and spring elements are computed, so a physical system can thus be formed.

The present theory and its derivatives were used to produce working systems [14,15]. At that time, the theory was not fully developed and therefore this paper fills the gap.

This paper begins with an introduction and a survey. Section 2 provides a description of the problem and develops the necessary theory and main ideas while indicating the relevant references. In Sec. 3, the inverse problem's solution stages are outlined and ref-

Copyright © 2009 by ASME

JUNE 2009, Vol. 131 / 031012-1

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received July 1, 2008; final manuscript received January 6, 2009; published online April 23, 2009. Assoc. Editor: Jean-Claude Golinval.



Fig. 1 Topology of the spring mass series

erences are being made to the theory and to existing algorithms that were used. Some computer code and pseudocode implementing the algorithm are provided too. Several examples are described in Sec. 4 from small discrete systems through a system with many degrees of freedom to a continuous structure that was realized in the laboratory.

#### **2** Problem Definition and Proofs

Consider a symmetric vibrating system consisting of a spring mass series, as shown in Fig. 1. The system has 2N+1 degrees of freedom and it is symmetric around the center mass  $(m_{N+1})$ .

The steady state response, at the middle mass, to sinusoidal excitation,  $f=Q_0 \sin \omega t$ , acting at the same point, can be written as [16,1]

$$x_{N+1}(t) = e_{N+1}^{T} (K - \omega^2 M)^{-1} e_{N+1} Q_0 \sin \omega t = \alpha(\omega) Q_0 \sin \omega t \quad (2)$$

where  $e_{N+1}$  is the (N+1)th column of the identify matrix,  $K, M \in \mathbb{R}^{(2N+1)\times(2N+1)}$  are the stiffness and mass matrices,  $\alpha(\omega)$  is the point receptance at the middle mass, and  $Q_0$  is the force amplitude.

Having predetermined values for the center mass  $m_{N+1}$  and for the basis frequency  $\omega_0$ , the current problem seeks the mass  $\{m_i\}_{i=1}^N$ and stiffness  $\{k_i\}_{i=1}^{N+1}$  elements for which the receptance has the form

$$\alpha(\omega) = \gamma_0 \frac{\prod_{n=1}^{N} ((2n)^2 \omega_0^2 - \omega^2)}{\prod_{n=1}^{n=1} ((2n-1)^2 \omega_0^2 - \omega^2)}$$
(3)

Examination of Eq. (3) reveals that the receptance becomes infinitely large at odd multiples of the basis frequency, i.e., at discrete excitation frequencies where  $\omega = (2n-1)\omega_0$ . In addition, the receptance becomes zero at the midpoint between the maxima, i.e., at excitation frequencies where  $\omega = 2n\omega_0$ .  $\gamma_0$  is a scaling factor depending on the force and sensor transducers.

It turns out that this goal can be achieved by employing known algorithms that assign the natural frequencies of two subsystems of Fig. 1. These subsystems are shown in Fig. 2.

This decomposition is central to the construction of the "mechanical Fourier series generator" (MFSG), as described in Sec. 2.1.



Fig. 2 Right: A dissected left half of Fig. 1 with N+1DOF; left: left half of Fig. 1, clamped at the middle thus leaving N DOF

031012-2 / Vol. 131, JUNE 2009

**2.1 Decomposition of the Symmetric System: Persymmetry.** In this subsection, it is shown that the spectra of the subsystems in Fig. 2 determine the poles and zeros of the receptance  $\alpha(\omega)$ . It will be shown that one can assign the spectra of these two subsystems to produce the required frequency response, which is given in Eq. (3).

Owing to the symmetry of Fig. 1, the mass and stiffness matrices in Eq. (2) can be decomposed into submatrices. These submatrices are a manifestation of Fig. 2. As proved below, they are jointly equivalent to the system in Fig. 1.

Define  $J_N \in \mathbb{R}^{N \times N}$  as a reflection matrix having ones on the secondary diagonal [13]. The operation  $J_N x$  reverses the order of the elements in the vector—x.

It can be shown that both the mass and stiffness of Fig. 1 are persymmetric, i.e.,

$$K = \begin{bmatrix} K_0 & -k_{N+1}e_N & 0_N \\ -k_{N+1}e_N^T & 2k_{N+1} & -k_{N+1}e_N^TJ_N \\ 0_N & -k_{N+1}e_NJ_N & J_NK_0J_N \end{bmatrix},$$

$$M = \begin{bmatrix} M_0 & 0 & 0_N \\ 0 & m_{N+1} & 0 \\ 0_N & 0 & J_NM_0J_N \end{bmatrix}$$
(4)

Here  $0_N$  is a  $N \times N$  zero matrix.

The operations  $K=J_{2N+1}KJ_{2N+1}$  and  $M=J_{2N+1}MJ_{2N+1}$  flip both matrices around the two main diagonals showing that they are indeed persymmetric. Equation (4) makes use of partial mass and stiffness to represent the left system in Fig. 2:

$$M_{0} = \begin{bmatrix} m_{1} & 0 & \cdots & 0 \\ 0 & m_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & m_{N} \end{bmatrix},$$

$$K_{0} = \begin{bmatrix} k_{1} + k_{2} & -k_{2} & \cdots & 0 \\ -k_{2} & k_{2} + k_{3} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -k_{N} \\ 0 & \cdots & -k_{N} & k_{N} + k_{N+1} \end{bmatrix} \in \mathbb{R}^{N \times N}$$
(5)

With these definitions it is now possible to develop an expression for the receptance.

From matrix and linear systems theories it is possible to write

$$\alpha(\omega) = e_{N+1}^T (K - \omega^2 M)^{-1} e_{N+1} = \frac{e_{N+1}^T \operatorname{adj}(K - \omega^2 M) e_{N+1}}{\operatorname{det}(K - \omega^2 M)} \quad (6)$$

or, using Eq. (4),

$$\alpha(\omega) = \frac{\det(K_0 - \omega^2 M_0) \det(J_{N+1} K_0 J_{N+1} - \omega^2 J_{N+1} M_0 J_{N+1})}{\det(K - \omega^2 M)}$$
(7)

Now, since  $J_{N+1}$  is orthonormal, and due to persymmetry, Eq. (7) can be simplified into

$$\alpha(\omega) = \frac{\det(K_0 - \omega^2 M_0)^2}{\det(K - \omega^2 M)}$$
(8)

Define  $\lambda_n$ ,  $\phi_n$  as the solutions of

$$(K - \lambda_n M)\phi_n = 0, \quad n = 1, \dots, 2N + 1$$
 (9)

And  $\mu_n$  as the solutions of

$$(K_0 - \mu_n M_0) a_n = 0, \quad n = 1, \dots, N$$
(10)

It is now possible to express the receptance in terms of the natural frequencies of the two subsystems in Fig. 2:

#### Transactions of the ASME

$$\alpha(\omega) = \gamma_0 \frac{\prod_{n=1}^{N} (\mu_n - \omega^2) \prod_{n=1}^{N} (\mu_n - \omega^2)}{\prod_{n=1}^{2N+1} (\lambda_n - \omega^2)}$$
(11)

Having established these relations it remains to assign

$$\mu_n = 2n\omega_0, \quad n = 1, \dots, N$$

$$\lambda_n = n\omega_0, \quad n = 1, \dots, 2N+1$$
(12)

With this assignment, some of the poles in Eq. (11) cancel out with the zeros to yield Eq. (3).

It is now required to study the eigenvalues and eigenvectors of the vibrating system whose mass and stiffness are defined in Eqs. (4) and (5) and to find a method to assign Eq. (12).

**2.2 Eigenvectors and Eigenvalues of a Symmetric Spring Mass Series.** It will now be shown how the symmetric system in Fig. 1 can be represented by the two systems in Fig. 2. Defining a transformation matrix L,

$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} I_N & 0 & I_N \\ 0 & 1 & 0 \\ J_N & 0 & -J_N \end{bmatrix}$$
(13)

the mass and stiffness can be transformed in the spirit of Ref. [13] into

$$\widetilde{K} = L^{T} K L = \begin{bmatrix} K_{0} & -k_{N+1} e_{N} & 0 \\ -k_{N+1} e_{N}^{T} & k_{N+1} & 0 \\ 0 & 0 & K_{0} \end{bmatrix},$$

$$\widetilde{M} = L^{T} M L = \begin{bmatrix} M_{0} & 0 & 0 \\ 0 & \frac{1}{2} m_{N+1} & 0 \\ 0 & 0 & M_{0} \end{bmatrix}$$
(14)

The transformed matrices have two sets of eigenpairs. The first one,  $(\lambda, a)$ , is found from the lower diagonal block, providing *N* eigenvalues, via

$$\mu M_0 a = K_0 a, \quad a \in \mathbb{R}^N \tag{15}$$

Since the eigenvalues in Eq. (15) are distinct [10], the *N* related eigenvectors must be a linear combination of the third column of Eq. (13) and therefore these eigenvectors of Eq. (9) have the form

$$\phi = \begin{bmatrix} I & 0 & I \\ 0 & 1 & 0 \\ J_N & 0 & -J_N \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ a \end{pmatrix} = \begin{pmatrix} I \\ 0 \\ -J_N \end{pmatrix} a = \begin{pmatrix} a \\ 0 \\ -J_N a \end{pmatrix}$$
(16)

Equation (16) clearly shows that these modes have a nodal point at the middle mass and are antisymmetric, i.e.,  $\phi[N+1]=0$  and  $\phi[i]=-\phi[N+2-i]$ .

The eigenvalues, being a subset of those obtained from Eq. (9), belong to the eigenvectors with a nodal point at the middle, for these

$$\lambda_{2n} = \mu_n, \quad n = 1, \dots, N \tag{17}$$

i.e., the even numbered eigenvalues of Eq. (9).

#### Journal of Vibration and Acoustics

The remaining N+1 eigenpairs are the solution of the remaining diagonal blocks in Eq. (14):

$$\begin{bmatrix} K_0 & -k_{N+1}e_N \\ -k_{N+1}e_n^T & k_{N+1} \end{bmatrix} \begin{pmatrix} b \\ c \end{pmatrix} = \lambda \begin{bmatrix} M_0 & 0 \\ 0 & \frac{1}{2}m_{N+1} \end{bmatrix} \begin{pmatrix} b \\ c \end{pmatrix},$$

$$b \in \mathbb{R}^N, \quad c \in \mathbb{R}$$
(18)

As before, the eigenvectors are a linear combination of the two leftmost columns of Eq. (13),

$$\phi = \begin{bmatrix} I & 0 & I \\ 0 & 1 & 0 \\ J_N & 0 & -J_N \end{bmatrix} \begin{pmatrix} b \\ c \\ 0 \end{pmatrix} = \begin{pmatrix} b \\ c \\ J_N b \end{pmatrix}$$
(19)

Equation (19) shows that these modes are symmetric, i.e.,  $\phi[i] = \phi[N+2-i], i=1, ..., N+1$ .

To summarize, the recent development stated that the system in Fig. 1 (and Eq. (9)) has two types of eigenvectors (modes of vibration). There are *N* antisymmetric modal vectors for which the center mass does not move; these have the eigenvalues denoted by  $\mu_n$ . In addition, there are *N*+1 eigenvectors that are symmetric around the center mass; these are denoted by  $\lambda_{2n-1}$ . Both are eigenpairs of the mass and stiffness in Eq. (4). This fact reported in the past leads to the desired form of the receptance.

Now, using Eq. (17), it can be shown that several terms cancel out in Eq. (11) to yield

$$\alpha(\omega) = \beta_0 \frac{\prod_{n=1}^{N} (\mu_n - \omega^2)}{\prod_{n=1}^{n-1} (\lambda_{2n-1} - \omega^2)} = \beta_0 \frac{\prod_{n=1}^{N} (\lambda_{2n-1} - \omega^2)}{\prod_{n=1}^{n-1} (\lambda_{2n-1} - \omega^2)}$$
(20)

Enforcing Eq. (12), Eq. (20) will become identical to the desired form, i.e., to Eq. (11).

It is worth mentioning that the even eigenvalues are zeros of the transfer function in this case.

Recalling the fact that  $\mu_n$  (= $\lambda_{2n}$ ) and  $\lambda_{2n-1}$  (strictly) interlace [4], it is indeed possible to assign the desired values to the natural frequencies, as indicated in Eq. (12). This subproblem has already been solved in literature [12,3], and the algorithm with which the particular values of this problem are obtained is outlined below. The algorithm is implemented in a MATLAB<sup>TM</sup> program that makes use of symbolic computation and is provided in the Appendixes.

# **3** Solving the Inverse Problem

Having established that the proposed topology in Fig. 1 can indeed produce the desired frequency response once the matrices in Eq. (4) are assigned the desired eigenvalues, it now remains to find the mass and stiffness elements for which these conditions exist.

Denoting

$$K_{1}^{\Delta} \begin{bmatrix} K_{0} & -k_{N+1}e_{N} \\ -k_{N+1}e_{N}^{T} & k_{N+1} \end{bmatrix}, \quad M_{1}^{\Delta} \begin{bmatrix} M_{0} & 0 \\ 0 & \frac{1}{2}m_{N+1} \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)}$$
(21)

by defining

$$\phi = M_1^{-1/2} u \tag{22}$$

and substituting into Eq. (9), an equivalent Jacobi (tridiagonal) matrix B with identical eigenvalues to Eq. (9) can be defined [3,4,12] as

# JUNE 2009, Vol. 131 / 031012-3

$$\overset{\Delta}{B=} M_{1}^{-1/2} K_{1} M_{1}^{-1/2} = \begin{bmatrix} a_{1} & -b_{1} & & \\ -b_{1} & a_{2} & -b_{2} & & \\ & -b_{2} & a_{3} & \ddots & \\ & & \ddots & \ddots & \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)}$$

$$(23)$$

where (see Ref. [4])

$$K_{1} = E^{T} \begin{bmatrix} k_{1} & 0 & \cdots & 0 \\ 0 & k_{2} & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & k_{N+1} \end{bmatrix} E, \quad E^{\Delta} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & \ddots \\ 0 & 0 & 0 & \ddots \end{pmatrix}$$
(24)

Observing that  $M_0$ ,  $K_0$  can be obtained from  $M_1$ ,  $K_1$  by deleting the last row and column, the method that reconstructs *B* and the system in Fig. 1 is, in fact, available in literature [3,12,4].

The reconstruction method makes use of pre-assigned values  $\{\lambda_n = n\omega_0, n = 1, ..., 2N+1\}, m_{N+1}$ , and  $\omega_0$ .

The first step reconstructs the (N+1)th left eigenvector of *B*, as explained below.

Use is being made of the identity (see proof in Appendix A and Ref. [4])

$$u_i^2(N+1) = \frac{\prod_{k=1}^{N} \pi(\lambda_{2i-1} - \mu_k)}{\prod_{k=1}^{N+1} N+1}, \quad i = 1, \dots, N+1$$
(25)  
$$\frac{\pi(\lambda_{2i-1} - \lambda_{2k-1})}{\prod_{k=1}^{k+1} k \neq i}$$

In the present case, this expression can be simplified into

$$u_{i}^{2}(N+1) = \frac{\prod_{k=1}^{N} ((2i-1)^{2}\omega_{0}^{2} - 4k^{2}\omega_{0}^{2})}{\prod_{k=1}^{N} ((2i-1)^{2}\omega_{0}^{2} - (2k-1)^{2}\omega_{0}^{2})}$$
$$= \frac{\prod_{k=1}^{N} ((2i-1)^{2} - 4k^{2})}{\prod_{k=1}^{N+1} ((2i-1)^{2} - (2k-1)^{2})}$$
$$(26)$$

It is important to observe that  $u_i^2(N+1)$  is independent of  $\omega_0$ . Equation (26) remains unchanged as long as the eigenvalues are an integer multiple of  $\lambda_1$ .

**3.1 Reconstruction Algorithm.** The reconstruction algorithm consists of three steps.

- (i) Given  $\omega_0$ , N, use Eq. (26) to compute  $u_i(N+1)$ ,  $i = 1, \dots, N+1$ .
- (ii) Run the Lanczos algorithm, described in Appendix B, to retrieve *B*.
- (iii) Run the algorithm described below to recover M and K and  $m_i$ ,  $k_i$ .
- 3.1.1 Algorithm to Recover M and K From B. Define

$$P \triangleq \operatorname{diag}(p) = \operatorname{diag}\left(\sqrt{m_1} \quad \sqrt{m_2} \quad \cdots \quad \sqrt{m_{N+1}/2}\right)^T \in \mathbb{R}^{(N+1) \times (N+1)}$$
(27)

It can be shown that [4]

#### 031012-4 / Vol. 131, JUNE 2009

$$Bp = \frac{k_1}{\sqrt{m_1}} e_1 \tag{28}$$

Solving  $Bt=e_1$  for *t*, it is possible to obtain a vector proportional to *p*:

$$t = \frac{\sqrt{m_1}}{k_1} \left( \sqrt{m_1} \quad \sqrt{m_2} \quad \cdots \quad \sqrt{m_{N+1}/2} \right)^T = \frac{\sqrt{m_1}}{k_1} p^T$$
(29)

Squaring Eq. (29),

$$\frac{m_1}{k_1^2} M_1 = [\text{diag } t]^2 \tag{30}$$

Ignoring the scaling factor for now, one can combine the outcome of Eq. (30) with Eq. (24) to compute

$$[\text{diag } t]B[\text{diag } t] = \frac{m_1}{k_1^2} K_1$$
(31)

Having recovered  $M_1, K_1$ , up to a scaling factor, Eq. (4) can be used to construct M and K.

The individual but scaled springs are computed from Eq. (24) via

$$\begin{bmatrix} \alpha_{1} & & \\ & \alpha_{2} & \\ & & \ddots & \\ & & & \alpha_{N+1} \end{bmatrix} = E^{-T} K_{1} E^{-1}$$
(32)

Now, the scaling factor is eliminated by assigning values for the middle mass and the base frequency of  $\bar{m}_{N+1}$  and  $\bar{\omega}_0$ .

The final values of the mass and spring elements,  $\bar{m}_i, \bar{k}_i$ , are computed with

$$\bar{m}_i = t_i^2 \frac{\bar{m}_{N+1}}{2t_{N+1}^2}, \quad i = 1, \dots, N, \quad \bar{k}_i = \alpha_i \frac{\bar{\omega}_0^2}{2t_{N+1}^2}, \quad i = 1, \dots, N+1$$
  
(33)

The entire calculation process is formulated in a MATLAB<sup>TM</sup> program provided in the Appendixes.

#### 4 Solving the Inverse Problem: Examples

Consider using the proposed algorithm to produce an approximation of a square-wave-like motion by driving the mechanical system at several natural frequencies simultaneously. The truncated Fourier series representation of a square wave is

$$x_{N+1}(t) = \sum_{n=1}^{N+1} \frac{\sin(2n-1)\omega_0 t}{(2n-1)}$$
(34)

Having frequency terms at odd multiples of the basis frequency, it is possible to employ the proposed algorithm with a different number of terms. Sample solutions are tabulated below.

The eigenpairs for the case where 2N+1=5, as computed by the program in the Appendixes, are

# Transactions of the ASME



Fig. 3 Frequency response magnitude for a 2*N*+1=5DOF structure scaled for  $\omega_0$ =15,000 Hz

diag 
$$\lambda = \omega_0^2 \operatorname{diag} \left( 1 \quad 2^2 \quad 3^2 \quad 4^2 \quad 5^2 \right),$$

$$(35)$$

$$\Phi = \begin{pmatrix} 1 & -\frac{3}{2} & -\frac{9}{4} & 1 & 1 \\ \frac{4}{3} & -1 & 1 & -2 & -4 \\ \frac{10}{7} & 0 \quad \frac{5}{2} & 0 & 6 \\ \frac{4}{3} & 1 & 1 & 2 & -4 \\ 1 & -\frac{3}{2} & -\frac{9}{4} & -1 & 1 \end{pmatrix}$$

It can be observed from Eq. (35) that the eigenvectors behave as expected, and the odd numbered ones contain a nodal point at the middle. It is also possible to examine the frequency response of the reconstructed system to inspect the locations of poles and zeros.

Figure 3 indeed shows that the reconstructed structure has strong amplification levels at odd multiples of the basis frequency and complete attenuation at even multiples. The computed response agreed exactly with the desired form in Eq. (3) and with Eq. (20). The outcome of this reconstruction is examined for several cases in Table 1.

**4.1** Toward a Continuous Mechanical Fourier Generator. In order to study the topology of a MFSG when the number of terms approaches infinity, the algorithm in Appendix B was run with N=12 (total 2N+1=25DOF).

The stiffness and mass distributions along the structure seem smooth in this case (e.g., Fig. 4), as they appear for any realization with a large number of DOF. The smoothness of mass and stiffness distributions could possibly suggest that a continuous structure having the same properties can be realized.

To illustrate the topology and shape of the MFSG in this case, it was realized numerically by a conceptual torsional system. The masses are represented by the displacement of mass-balls from the axis of rotation, and the stiffness is inversely proportional to the spacing between the mass elements (see Eq. (34)). Two eigenvectors are depicted in Fig. 5 to demonstrate the spatial behavior of this system.

Figure 6 visually demonstrates the smooth distribution of mass. The response to torque excitation at the middle mass has, in this

 Table 1
 Values of springs and masses for the mechanical Fourier series generators supporting Eq. (34)

=

| 2 <i>N</i> +1                                                           | 3             | 5                                  | 7                                                                 |
|-------------------------------------------------------------------------|---------------|------------------------------------|-------------------------------------------------------------------|
| $ \frac{m_1}{m_{N+1}} $ $ \frac{m_2}{m_{N+1}} $ $ \frac{m_3}{m_{N+1}} $ | $\frac{6}{5}$ | $\frac{10}{7}$ $\frac{15}{14}$ $1$ | $     \frac{700}{429}     \frac{350}{297}     \frac{28}{27}     $ |
| $\frac{k_1}{\omega_0^2 m_{N+1}}$                                        | $\frac{9}{5}$ | $\frac{25}{7}$                     | $\frac{2450}{429}$                                                |
| $\frac{k_2}{\omega_0^2 m_{N+1}}$                                        | 3             | $\frac{45}{7}$                     | $\frac{350}{33}$                                                  |
| $\frac{k_3}{\omega_0^2 m_{N+1}}$                                        |               | $\frac{15}{2}$                     | $\frac{350}{27}$                                                  |
| $\frac{k_4}{\omega_0^2 m_{N+1}}$                                        |               |                                    | 14                                                                |

case, evenly spaced natural frequencies, as shown in Fig. 7. The zeros appear at even multiples of first natural frequency.

Numerical and analytical verifications have shown that the proposed algorithm works as expected and that a system with a large



Fig. 4 Stiffness and mass elements for a 25DOF MFSG

# Journal of Vibration and Acoustics

JUNE 2009, Vol. 131 / 031012-5

Downloaded 15 May 2009 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms\_Use.cfm



Fig. 5 Antisymmetric and symmetric eigenvectors of a 25DOF MFSG

number of degrees of freedom has smooth distributions of mass and stiffness.

To conclude the examples, a microscale realization of the MFSG is described.

**4.2 Micromechanical Realization.** A miniature system made of silicon has been designed and manufactured using micro electromechanical systems (MEMS) manufacturing techniques [15,17]. The structure operates in torsion and it is driven by means of a split electrode acting under the middle mass to create the excitation torque. A possible application of this device is to form an optical scanning mirror, as described in Ref. [14].



031012-6 / Vol. 131, JUNE 2009



Fig. 8 Photograph of a miniature DFG

Modeling the springs as rectangular cross-section torsional beams and the masses as rectangular rigid plates with the same thickness as the beam yields the following expressions [18] for the stiffness and mass elements:

$$k_{i} = \frac{cGh_{i}^{3}t}{L_{i}}, \quad m_{i} = \frac{a_{i}b_{i}t\rho(b_{i}^{2} + t^{2})}{12}$$
(36)

where *c* is the warping function correction coefficient [18], *G* is the material shear module,  $h_i$  is the individual beam's cross-section width,  $t=30\mu$  is the structure's thickness,  $L_i$  is the individual beam length,  $a_i$  is the plate length (parallel to rotation axis),  $b_i$  is the plate width (perpendicular to the rotation axis), and  $\rho$  is the material density.

The structure is designed according to Eq. (36) and using the proposed algorithm under the constraints that  $\omega_0=15,000$  Hz and the center mass is  $m_3=500\mu \times 500\mu \times \rho \times t$ .

A photograph of the structure, taken under a microscope with the indication of the main dimensions, is shown in Fig. 8.

The structure was simulated by a finite element (FE) model created by the structural dynamics toolbox in MATLAB<sup>TM</sup> [19]. Two mode shapes that are plotted in Fig. 9 demonstrate that the structure does behave as a discrete 5DOF system and the rectangular plates do remain rigid.

Examining the left part of Fig. 9 it can be seen that the central mass does not move at this frequency  $(4\omega_0)$  despite the fact that the excitation operates at the same location. The right part of the figure shows an eigenvector  $(5\omega_0)$  that is symmetric.

Finally, a more visual validation showing that no other dynamics affect the MFSG uses a comparison of the computed and measured frequency response functions in Fig. 10.

Clearly, the fabricated device shows a near perfect behavior and it agrees well with the simulated model. The accuracy of the obtained natural frequencies is affected by manufacturing tolerances, but still an agreeable accuracy was obtained here. The problem of accommodating manufacturing tolerances is treated in some detail in Ref. [15]. More details about the manufacturing process are provided in Ref. [17].

#### 5 Conclusion

An inverse problem allowing designers to create vibrating structures that can produce a periodic nonsinusoidal response with small power consumption was described. The proposed structure requires a small excitation torque and power as it amplifies all the discrete spectral lines that appear in the response while attenuating other spectral contents. In addition to setting the natural frequencies at desired locations, the algorithm chooses frequencies where the excitation would be attenuated; these frequencies (even multiples) often appear in electrostatic and electromagnetic systems as parasitic terms. It was demonstrated that the algorithm leads to mechanical systems having smooth distributions of mass and stiffness when the number of degrees of freedom becomes high and it suggests that a continuous implementation can be a viable option. A small micromechanical device was manufactured

#### Transactions of the ASME

Downloaded 15 May 2009 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms\_Use.cfm



Fig. 9 Antisymmetric (left) and symmetric (right) modes of the miniature structure FE model



Fig. 10 Measured and computed by finite element and frequency response amplitude

according to the present algorithm proving the theory, thus showing possible applications as an optical scanning device.

# Appendix A: Proof of Eq. (25)

This appendix proves Eq. (25) in a slightly different way than previous references (i.e., Refs. [12,4]).

Considering the eigenvalues of  $M_1, K_1$  can be expressed with Eq. (24) as

#### Journal of Vibration and Acoustics

Since *B* is symmetric,  $U = (u_1 \ u_2 \cdots u_{N+1}) \in \mathbb{R}^{(N+1) \times (N+1)}$  is orthogonal, and thus we have  $U^T U = I$  and  $U^{-1} = U^T$ . *U* contains the eigenvectors of *B* as its columns.

Using the spectral decomposition of B, it is possible to express the resolvent as

$$(\lambda_i I - B)^{-1} = (\lambda_i I - U\Lambda U^T)^{-1} = (U(\lambda_i I - \Lambda)U^T)^{-1} = U(\lambda_i I - \Lambda)^{-1}U^T$$
(A2)

with

$$(\lambda_i I - B)^{-1} = \frac{1}{|\lambda_i I - B|} \operatorname{adj}(\lambda_i I - B)$$
(A2')

One can write

$$\operatorname{adj}(\lambda_{i}I - B) = |\lambda_{i}I - B|(\lambda_{i}I - B)^{-1} = (\prod_{k=1}^{N+1} (\lambda_{i} - \lambda_{k}))U(\lambda_{i}I - \Lambda)^{-1}U^{T}$$
(A3)

or

 $\operatorname{adj}(\lambda_{i}I - B) = \binom{N+1}{\pi} (\lambda_{i} - \lambda_{k}) \left( \sum_{p=1}^{N+1} \frac{1}{(\lambda_{i} - \lambda_{p})} u_{p} u_{p}^{T} \right)$ (A4)

and

$$\operatorname{adj}(\lambda_{i}I - B) = \begin{pmatrix} N+1 \\ \pi (\lambda_{i} - \lambda_{k}) \\ \sum_{\substack{p=1\\p\neq i}}^{N+1} \frac{k=1}{(\lambda_{i} - \lambda_{p})} u_{p}u_{p}^{T} \\ u_{p} = \frac{\pi}{k} (\lambda_{i} - \lambda_{k}) u_{i}u_{i}^{T} \\ k \neq i \\ k \neq i \end{cases}$$
(A5)

Now treat the (N+1, N+1)th element of the left hand side of Eq. (A5). Indeed the (N+1, N+1)th element of  $adj(\lambda_i I-B)$  is computed by taking the determinant of this matrix with the (N+1)th row and column removed and therefore let  $B_0$  consist of the first N rows and columns of B. Thus,

$$\left|\lambda_{i}I - B_{0}\right| = \prod_{k=1}^{N} (\lambda_{i} - \mu_{k}) \tag{A6}$$

Substituting Eq. (A6) into (N+1,N+1)th entry of Eq. (A5),

$$\prod_{k=1}^{N} (\lambda_{i} - \mu_{k}) = \prod_{\substack{k=1 \\ k \neq i}}^{N+1} (\lambda_{i} - \lambda_{k}) u_{i}^{2} (N+1)$$
(A7)

and finally the

$$u_{i}^{2}(N+1) = \frac{\prod_{k=1}^{N} (\lambda_{i} - \mu_{k})}{\prod_{k=1}^{N+1} (\lambda_{i} - \lambda_{k})}, \quad i = 1, \dots, N+1$$
(A8)  
$$\prod_{k=1}^{N} (\lambda_{i} - \lambda_{k})$$
$$\underset{k \neq i}{\overset{k \neq i}{\longrightarrow}}$$

Relating the eigenvalues of *B* and *B*<sub>0</sub> to those of *M*, *K* it is clear that Eq. (A8) is identical to Eq. (25). Therefore Eq. (A8) can be used to retrieve  $u_i^2(N+1)$ , which is the (N+1)th column of  $L = U^T$  (also known as the left eigenvector matrix or the reciprocal base).

# **Appendix B: MATLAB Programs**

This appendix lists several MATLAB<sup>TM</sup> programs that realize the proposed algorithm. One should run part i that calls other subprograms that listed below.

JUNE 2009, Vol. 131 / 031012-7

Downloaded 15 May 2009 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms\_Use.cfm

| %Part i-Complete reconstruction—calls other sub-programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| N=2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % Fourier series would have 2N+1 terms                         |
| $Iambda 2n = sym([1:2:2 N+1]. \land 2);$<br>mu = sym([2:2:2*N]. $\land 2):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %N + 1 poles—at odd multiples<br>% N zeros—at even multiples   |
| [u N] = compute un(lambda2n mu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % compute vector                                               |
| [bn,an,x] = reverse lanczos(u N, lambda2n);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % compute diagonals of Jacobi matrix                           |
| B = diag(an) - diag(bn, 1) - diag(bn, -1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % form Jacobi matrix                                           |
| $[M, K, m0, k0] = jacobi_to_mk(B);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % convert to M,K                                               |
| m $Nn1-1$ : $\omega Q = 2^{*}ni^{*}15000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathscr{M}_{scaling}$ central mass $m(N+1)$ and $w()[Pad/s]$ |
| $\lim_{n \to \infty} \frac{1}{1} \lim_{n \to \infty} $ | %scaning, central mass m(n+1) and wo [Kad/s]                   |
| $[Phi w2] = eig(M \setminus K);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % compute eigenvalues/vectors to verify                        |
| Frequencies_Hz=sqrt(diag(w2))/2/pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % convert eignevalues to frequencies in Hz                     |
| % Part ii—implement Eq. (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |
| function $[u_N] = compute un(lambda, mu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| Np1=length(lambda);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %N+1, no. of eigenvalues in M1, Eq. (21)                       |
| For i=1:Np1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
| j=1:Np1; j(i)=[];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % indices vector, enforce $j < >i$                             |
| $u_N_squared_2(1) = prod(mu-lambda(1))/prod(lambda(J)-lambda(1));$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| u N=sart(u N squared2):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| <i>C</i> Dert iii reconstruct the P leachi matrix using the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
| % Lanczos algorithm [4] (Eq. 4.2.12-Eq. 4.2.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| function [bn,an,x]=reverse_lanczos(u_N,lambda)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Np1=length(lambda); N=Np1-1; %N+1 and N, eigenvalues of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| x=sym (zeros(Np1));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| $x(:,Np1)=u_N(:);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %make vector a column (u_N);                                   |
| an(Np1) = sum(lambda.*u_N. $\land$ 2);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %x(N).'*diag(p)*x(N)                                           |
| $dN = an(Np1)^{x}(:,Np1) - diag(lambda)^{x}(:,Np1);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| Dn(N) = sqrt(sum(dN, dN));<br>x(· N) = dN/bn(N):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |
| for $i=N:-1:2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| an(i) = x(:,i). '*diag(lambda)* $x(:,i)$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
| $d=an(i)^{*}x(:,i)-diag(lambda)^{*}x(:,i)-bn(i)^{*}x(:,i+1);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| bn(i-1) = sqrt(sum(d.*d));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
| x(:,i-1) = d/bn(i-1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| $an(1) - x(\cdot, 1)  /* diag(lambda) * x(\cdot, 1);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |
| % Part IV-convert Jacobi matrix to Mass and Stiffness of Fig. 1<br>function $[M K = m0 k_0]$ -incohi to $mk(R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| % M K-realization of Fig. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
| % m0,k0-reconstructed mass and stiffness elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |
| Np1 = size(B, 1); N = Np1 - 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| t=inv(B);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 <b>F</b> (10)                                                |
| t=t(1,:).';                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % see Eq. (29)                                                 |
| $K = sym(zeros(2 N+1));$ $M = sym(zeros(2^*N+1));$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| M = sym(2cros(2 + 1)),<br>$M(1 \cdot \text{Nn}1 + 1 \cdot \text{Nn}1) = \text{diag}(t \land 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Eq. (30)                                                     |
| % see Fig. 2 and Fig. 1—make M from two halves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × 24. (00)                                                     |
| $M(Np1:2^*Np1-1, Np1:2^*Np1-1) = M(Np1:2^*Np1-1, Np1:2^*Np1-1) + diag(flipud(t. \land 2)) + di$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | );                                                             |
| $K0 = diag(t)^*B^*diag(t);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % Eq. (31)                                                     |
| K(1:Np1,1:Np1)=K0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| $K(Np1:2^{N}p1-1,Np1:2^{N}p1-1)=K(Np1:2^{N}p1-1,Np1:2^{N}p1-1)+K0(Np1:-1:1,Np1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1 - 1 - 1);                                                   |
| $F_{1} = trip(ones(Nn1))$ ; % inverse of E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % see Eq. (24)                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % $K0 = E'^*Kv^*E^{} > Kv = inv(E.')^*K0^*inv(E); Eq. (24)$    |
| k0=E1*K0*E1.';                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inverted                                                       |
| k0 = diag(k0);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % diagonal of springs                                          |
| k0 = [k0; k0(end: -1:1)];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % complement second half, Fig. $2 \rightarrow$ Fig. 1          |
| $m_0 = sym(zeros(2   N+1, 1));$<br>$m_0(1; Np_1) = t, \land 2; m_0(Np_1; end) = m_0(Np_1; end) + flipud(t, \land 2);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| • Commant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
| • Comment:<br>The same algorithm can support Fourier series consisting of both odd and even multiples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| of the basis frequency. As an example, use these lines to obtain the desired natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
| N=2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % choose any even value for N                                  |
| $lambda = sym(([1:1:N+1]). \land 2);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % poles                                                        |
| $mu = sym(([3/2.1.1N+1]). \land 2),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 ZCIUS                                                       |

# 031012-8 / Vol. 131, JUNE 2009

# Transactions of the ASME

Downloaded 15 May 2009 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms\_Use.cfm

### References

- Geradin, M., and Rixen, D., 1997, Mechanical Vibration Theory and Application to Structural Dynamics, Wiley, New York.
- [2] Gabay, R., and Bucher, I., 2006, "Resonance Tracking in a Squeeze-Film Levitation Device," Mech. Syst. Signal Process., 20(7), pp. 1696–1724.
- [3] Boley, D., and Golub, G., 1987, "A Survey of Matrix Inverse Eigenvalue Problem," Inverse Probl., 3, pp. 595–622.
- [4] Gladwell, G. M., 1986, Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht.
- [5] Mottershead, J. E., 2001, "Structural Modification for the Assignment of Zeros Using Measured Receptances," Trans. ASME, J. Appl. Mech., 68(5), pp. 791– 798.
- [6] Kyprianou, A., Mottershead, J. E., and Ouyang, H., 2005, "Structural Modification, Part 2: Assignment of Natural Frequencies and Antiresonances by an Added Beam," J. Sound Vib., 284(1–2), pp. 267–281.
- [7] Bucher, I., and Braun, S., 1993, "The Structural Modification Inverse Problem: An Exact Solution," Mech. Syst. Signal Process., 7(3), pp. 217–238.
- [8] Kailath, T., 1980, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.
- [9] Ewins, D. J., 2000, *Modal Testing: Theory, Practice, and Application*, Research Studies Press, Baldock, England.
- [10] Gantmakher, F., and Krein, M., 1950, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, State Publishing House for Technical-Theoretical Literature, Moscow-Leningrad.

- [11] Lanczos, C., 1950, "An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators," J. Res. Natl. Bur. Stand., 45, pp. 225–232.
- [12] Hochstadt, H., 1979, "On the Reconstruction of Jacobi Matrix From Spectral Data," Linear Algebr. Appl., 8(5), pp. 435–446.
- [13] Cantoni, A., and Butler, P., 1976, "Properties of the Eigenvectors of Persymmetric Matrices With Applications to Communication Theory," IEEE Trans. Commun.," 24(8), pp. 804–809.
- [14] Bucher, I., Avivi, G., and Velger, M., 2004, "Design and Analysis of Multi Degrees of Freedom Micro-Mirror for Triangular-Wave Scanning," Proc. SPIE, 5390, pp. 410–420.
- [15] Avivi, G., and Bucher, I., 2008, "A Method for Eliminating the Inaccuracy of Natural Frequency Multiplications in a Multi DOF Micro Scanning Mirror," J. Micromech. Microeng., 18(2), p. 025028.
- [16] Bishop, R. E., Gladwell, G. M., and Michaelson, S., 1979, *The Matrix Analysis of Vibration*, Cambridge University Press, Cambridge.
- [17] Elka, A., and Bucher, I., 2008, "On the Synthesis of Micro-Electromechanical Filters Using Modes Shapes," J. Micromech. Microeng., 18(12), p. 125018.
- [18] Timoshenko, S., and Goodier, J., 1970, *Theory of Elasticity*, McGraw-Hill, New York.
- [19] Balmes, E., 2008, "Structural Dynamics Toolbox for Use With MATLAB," http:// www.sdtools.com.