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Dual series representation (DSR) for the dynamic response of a finite elastic body
subjected to boundary traction and boundary support excitations is proposed in
this paper. To confirm the validity of the present model, a string subjected to
support motions is solved. Four analytical methods including (1) a diamond rule,
(2) a series solution with the quasi-static decomposition method, (3) DSR by the
Cesaro sum technique, and (4) DSR by the Stokes’ transformation method are
presented. It is found that the numerical results obtained by using these four
methods are in good agreement, and that both the Cesaro sum and Stokes’
transformation regularization techniques can extract the finite part of the
divergent series. The advantages and disadvantages of these four methods are
discussed. In comparison with the quasi-static decomposition method and the
Cesaro sum technique, the Stokes’ transformation is the best way not only
because it is free from calculation of the quasi-static solution, but also because its
convergence rate is as fast as that of the mode acceleration method. Copyright ©
1996 Elsevier Science Limited.
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1 INTRODUCTION

Dual integral equations for degenerate boundary
problems were developed in 1986' and have been
extended to the crack problem. This numerical imple-
mentation has been termed the dual boundary element
method by Portela et al® Recently, many researchers
have paid much attention to potential applications of
the dual integral equations.%® ' However, the
applications mainly focus on the boundary value
problems, and extension to initial boundary value
problems has not been dealt with extensively. Tradi-
tionally, two approaches, the direct transient and the
modal transient methods in the time domain, have been
employed to solve initial-boundary value problems. By
using the time-dependent fundamental solution, a dual
integral formulation can be directly derived. However,
the eigensystem for the structure considered is always
known in a priori, either by experiment or by analysis, in
engineering practice. Therefore, the modal transient
method is suitable when the eigensystem is available.
In this paper, direct transient analysis by using dual
integral equations (DIE) and modal transient analysis
by using DSR are proposed for a finite elastic body
subjected to arbitrary boundary loadings. The Cauchy
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singularity and hypersingularity in DIE are transformed
to the Gibbs phenomenon of the series convergence in
the mean and series divergence in DSR, respectively.
The regularization techniques for series divergence, the
Cesaro sum and Stokes’ transformation, are employed
to extract a finite part of an infinite value similar to the
way in which the Hadamard principal value is used to
obtain the finite part of the divergent integral of
hypersingularity. Finally, a simple string example
subjected to support motions is shown to check the
validity of present modal.

2 DUAL SERIES REPRESENTATION FOR AN
ELASTIC BODY SUBJECTED TO ARBITRARY
LOADINGS

2.1 Problem statement

Consider a homogeneous, isotropic, linear elastic con-
tinuum with finite domain D bounded by boundary B;
the governing equation for the displacement u(x, t) at a
domain point x at time ¢ can be written as

pi+ L{u} = 0,x € D,t € (0,00), €))]
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where p is the mass density, and the operator £ is
~(A+G)VV -u— GV,
L{u} =

du ;
—-T4 gl string

elastic body,

)
in which A and G are Lame’s constants, and T is the
tension of the string. The time-dependent boundary
conditions are

T{u(x,?)} = t(x,1) = t(x,1),x € B,, (3)
u(x,?) = i(x,?),€ B,, (4)

where B, and B, denote the specified traction and
displacement boundaries, respectively, and u is the
prescribed displacement on B,, t is the traction, t is

the prescribed traction on B,, and 7 is the traction
operator defined as

[AK(V -u) + GVu+ Gl (uv
T{u} = { o .
o, string

)] -m, elastic body,

(5)
in which n is the normal vector. The initial conditions
are

u(x, 0) = uy(x), (6)
i(x,0) = vo(x). (1)
For comparison purposes, both of the integral formula-

tions for direct and modal transient elastodynamics are
derived separately.

2.2 Direct transient elasticity
Extending the dual integral representation for boundary
value problems™® to transient elastodynamics, the

displacement u(x, r) and traction t(x,!) for a domain
point x at time ¢ can be written as

u(x,?) = J( J U(s,x;¢,7) - t(s, 7)dB(s)dr
J J (s,x;¢,7)-u(s, 7)dB(s)dr
+JDU(S x;1,0) - p¥o()dD(s)

+ DU S, X; £,0) - puy(s)dD(s), (8)

xt:

%

OJBL 5,%:1,7) - (s, 7)dB(s)dr

J' M(s,x; 1, 7) - u(s, 7)dB(s)dr

=)
]

+J L(s, x;¢,0) - pvy(s)dD(s)
D

+J L.(s,x:1,0) - pug(s)dD(s), )
D

where U(s, x; 7, 7), T(s, x; 2, 7), L(s, x; £,7) and M(s, x; £, 7)
are four kernel functions. The closed-form solutions can be
found in Ref. 6. The dual integral formulations for the
displacement and traction on a boundary point x at time ¢
are

cu(x,t) = RP.V. J;J U(s,x;1,7) - t(s, 7)dB(s)dr
B
—C.PV. J[J T(s,x;t,7)-u(s, 7)dB(s)dT
0l
+ JD U(s, x;¢,0) - pvo(s)dD(s)

+ J U(s, x; 1,0) - puy(s)dD(s), (10)
D

ct(x, 1) = C.P.V. J [ L(s,x;t,7)- t(s, 7)dB(s)dr

M(s, x;2,7) -
B

—H.PV. J u(s, 7)dB(s)dr

+ J L(s, x;¢,0) - pvy(s)dD(s)
D

+J L(s, x; 2,0) - pug(s)dD(s), (11)
D

where ¢ is 1/2 for 1-D, = for 2-D, or 27 for 3-D on a
smooth boundary, and R.P.V. C.P.V. and H.P.V.
denote the Rieman integral, the Cauchy principal value
and the Hadamard (or Mangler) principal value,
respectively. In discretized numerical calculations, it is
found that matrix inversion is necessary at each time-
marching stage for the direct transient method. To avoid
these repetitive time-consuming inversions, the modal
transient method is employed in the following.

Modal transient elasticity

In the derivation procedure, let the solution be decom-
posed into two parts:'!

o0

u(x, 1) = Uk, 1)+ 3 ge(t)me(x), (12)

k=1

where U(x,¢) denotes the quasi-static solution. The
second term, which is composed of various eigenfunc-
tions w(x), (k€ N, N denotes the set of natural
numbers), and is weighted by generalized coordinates
gx(t), is the dynamic contribution due to the inertia
effect. Following the same procedures in Ref. 13 the
displacement u(x, r) can be represented by introducing a
more generalized coordinate, g,(f), as in the following
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series:
u(x, ) = 3 au(x)
k=1
A
= ~N W) + in(w,!?)
,;{Nm cos(w,t) N sin(w),?)
[ [0t - T
sin(wy, (1 — T))dT}um(x) (13)
where
[, pont0-wan = 1 0 y
pPim) I CE = Npif 1= m (4
M= [ pto(x)-un (04000 (15)
D
= [ pvo3) - un (0000, (16)
UR() = [ un(s) 65,0805 (17)
TE(r) = JB t,,(s) - a(s, £)d B(s), (18)

in which D is the considered domain, w,, is the mth
modal frequency, and t,,(x) is the mth modal reaction.
Without thoughtful consideration, we apply a traction
operator to the summation sign of eqn (13) to obtain

t(x,7) = i{])\\/—mcos(umt) +

m=1 m Wiy iV

sin{w,,?)

[ 108 - 72
sin(w,,(t — T))dT}tm(X). (19)

Comparing eqns (13) and (19) with eqns (8) and (9), we
have

U(s,x;t,7) = i ! sin(w,,(t — 7))

Uy, (X) @ wy(s),

m:lN”‘w’"
(20)
T(s,x,t,r):lew Sin (W (1 = 7))y, (X) @ t,(8),
m=1""m"m
(21)
1
L(s,x;t,7) = in(w,,(t — 7)), 1 (S),
(s,x;2,7) 2N, mSln( (1= 7))tn(x) ® u,(s)

(22)

= 1
M(s. x;1,7) = Z sin(w,, (f — 7))t (x) ®@ t,(s),
m lewm

(23)

where ® is the dyadic product. Equations (20)—(23) can
be seen as the spectral decomposition for closed-form
kernels in eqns (8) and (9). Therefore, the strong
singularity in eqn (10) and hypersingularity in eqn (10)
in DIE are changed to series convergence in the mean
with Gibbs phenomenon and series divergence, respec-
tively. In order to accelerate the convergence rate to deal
with the Gibbs phenomenon, the Cesaro sum of order
(C, 1) is applied to eqn (13) while the (C, 2) operator is
utilized to extract the finite part of the divergent series of
eqn (19) as follows:

k
u(x, t) = (C, 1){2{;—”’cos(wm1) + 5 sin{w,,?)
m=1 m mi¥m

+ - [ [vAo - Taim)

sin(wy,(t — ‘r))dr}um(x)}. (24)
t(x, ) {i{—cos(w H+ w'i]"\" sin{w,,t)

+%hb%m—ﬁw

sin(w,,(f — T))dT}tm(X)}, (25)

k
(1) Zan}zk—jrlz(k—nﬂ)a,, (26)

n=0

k
1
(C’Z){;“"} k+Dk+2)
Xk:(k—n+l)(k
n=0

and finite k terms are considered in real calculations. If
regularized, eqns (24) and (25) are the dual integral
representation in series form or, for brevity, the dual
series representation.'? Each term of the series is seen to
be a general Duhamel integral. Its kernel functions
U(s,x;1,7), T(s,x;¢,7), L(s,x; £, 7), and M(s,x; ¢, 7) all
have the same oscillating factor sin (w,(f — 7)) and
represent system characteristics whereas its density
functions represent input excitations, but the initial
disturbances appear in the free terms, A, and &,
outside the integral signs.

—n+2a, (27)



230 J. T. Chen, Y. S. Jeng

3 REGULARIZATION BY THE STOKES’
TRANSFORMATION

Stokes’ theorem has been employed” to treat the
hypersingularity. Since the DIE is transformed to
DSR, the termwise differentiation in DSR results in
divergent series in a similar way that hypersingularity
occurs in the differentiation of singular boundary
integral. Stokes’ transformation can extract the finite
part of the divergent series. From the standpoint
of ordinary convergence in Fourier series, the legitimacy
of term by term differentiation of series can only be
guaranteed by rather strong requirements. We shall relax
this constraint by using the regularization techniques of
Stokes’ transformation instead of a posterior treatment
of the Cesaro sum, which has been discussed in the
previous section and in detail in Refs 12 and 14.

3.1 One-dimensional case of second order operator
& /0x* for a string

A string subjected to support motions is considered in
this subsection. The series representation for the
displacement can be written as

u(x,t) = iqn(t)un(x), 0<x<l, (28)

n=1

where [ is the length of the string, ,(¢) is the generalized
coordinate, and u,(x) is the modal shape with the
following properties:

JI Uy (X1t (x)dx = { O tmAm (29)

N,, ifn=m

i) =7 [}t () (30)

The series differentiation by Stokes’ transformation
shows

W00 =3 a0, 0<x<l, G1)
n=1
where
, 1 ’ = =
00 = oD Z g a. )
0, ifn#m

!
(Xt (x)dox =
Lu (Jun(x)dx {Nm)\m, ifn=m

u;/(x) = 7/\,,“,,()(). (34)

Therefore,
d0o0 =3t 0o = )
) -— Nn/\n ) n y= 0 n
+3 gu(Du(x), 0<x<L (35)

n=I

In eqn (35), it is easily found that the term by term
differentiation drives away the boundary terms
/N {u(y, Ou,()}y = 1/y = O0u,(x) and causes the
series to diverge. The Stokes’ transformation method
causes the series to converge by including the boundary
term.

3.2 Navier operator for dynamic elasticity

The representation of the displacement field for a finite
elastic body can be expressed in component form:

Wl )= 3 g0 (x), (36)
n=1
where
By = j (%)l (x)dD (37)
an(1) = JD ui(x, £ (x)dD, (38)

where the subscript of ] (x) indicates the ith component
of displacement, and the superscript denotes the nth
mode. First of all, we define the Navier operator:

Applying the Navier operator to u;, we have
Dl-juj = (/\ + G)uj,ij + Gu,"kk = O j- (40)
The strain field is

1
G =5 (w7 + u;), (41)

and the stress field is

05 = Ml + 2Gey = Ny 1 b5 4 Glu j + 1) (42)
The above equation can be written in terms of the Djy
operator:

oy = AoyOkty + G(0;6;1 + Oyb )y = Dipy, (43)
where the Dy, operator is

Dy = M0k + G(9;by + 0:6x.). (44)

Comparing eqns (40) and (44), the relation between the

Dix and Dy operators is

9D = Dy (45)
Changing & and j in eqn (44), we have
D = M0y + G(0,6; + 0,64). (46)
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Define the traction operator Bj; as
Bl] = ng-nk = )\niaj + G(6,-jnk3k + nja,) (47)

Field representation of stress can be written as

Gik_ zk/ “j an t)Dtk] j an tka (48)
where
1
([) A_{J ,kju dD} (49)
in which
Drrgdp = 10 TP 50
L ikt UigdL = A, ifn=m (50)
Dlj”]( ) _Anu?(x)7 (51)

where ), is an eigenvalue. After using

L uiByufdB = J ui DyulmdB
:J 6’({“?’le] ]}dD
D
= J il‘quu dD

+ JD u; O { Dy;u? }dD, (52)
changing » and p, and using Betti’s law, we have
j uzkl)ﬁ(jude = J u?k%jude. (53)
D D"

Using eqn (53), eqn (49) can be rewritten as
. 1
gy (1) = ™ {JD u?k%judi}

Therefore, the traction field can be represented by
O
a(x) =Y @i (x). (55)
n=1

Substituting eqn (54) into eqn (55), we have

=3 {j urldB i) + f: (00 )

n=1""1
(56)

Equation (56) also reveals that the term by term traction
derivative of eqn (36) loses the boundary terms
Some1 1/X{ [, utidB}{(x) on the right-hand side of
the equals sign in eqn (56) and makes the series diverge.

After the secondary fields (stress/traction) are deter-
mined, the primary field (displacement) can be easily
integrated, and the essential time-dependent boundary
condition, i.e. the support motions, can be automatically
included.

4 REDUCTION TO A STRING SUBJECTED TO
SUPPORT MOTIONS

To check the validity of the proposed model, the string
problem subjected to support motions is illustrated. The
governing equation can be reduced to

i = ctuy,, for0<x<I t>0, (57)
with initial conditions

u(x,0) =0 (58)

#(x,0) =0 (59)
and boundary conditions

u(0,1) = a(t) (60)

u(l,t) = b(1), (61)

where a(1) and b(t) are support motions.

According to eqns (20)-(23), the four kernel functions
can be decomposed as follows:

Uls,x;1,7) = i}%sm(aj (- )) sm( TC)

sin(7°) (62)
T(s,x;0,7) = gi_sm(c’;w(l - 7')) Sm(mlrx>
cos (n—;rs) 63)
L(s,x;t,7) = g;lzcsin(?;—7T (t— T)) cos (nlﬂ)
sin() (649)
M(s,x;1,7) = g%sin (C”T” =) cos("_7;5>
cos (n—;m), (65)

where the fundamental solution, U(x,s;t,7), satisfies

1 . 9°U(x, s 1,
— U(x,8:4,7) _97U(x, s 0,7)

¢ Ox?
—-00 < Xx<o0,t>0. (66)

=§(x—$)o(t — 1),

Based on the dual representation model, the displace-
ment of u(x,¢) is derived as

u(x,7) = ¢’ Jl JB U(s,x;t,7) - t(s, 7)dB(s)dr

0

- j ’ J T(s,x: 1, 7) - u(s, 7)dB(s)dr,

0JB

t
= ¢ J T(s,x;t,7)-u(s,7) v ldT. (67)
0 s=0
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The slope of #/(x,?) is derived as

t(x,1) = & J; L L(s, x; 1, 7) - (s, )d B(s)dr

- J:) L M(s, x; ¢, 7) - u(s, 7)dB(s)dr

=0

since only B, is present as eqns (60) and (61) show.

t
:—cZJM(s,x;t,T)-u(s,T)j dr, (68)
0

4.1 Diamond rule

For such a simple problem, the analytical solution by
using- the method of characteristics, or the so-called
diamond rule, is obtained as follows:

w(x,1) = 0 (69)
(%, 1) = b(L‘C’ll) (70)
(%, 1) = a(“ - x) (71)
uw(x,t)zb(x+i’_l) +a("Y), (72)

where the subscripts I, 11, Il and IV denote the regions
in the (x,7r) plane as shown in Fig. 1. Since no
information arrives in region I, we have

u(x,1)=0 (73)

For the solution in the central region as shown in Fig. 1,
we have

U(l) =u + Z Uy, (74)
n=2
where
a(t =% = B2 4 g 45 - 2y -y = o
U, =
—a(t+2 -2y p(p—x By oy
(75)
For the solution in the left region, we have
L(i) = U(i) + D, (76)
where
oo Jat- @m Dy om - o
—b(r = X2y — o,

For the solution in the right region, we have
Riy=UH+D (78)

where

Do {b(t +2CmDly = m—

¢

(79)

t
5
v
111 I
I
0 5 T
t
b}
L(2) R(2)
U(2)
L(1) R(1)
U(1)
0 ) z

Fig. 1. Diamond rule solution for each region.

4.2 Eigenfunction expansion

By assuming the solution to be in series form, we have

) = 3 (% (atr) = by -1)

=1 0

sin %’ (1 = r)dr) sin (") (80)
000 =3 (F [ et sy
sin cTnt (t— T)dT) n—Tﬂcos (@) (81)

However, u(x,f) presents the Gibbs phenomenon,
and #'(x,¢) results in a divergent series. Therefore,
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regularization techniques are used to represent the
solutions more efficiently in the following subsections.

4.3 Series solution regularized by the Cesaro sum

If eqns (80) and (81) are regularized with the Cesaro
sum, we have

utx.0) = (€13 (% (atr) = 811
n=1 \~¢

sin ch (¢ = 7)dr) sin () (82)

W50 = (€)Y (5 @t = s -1

n=1

sin —’;f (t— r)dr) fl—c S(mlrx). (83)

4.4 Series solution regularized by the Stokes’
transformation

By employing the Stokes’ transformation, we have

W (e t) = i{%(b(r)(—l)“ ~ a(t)

n=1

+2 [ (atn) - )17

. CnT nn nwx
sin —— (r— T)dT} ~ cos (T) (84)

Equation (84) of the Stokes’ transformation method
differs from eqn (81) of the eigenfunction expansion
method with a boundary term 2/nw(b(t)(—1)" — a(1)),
which can cause a divergent series to converge. After
integrating the slope with respect to x, we have the
displacement solution:

u(x,t) = i{ (B(O)(-1)"1 - a(1))

n=1

2c .
’ L(a(T) = br)(-17)

+

smcll-(t—r)dr}sm( 7 )+ a(1). (85)

It is easily found that the essential time-dependent
boundary condition is automatically included in
eqn (85), which has two more terms than does
eqn (80).

4.5 Series solution by using the quasi-static
decomposition method

By decomposing the quasi-static part first, we have

) = 3 (S agsin( ) (01 - 0
n=1

+ % (6(0)(=1)" — a(0)) cos (%’5 z)
;22’?]; sin( 97 (1 - 7)) () (- 1)"

~4"(r))dr) sin(g)

+ a0 (1-3) +5()

X
I

(86)
Since the above series converges uniformly, termwise

differentiation is permissible to obtain the following
slope field:

u'(x,t):i(—c%isin(a;ﬂ )( '(0)(~1)" —a’(O))

n=1

+%(b(0)(—1)"1 ~ a(0))cos(71)
25 [sn(@ - n) @y

ChR-=T

—d"(r))dr) (T7T) cos (@)

-a(t);-l-b(t)%. (87)

5 RESULTS AND DISCUSSION
By setting
I=35c=2,a(r) = b(t) = sin(s),

the above solutions can be obtained as shown below.

5.1 Diamond rule

In the space—time region of (0 < x < 5,0 <t < 5), the
solution of the diamond rule is

u(x, 1) =0 (88)
ug (x, 1) = sin ("—“L—Z’;l> (89)
wy(x, 1) = sin (“ p ") (90)
wyr(x, 1) = sin (lifc’—_l> +sin(< ). 1)
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5.2 Eigenfunction expansion

By substituting /, ¢ and sin (7) into eqns (80) and (81), we
have

E[=2¢l(1 = (=1)") .
u(x,f) = ;[#(T%)sm(nmtﬂ)
. 2nmc* (1 — (=1)")

Wﬁ)— sin(t)} sin(nnx/l) (92)

W (x, 1) = i[—%l(l - (*1)")sin(n7rcz/1)

- (6‘2 22 )
2 " 6
N 2nme ((Clz,jz,iz_i)lg)sm(t)] (n7/1) cos(nmx/1)
(93)

5.3 Series solution regularized by using the Cesaro sum
technique

By substituting /, ¢ and sin (7) into eqns (82) and (83), we
have

(21 - (=1)") . /nmet
ubnn) =(C1) E;i_?52¥_77_““07‘>

N 2nrc*(1 — (—1)")
c2n27r2 _ [2

sin(t)] sin (n%x) (94)

o 0.80
> - — — Quasi—slatic decomposition
@ - — — Diamond rule
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© .60 Gibbs Gibbs
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had ]
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5] h
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Fig. 2. Displacement profiles at 1 = 0-625s using the diamond
rule, eigenfunction expansion, quasi-static decomposition and
Stokes’ transformation.
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Cesdro treatment, (d) the quasi-static decomposition method,
and (e) Stokes’ transformation.
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5.4 Series solution regularized by the Stokes’
transformation

By substituting /, ¢ and sin (7) into eqns (84) and (85), we
have

u(x, 1) = sin(7) + 2((?#1_1) sin(nct /1)
(czn?::cz 7y Sint)
- 2—5"1‘%’)) (1= (=) sin(nmx/l)  (96)
s = SRR - o
2(nme)* sin(1) (- (1

I(c2n?n? — %)

#2250y - 1)} cos(nmx/l) - (97)
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Fig. 6. Velocity profile by using quasi-static decomposition,
Stokes’ transformation and the diamond rule at r = 0-625s.

u,(x, 1) = cos( t)+z

2
e n_z"”“ cos(nmet /1)

G

2nmc?

(222

P 12)003(1)

+ %;cos(t):l (1 = (=1)")sin(nnx/l).  (98)

* 5.5 Series solution by using the quasi-static
decomposition method

By substituting /, ¢ and sin (¢) into eqns (86) and (87), we
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Fig. 7. Local velocity profile near x = 1-25m by using quasi-
static decomposition, Stokes’ transformation and the diamond

rule.
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It is interesting to find that eqn (96) for the series
solution of the Stokes’ transformation can be trans-
formed into eqn (99) for the series solution in terms of
the quasi-static decomposition method after using the
asymptotic series expansion.

The displacement profiles at ¢ = 0-625s, using the
diamond rule, eigenfunction expansion, quasi-static
decomposition and Stokes’ transformation are shown
in Fig. 2. A silent area, or so-called dead zone, from
x=125m to x =375m is found to be zero displace-
ment since the wave front has not arrived at this region
yet. The eigenfunction expansion results in the Gibbs
phenomenon near the boundaries x = O0m and x = Sm.
The slope profiles at 1 = 0-625 s using the diamond rule,
eigenfunction expansion, quasi-static decomposition
and Stokes’ transformation are shown in Fig. 3. The
eigenfunction expansion results in series divergence since
term by term differentiation with respect to x is not
permissible. After including the boundary terms by
using Stokes’ transformation, the series converges to the
exact solution by using the diamond rule. The slopes are
obtained by using the quasi-static decomposition
method and the Stokes’ transformation; both methods
present the Gibbs phenomenon at x = 1-25m and
x =3-75m, where discontinuity occurs due to the
interfaces between the silent area and unsilent area.
Only the diamond rule can describe the discontinuity
very well since the solution is separately described in
each region. The zoom view of the local profile by using
quasi-static decomposition, Stokes’ transformation,
eigenfunction expansion and the diamond rule are
shown in Fig. 4 at x = 1-25m only since antisymmetry
at x = 3-75m is known.

The contour plot for u(x, ) by using (a) the diamond
rule, (b) the eigenfunction expansion, (c) the Cesaro
treatment, (d) the quasi-static decomposition method
and (e) the Stokes’ transformation are shown in Fig.
5(a)—(e), respectively. All of the five figures from (a) to
(e) agree very well and show the same silent area in the
shadow triangle. Figure 5(b) shows the Gibbs phenom-
enon of two boundary layers near x = 0m and x = 5m,
which can be diminished by the Cesaro treatment as
shown in Fig. 5(c). Figure 6 shows the velocity profile by
using quasi-static decomposition, Stokes’ transforma-
tion and the diamond rule at ¢ = 0-625s. It is found that
the Gibbs phenomenon is also present near x = 1-25m
and x = 3-75m, where discontinuity occurs due to the
interfaces between the silent area and unsilent area.
Figure 7 shows the zoom view of the local velocity
profile near x = 1-25m by using the quasi-static decom-
position, Stokes’ transformation and the diamond rule.
Figure 8 shows the velocity profile by eigenfunction
expansion and the diamond rule at 7= 0-625s. The
Gibbs phenomenon is found at four positions for
eigenfunction expansion method, not only at the
boundary points x =0m and x=5m, but also at
the interface points x = 1-25 and 3-75m. Figure 9 shows
the local velocity profile near x = 1-25m by using
eigenfunction expansion method and the diamond
rule. Figure 10 shows the local velocity profile near
x=0m by using eigenfunction expansion and the
diamond rule. Comparing Fig. 8 with Fig. 3, it is
found that termwise differentiation with respect to time
is permissible for the eigenfunction expansion method
instead of series divergence for differentiation with
respect to x in Fig. 3. The displacement profile in Fig.
2 and the velocity profile in Fig. 8 both present the
Gibbs phenomenon at x = 0 and 5m for eigenfunction
expansion. In Fig. 6, the velocity profile presents the
Gibbs phenomenon at x = 1-25 and 3-75m for both the
quasi-static decomposition method and the Stokes’
transformation method although the Gibbs phenom-
enon does not exist at the boundary points x = 0 and
x =1

6 CONCLUSIONS

The dual series representations for intial-boundary value
problems of dynamic elasticity have been proposed, and
a string example has demonstrated its validity. Dual
series representation (DSR) can be seen as an extension
of dual integral equations (DIE). The Cauchy principal
value in DIE is transformed into the convergence in the
mean for the Gibbs phenomenon in DSR, and the
Hadamard principal value for dealing with the divergent
integral in DIE is similar to using the Stokes’
transformation to avoid the divergent series in DSR.
Also, the regularization technique of Cesdro mean can
extract the finite part. Available techniques have been
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compared with the proposed method, and the results are

sati

sfactory. The method of Stokes’ transformation is

recommended not only because of its convergence rate,

but

also because it is free from determining the quasi-

static solution. The technique has been successfully
applied to flexural beam."’
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