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Further development of a novel mesh-free method for eigenvalue analysis of thin plate
structures with complicated shapes is presented in this paper. A mesh-free method used
the moving Kriging interpolation technique for constructing the shape functions, which
possess the Kronecker’s delta property, is formulated. Thus, it makes the present method
efficient in enforcing the essential boundary conditions and none of any special techniques
are required. The present plate theory followed the classical Kirchhoff’s assumption and
the deflection is in general approximated through the moving Kriging interpolation.
Also, the mesh-free formulations for the vibration problem are formed in a simple way as
finite element methods. The orthogonal transformation technique is used to implement
the essential boundary conditions in the eigenvalue equation. A standard weak form is
adopted to discrete the governing partial differential equation of plates. Some numeri-
cal examples are attempted to demonstrate the applicability, the effectiveness, and the
accuracy of the method.
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1. Introduction

Plate structures usually play an important role in a variety of structural mechanics.
The applications of such plates generally are of great importance and usefulness in
reality. Normally, finding an exact solution for these plate structures by analytical
approaches is obviously very difficult. Due to significant advantages of the comput-
ers and numerical methods one now tends to find an approximate solution rather
than the exact one. However, they are always in great demand by the engineer-
ing inherent discipline. Numerical methods such as finite element methods (FEM)

∗Corresponding author.

21

http://dx.doi.org/10.1142/S1758825111000853


February 9, 2011 13:18 WSPC-255-IJAM S1758-8251 S1758825111000853

22 T. Q. Bui & M. N. Nguyen

have been successfully applied to analyze thin structures. However, it is not easy
to conveniently construct conformable plate element, i.e., C1 consistency of higher
order as required for thin plates. Among the numerical methods, the extended finite
element method (X-FEM) was recently proposed by Belytschko and Black [1999]
and soon after promoted by Moes et al. [1999] by substantially adding an appropri-
ate enrichment function into the traditional finite element approximation function
in terms of the concept of partition of unity introduced by Melenk and Babuska
[1996]. The X-FEM is mainly aimed to model discontinuities. Also, a new class of
mesh-free methods [Atluri, 2004; Atluri et al., 1998; Belytschko et al., 1994; Liu,
2003; Li and Liu, 2004] has emerged as an alternative way for solving partial dif-
ferential equations using a set of scattered nodes in the problem domain regardless
of “element” or “mesh”. It has been extensively used for many different problems
in engineering. However, most recent mesh-free methods have the same problem of
the lack of the Kronecker’s delta property. This evidently leads to a difficulty in the
enforcement of the essential boundary conditions.

Thus, it is easily seen that many efforts have been devoted in order to eliminate
the difficulty in enforcing the boundary condition in various ways such as Lagrange
multipliers [Belytschko et al., 1994], penalty method [Liu, 2003], coupling with the
FEM [Belyschko et al., 1995], etc. The present study is a further development from
previous works [Bui et al., 2009], for free vibration analysis of classical plates using
the meshless moving Kriging interpolation method. One of the superior advantage
of the present method over the conventional methods, e.g., moving least-square
approximation, is that the capability of getting rid of such drawback of imposing the
boundary conditions. In other words, most mesh-free methods have developed based
on the displacement-based approaches. In contrast, an equilibrium-based mesh-free
model based on a stress approach has been developed for elastic problems [Duflot
et al., 2002; Bui, 2005; Bui et al., 2006].

A large number of studies accounted for plate structures have been reported.
They can easily be found in the literature and some of them are reviewed as follows:
the authors recently used the method to static flexural investigation of Kirchhoff
plates [Bui et al., 2009]. Krysl and Belytschko [1995] extended the element-free
Galerkin method to static analysis of thin plates. Liu and Chen [2001] further
applied the element-free Galerkin (EFG) method to static and free vibration anal-
yses of thin plates with complicated shapes. Chen et al. [2004] proposed a meshless
method accounted for the free vibration analysis of circular and rectangular clamped
plates using radial basis function. Liu et al. [2006] developed the mesh-free Hermite-
type radial point interpolation method, and later the method was further extended
by Cui et al. [2009] embedding the smoothing strain technique in such a problem.
Leitão [2001] also developed a meshless method for static analysis of the Kirch-
hoff plate bending problems. Liew et al. [2004] and Liew et al. [1997] proposed the
moving least-squares differential quadrature method and introduced the differential
cubature method, respectively. Meshless LBIE formulations for simply supported
and clamped plates under dynamic loading is studied by Sladek et al. [2003] while
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Simkins et al. [2004] employed the reproducing kernel element method in terms of
globally compatible Cn (n ≥ 1) triangular hierarchy. Zhou et al. [2006] performed
the free vibration of rectangular plates with continuously distributed spring-mass.
Recently, Cui et al. [2010] proposed an attractive technique based on the incor-
poration of various smoothing techniques and radial point interpolation method to
static and free vibration analysis of thin plates without rotations, degrees of freedom
(DOFs), etc.

As mentioned earlier, the paper addresses an alternative approach for construct-
ing the shape functions; the moving Kriging (MK) interpolation is employed which
[Gu, 2003] is pioneered. In fact, MK is a well-known geostatic technique for spa-
tial interpolation in geology and mining but its application in mesh-free methods to
structural problems is still young and potential. Gu [2003] successfully demonstrated
the applicability of the MK interpolation solving a simple problem of steady-state
heat conduction. Dai et al. [2003] then made a comparative study between the
radial point and the Kriging interpolations for elasticity. A novel approach — Local
Kriging (LoKriging) method is introduced by Lam et al. [2004] for two-dimensional
cases, where the local weak form of the partial differential governing equations is
used. Li et al. [2004] had further extended the LoKriging method for dynamic anal-
ysis of structures. Furthermore, some other investigations of the present method to
solid mechanics and shell structures are examined by Tongsuk and Kanok-Nukulchai
[2004a,b], and Sayakoummane and Kanok-Nukulchai [2007], respectively. Recently,
Nguyen [2007] also successfully applied the MK-based mesh-free method to numer-
ical simulation of classical thin plates.

The objective of the current work is to further develop the MK-based mesh-
free method for other problems, and here for eigenvalue analysis of the thin plate
structures with different complicated geometric shapes. Several numerical examples
are considered in detail. Based on the best knowledge of the authors, no such task
has been analyzed once this work is being reported.

2. Mesh-Free Moving Kriging Interpolation Method
for Free Vibration

2.1. MK shape functions construction

In this section, the MK interpolation used for constructing the shape functions and
their derivatives is briefly presented. For detailed description of other features one
can refer to Gu [2003], Bui et al. [2009], and Tongsuk et al. [2004a,b]. Basically,
the idea of the MK method is similar to that of the MLS, it is to approximate
distribution functions u(xi) in a subdomain Ωx, so that Ωx ⊆ Ω. It also implies
that these values can be interpolated based on all nodal values xi (i ∈ [1, n]), with
n the total number of the nodes in Ωx. The MK interpolation uh(x), ∀x ∈ Ωx is
defined as

uh(x) = [pT(x)A + rT(x)B]u(x) (2.1)
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or

uh(x) =
n∑
I

φI(x)uI (2.2)

with φI(x) being the MK shape functions and defined by

φI(x) =
m∑
j

pj(x)AjI +
n∑
k

rk(x)BkI . (2.3)

The matrices A and B given in Eq. (2.1) are determined by

A = (PTR−1P)−1PTR−1 (2.4)

and

B = R−1(I − PA) (2.5)

where I is a unit matrix and the vector p(x) is the polynomial with m basis functions

p(x) =
{
p1(x) p2(x) · · · pm(x)

}T
(2.6)

For more clarification, on the one side, the matrix P of size n×m is the collected
values of the polynomial basis functions presented in Eq. (2.6) at the given set of
nodes

P =




p1(x1) p2(x1) · · · pm(x1)
...

...
. . .

...

p1(x2) p2(x2) · · · pm(x2)

p1(xn) p2(xn) · · · pm(xn)


 (2.7)

and r(x) in Eq. (2.1) is also given as

r(x) =
{
R(x1,x) R(x2,x) · · · R(xn,x)

}T
(2.8)

In Eq. (2.8), R(xi,xj) is defined as the correlation function between any pair
of the n nodes xi and xj ; it is denoted as belonging to the covariance of the field
value u(x) : R(xi,xj) = cov[u(xi)u(xj)] and R(xi,x) = cov[u(xi)u(x)]. There exist
many functions which could be used as a correlation function [Gu, 2003]. However,
a Gaussian function is simply and widely used. A correlation parameter θ is then
introduced to best fit the model

R(xi,xj) = e−θr2
ij (2.9)

where rij = ‖xi − xj‖ and θ > 0 is a correlation parameter. In this study, the
quadratic basis function pT(x) = [1 x y x2 y2 xy] is adopted to be used in
numerical implementations. In addition, the form of Gaussian exponential correla-
tion functions is provided by Giunta and Watson [1998].

R(xi,xj) = exp

[
−

m∑
k=1

θk‖xi − xj‖2

]
(2.10)
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In Eq. (2.10), the correlation parameter θ > 0 is obtained by maximizing the
following function:

θ = max
(−n ln(η2) + ln(|R|)

2

)
(2.11)

where the covariance η within Eq. (2.11) is ignored in this study. The quality of MK
is heavily influenced by the correlation parameter θ. This correlation factor is stud-
ied in more detail in numerical analysis section. In addition, matrix R[R(xi,xj)]n×n

is also given in an explicit form

R[R(xi,xj)] =




1 R(x1,x2) · · · R(x1,xn)
R(x2,x1) 1 · · · R(x2,xn)

...
...

. . .
...

R(xn,x1) R(xn,x2) · · · 1


 (2.12)

With respect to Kirchhoff plate problems, apart from the requirement of the
first-order derivatives, the second-order derivatives are also necessary to be formed.
These partial derivatives can be easily obtained by the derivatives of Eq. (2.3)
against xi

φI,i(x) =
m∑
j

pj,i(x)AjI +
n∑
k

rk,i(x)BkI (2.13)

φI,ii(x) =
m∑
j

pj,ii(x)AjI +
n∑
k

rk,ii(x)BkI (2.14)

In addition, it would be interesting in seeing how the MK shape functions and
their derivatives up to second order look like, and Fig. 1 is made for such purpose.

2.2. Radius of influence domain

One of the other important things in meshless methods is the concept of influence
domain where an influence domain radius is assigned to determine the number of
scattered nodes within an interpolated domain of interest. In fact, no exact rules can
be totally determinable to all types of nodal distributions. As studied previously
this issue has a significant effect on the solution. Therefore, it should be chosen
somehow to ensure that the problems can be converged. They might also be found
in such a similar manner [Liu, 2003]. Often, the following formula is used to compute
the size of the support domain.

dm = αdc (2.15)

where dc is a characteristic length relative to the nodal spacing close to the point
of interest while α stands for a scaling factor.
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Fig. 1. The MK shape function (top-left) (a), second-order derivatives corresponding to xx-
directions (top-right) (b), yy (bottom-left) (c), and xy (bottom-right) (d) with pT(x) =
[1 x y x2 y2 xy].

2.3. Effect of the correlation parameter on shape functions

In this section, another important point concerning the influence of the correlation
parameter given in Eq. (2.11) on the quality of the shape functions is briefly illus-
trated in two-dimensional setting. Normally, the accuracy of solutions is dependent
on the quality of the shape functions. This is therefore evaluated by numerical inves-
tigations in the numerical part. The consideration of this issue in one dimension can
also be found in the work by Bui et al. [2009] for detail. In the following, Fig. 2
shows a part of the MK shape functions at the corner with four different specified
correlation parameters: 0.1, 20, 100, and 1000, respectively. It is evident that the
smoothing feature of the shape functions is significantly affected by the correlation
parameter. With θ = 0.1, 20, the shape functions are smoother than the others,
e.g., θ = 100, 1000. Note that the choice of this parameter totally depends on the
experience of analysts.

In practice, deriving optimal values of the correlation parameter for all problems
is very difficult. It varies from one to another problem and in theory there are
no exact rules to get such a single optimal value for all problems. Hence, it is of
interest to alternatively evaluate the correlation parameter so that there should
exist an acceptable range on its magnitude to ensure consistency in the quality of
the results.

3. Discrete Governing Equation

The governing equations and discretization of the Kirchhoff thin plates are essen-
tially presented in this section. Consider a plate of Ω under a Cartesian coordinate
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Fig. 2. Influence of the correlation parameter vs. the quality of MK shape function. θ =
0.1, 20, 100, and 1000 correspond to the top-left, top-right, bottom-left, and bottom-right, respec-
tively.

system; the deflections of the plate in the x-, y-, z-directions are denoted as u, v, w,
respectively. The plate is represented by a set of scattered nodes in the problem
domain of interest. The deflection w(x) with x = {x, y}T is directly approximated
using parameters of nodal deflection wI expressed as

wh(x) =
n∑
I

φI(x)wI with x ∈ Ω (3.1)

where the φI(x) are known as the mesh-free MK shape functions given in Eq. (2.3),
where n is the number of scattered nodes in the support domain at the point of
interest.

The dynamic equilibrium equation of a plate in a strong form for homogeneous
and isotropic can be represented in a fourth-order equation as

Dt∇4w + ρhẅ = qz (3.2)

where ρ and qz denote the mass density of the materials and the lateral loading,
respectively, and

Dt =
Eh3

12(1 − ν2)
(3.3)

is the flexural rigidity, and E, ν, and h are the Young’s modulus, the Poisson’s ratio,
and the thickness of the plate, respectively. The constitutive equations representing
the relationship between the strains and stresses are generally expressed in terms
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of the generalized Hooke’s law [Liu, 2003; Liu and Chen, 2001] as

σp = Dεp (3.4)

where D is the matrix of constants relative to the material property and the thick-
ness of the plate, σp and εp are defined as pseudostrains and pseudostresses. For
homogeneous plate, they simply have

D = Dt




1 ν 0

ν 1 0

0 0 (1 − ν)/2


 (3.5)

εp =
{
−∂2w

∂x2
−∂2w

∂y2
−2

∂2w

∂x∂y

}T

= Lw (3.6)

σp =
{
Mx My Mxy

}T
(3.7)

In Eq. (3.7), Mx, My, and Mxy are components of bending moments and twisting
moment, respectively. By means of the Kirchhoff’s plates assumption, the deflection
w(x) can be independently variable, whereas the other two displacement compo-
nents u(x) and v(x) can be extracted from w(x). The displacement fields of the
Kirchhoff plate also have

u = {u v w}T =
{
−z

∂w

∂x
−z

∂w

∂y
w

}T

= L̂Tw (3.8)

For free vibration analysis, the weak Galerkin form of the elastodynamic
undamped equilibrium equation can be written as [Liu, 2003]∫

Ω

δεT
p σpdΩ +

∫
Ω

δuTρüdΩ = 0 (3.9)

It is noted that free external forces are taken into account for the free vibration
analysis of the plate. The dynamic variational form Eq. (3.9) can be rewritten as∫

Ω

δ(Lw)TD(Lw)dΩ +
∫

Ω

δ(L̂w)TρL̂ẅdΩ = 0 (3.10)

Substituting the deflection field w in Eq. (3.1) into the variational form shown in
Eq. (3.10), the final undamped dynamic discrete equation for free vibration analysis
is obtained as follows

Mẅ + Kw = 0 (3.11)

where w,K, and M are the vectors of general nodal deflections, the global stiffness,
and the mass matrices, respectively. They are

KIJ =
∫

Ω

BT
I DBJdΩ (3.12)
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MIJ =
∫

Ω

(ρφIφJh + φI,xφJ,xI + φI,yφJ,yI)dΩ (3.13)

BI =
{−φI,xx −φI,yy −2φI,xy

}T
(3.14)

where I = ρ(h3/12) is the mass moment of inertia for the homogeneous plate. It is
noteworthy that the first team of Eq. (3.13) is the mass inertia corresponding to
the vertical translational vibration. In the case where the thickness of the plate is
too small, a very thin plate, the other two teams in the mass matrix standing for
rotational inertia corresponding to the rotational vibration can be neglected [Liu,
2003]. As a consequence, a general solution of such a homogeneous equation can be
written as

w = w̄iωt (3.15)

where i is the imaginary unit, t indicates time, w̄ is the eigenvector, and ω is natural
frequency. Inserting Eq. (3.15) into Eq. (3.11), the natural frequency ω of the plates
can be found by solving the following eigenvalue equation:

(K − ω2M)w̄ = 0 (3.16)

The orthogonal transformation technique presented by Liu and Chen [2001] is
also used to implement the essential boundary condition in the eigenvalue equation.
From here, it can be easily seen that the obtained present formulations for free
vibration analysis of thin plates are simple and similar as the traditional FEM.

4. Numerical Results

The applicability of the proposed method is illustrated by solving various examples
of thin plates with different geometries of complicated shapes. The accuracy of the
results is very important compared with other numerical approaches and the ana-
lytical solutions available in the literature. Four examples are taken into account
including a square, a L-shape, a square plate with a complicated hole, and a square
plate with four closed holes subjected to the completely free and simply supported
boundary conditions. The influence of the scaling factor and the correlation param-
eter on natural frequencies is also considered.

Only the completely free and the simply supported boundaries are considered
throughout the paper, whereas the clamped boundary is not available due to the
lack of deflection derivatives in the interpolation functions. The deflection deriva-
tives, i.e., two rotations, must be defined as unknown variables in the interpolation
functions. However, these derivatives cannot be imposed directly because no infor-
mation of such derivatives is involved in the MK approximation functions given in
Eq. (2.1). Nevertheless, one possible strategy has been suggested by Liu et al. [2006]
and Cui et al. [2009] by introducing an efficient Hermite-type technique embedded
in the RPIM, where both deflection and its derivatives are defined as field variables
in the interpolation functions. The other strategy is based on the recent work of Cui
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et al. [2010] who introduced a very interesting study of a development incorporated
between various types of smoothing techniques and the radial point interpolation
method. The present MK technique might use a similar remedy but it demands a
development evidently. However, all these tasks are in general more challenging and
beyond the scope of the present work.

4.1. Square plate

As seen above the present work is mainly concentrated on free vibration analysis
of plates with complicated shapes. For completeness, a thin square plate is consid-
ered as the first numerical example with the following parameters: a = b = 10m,
the thickness h = 0.01m, Young’s modulus E = 2 × 1011 N/m2, Poisson’s ratio
ν = 0.3, and the mass density ρ = 8000kg/m3 [Cui et al., 2010]. The frequencies
are calculated by the present method for both regular and irregular distributions of
289 nodes subjected to the completely free and the simply supported boundaries.
For all the computations, a background cell of 16 Gaussian points is chosen for the
purpose of numerical integrations. A scaling factor of 2.8 interpreting the size of the
support and a correlation parameter of 5 are used. The natural frequency coefficient
(NFC) defined as Ω1 = (ω2ρha4/Dt)1/4 is used. The results of the completely free
and the simply supported boundaries are presented in Tables 1 and 2, respectively.
In Table 1, the first three frequencies corresponding to rigid displacements are zero
and not listed in the table. In Table 2, the first ten frequencies are presented. All
the results are compared with the analytical solutions [Abbassian et al., 1987] and
the RPIM based on smoothed techniques [Cui et al., 2010]. As a result, a very
good agreement for both the completely free and the simply supported boundaries
is obtained.

4.2. L-shape plate

4.2.1. Free boundary condition

The second example deals with a L-shape thin plate whose geometric parameters
are depicted in Fig. 3. A scaling factor of 2.5 and a correlation parameter of 20 are

Table 1. A comparison of the NFCs of the completely free square plate among the
present, the smoothed-RPIM methods, and the exact solutions.

Mode Exact NS-RPIM ES-RPIM CS-RPIM Present: 289 nodes

Regular Irregular

4 3.670 3.667 3.671 3.667 3.671 3.679
5 4.427 4.396 4.405 4.414 4.421 4.436
6 4.926 4.914 4.911 4.916 4.930 4.938
7 5.929 5.883 5.875 5.877 5.927 5.962
8 5.929 5.898 5.894 5.892 5.927 5.962
9 7.848 7.761 7.762 7.780 7.862 7.923

Note: The first three frequencies corresponding to rigid displacements are not listed.
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Table 2. A comparison of the NFCs of the simply supported square plate among
the present, the smoothed-RPIM methods, and the exact solutions.

Mode Exact NS-RPIM ES-RPIM CS-RPIM Present: 289 nodes

Regular Irregular

1 4.443 4.439 4.443 4.443 4.444 4.469
2 7.025 7.003 7.020 7.026 7.026 7.154
3 7.025 7.008 7.025 7.029 7.026 7.154
4 8.886 8.861 8.880 8.884 8.895 8.946
5 9.935 9.887 9.930 9.948 9.923 9.955
6 9.935 9.890 9.930 9.949 9.924 9.982
7 11.327 11.264 11.308 11.323 11.313 11.381
8 11.327 11.287 11.322 11.335 11.315 11.911
9 12.953 12.867 12.951 12.984 12.933 12.977

10 12.953 12.869 12.951 12.985 12.949 13.018

Fig. 3. The geometric parameters of the thin L-shape plate.

indicated in the computation. Both regular and irregular distributions of nodes are
taken and two patterns of 121 and 289 nodes are shown in Fig. 4. The thickness
h = 0.05m is taken and other material parameters are the same as the square plate.
Because no exact solution for this problem is available, an extra solution performed
through the standard EFG is implemented as assumed to be a reference one. The
implemented results obtained of both methods are listed in Table 3, in which the
first three frequencies corresponding to rigid displacements were not listed. A good
agreement between the EFG and the proposed methods can be found accordingly.

An investigation of the influence of the scaling factor and the correlation param-
eter on the frequencies is also examined and their computed NFCs results are pre-
sented in Tables 4 and 5, respectively. As it can be observed from the achieved
results, the acceptable solutions can be obtained with a value of 2 ≤ α ≤ 4 for
the scaling factor and a value of 1 ≤ θ ≤ 100 for the correlation parameter. While,
with α = 6, which probably affects on the amount of scattered nodes inside the
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Fig. 4. Nodal distributions in the plate with regular and irregular nodal distributions: 121 (top)
and 289 (bottom).

Table 3. A comparison of the NFCs of the free L-shape plate between the standard EFG and
the present methods.

Mode EFG Present method EFG Present method

Regular 121 Regular 121 Irregular 121 Regular 289 Regular 289 Irregular 289
nodes nodes nodes nodes nodes nodes

4 4.0221 4.0456 3.9686 3.9796 3.9694 3.9367
5 4.1987 4.2152 4.2076 4.1790 4.1284 4.1375
6 5.2698 5.2752 5.1796 5.2253 5.2122 5.1946
7 5.8585 5.7393 5.7176 5.8294 5.7109 5.6955
8 7.9138 7.7085 7.5818 7.7726 7.6153 7.5736
9 7.9171 7.9748 7.9090 7.8009 7.7838 7.7563

10 8.1853 8.3407 8.2354 8.0450 8.1233 8.0955

Note: The first three frequencies corresponding to rigid displacements are not listed.

influence domain which leads to an expensive computation and a certain influence
to the interpolation, a higher error can be seen in this case. It is also found that
the error is increased once θ > 100. Figure 5 presents the first 20 eigenmodes of the
L-shape plate computed by the present method.
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Table 4. The variation of NFCs vs. the scaling factor α of free thin L-shape
plate compared to EFG.

Mode EFG 289 nodes Proposed method

α = 2.0 α = 2.5 α = 3.0 α = 4.0 α = 6.0

4 3.9796 3.9647 3.9694 3.9566 3.9684 4.1616
5 4.1790 4.1189 4.1284 4.1300 4.0911 4.5680
6 5.2253 5.1950 5.2122 5.1958 5.1683 5.9701
7 5.8294 5.7497 5.7109 5.6487 5.6135 6.3310
8 7.7726 7.6444 7.6153 7.4568 7.3882 8.1275
9 7.8009 7.6944 7.7838 7.7672 7.5839 8.5850

10 8.0450 7.9518 8.1233 8.1239 7.9841 9.0283

Note: The correlation coefficient θ = 20 is fixed.

Table 5. The influence of the correlation parameter θ on the natural frequency of free
L-shape plate.

Mode EFG 289 nodes Proposed method

θ = 1 θ = 5 θ = 20 θ = 100 θ = 300 θ = 1000

4 3.9796 3.4265 3.9116 3.9694 4.0030 4.5462 4.8670
5 4.1790 4.0544 4.1015 4.1284 4.1384 4.9859 5.1912
6 5.2253 4.7954 5.1335 5.2122 5.2361 5.7817 6.2718
7 5.8294 4.9047 5.4999 5.7109 5.7564 6.7666 6.9264
8 7.7726 5.8793 7.0423 7.6153 7.7868 8.6528 8.8990
9 7.8009 7.6907 7.6762 7.7838 7.7870 9.0452 9.2715

10 8.0450 8.0295 8.0200 8.1233 8.1093 9.7615 9.8971

Note: The scaling factor α = 2.8 is specified.

4.2.2. Simply supported boundary condition

The simply supported boundary for the thin L-shape plate is now considered. The
problem is performed in the same manner as the free one above but the simply
supported boundary condition is taken instead. The computed results gained by
the MK-based mesh-free method are presented in Table 6, in which a comparison of
the NFCs to that of the standard EFG for both regular and irregular nodal systems
is given. The first six eigenmodes of the plate are provided in Fig. 6, and the
influence of the scaling and the correlation coefficients on frequencies are presented
in Tables 7 and 8, respectively. Figure 7 shows the results of the effect of the
correlation parameter on the natural frequencies. A good agreement between the
two methods is found. The same conclusion for the scaling and the correlation
parameters given in the previous example is obtained. This implies that 2 ≤ α ≤ 4
and 1 ≤ θ ≤ 100 should be chosen in practice so that the method can give a good
solution; otherwise a high error is encountered.

4.3. Thin plate with a complicated shaped hole

A thin plate with a hole of complicated shape is considered as the next numerical
example in this section. The geometric relevant parameters found in the studies of
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Fig. 5. The first 20 eigenmodes of the free L-shape plate computed by the present method.

Table 6. A comparison of the NFCs of the simply supported L-shape plate
between the standard EFG and the present methods (α = 2.7; θ = 5).

Mode EFG Present EFG Present
121 nodes 289 nodes

Regular Regular Irregular Regular Regular Irregular

1 6.7607 6.9326 6.9392 6.7649 6.8204 6.8040
2 8.2725 7.7894 7.8957 8.0319 7.9560 7.9417
3 8.9095 8.4547 8.6027 8.8821 8.4489 8.4342
4 10.9712 10.8628 10.8276 10.8853 10.4509 10.4768
5 11.5757 11.7246 11.6174 11.5584 11.1064 11.1182
6 13.1187 13.7591 13.3853 13.0156 13.2219 13.0766
7 14.1088 14.1065 13.8371 13.7309 13.3820 13.2651
8 14.2289 14.4653 14.0787 14.0279 13.9626 13.9128
9 14.4581 14.4930 14.4142 14.0442 14.0655 14.0117

10 15.5902 15.5424 15.2822 15.1630 15.2255 15.2521
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Fig. 6. The first six eigenmodes of the simply supported L-shape plate computed by the present
method.

Table 7. The variation of the NFCs Ω1 vs. the scale factor α of the
simply supported thin square plate compared to the EFG.

Mode EFG 289 nodes α = 2.0 α = 2.5 α = 3.0 α = 4.0 α = 6.0

1 6.7649 6.8624 6.9804 6.8970 6.8366 7.1091
2 8.0319 7.6931 7.6560 7.5724 7.5462 7.8038
3 8.8821 8.6780 8.4089 8.1664 8.2053 9.0604
4 10.8853 10.5660 10.4509 10.2241 10.2691 11.1771
5 11.5584 11.2836 11.1064 10.7933 11.1870 12.2067
6 13.0156 12.7517 13.2219 13.2027 12.7896 13.9051
7 13.7309 13.0121 13.3820 13.3066 13.1278 14.5426
8 14.0279 13.5061 13.5626 13.3517 13.5406 15.1431
9 14.0442 13.5089 13.5655 13.4204 13.5542 15.8912

10 15.1630 14.5118 14.3255 14.0200 14.9677 16.5266

Note: The correlation coefficient θ = 20 is fixed.
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Table 8. Variation of natural frequency coefficients vs. the correlation parameters of
the simply supported thin L-shape plate.

Mode EFG 169 nodes Proposed method

θ = 1 θ = 5 θ = 20 θ = 100 θ = 300 θ = 1000

1 6.765 7.594 6.905 6.987 7.183 7.789 8.892
2 8.262 8.245 7.522 7.694 8.100 8.962 10.367
3 8.913 8.608 8.062 8.353 9.027 10.517 12.567
4 11.047 12.219 10.267 10.625 11.325 12.907 15.579
5 11.669 14.386 11.111 11.360 12.309 14.444 17.703
6 13.266 15.445 13.215 13.553 14.031 15.351 18.850
7 14.238 16.360 13.481 13.794 14.511 16.111 19.900
8 14.321 18.705 13.796 14.067 15.020 17.610 22.091
9 14.347 18.971 13.808 14.097 15.052 17.681 22.360

10 15.343 22.010 15.056 14.983 16.341 20.355 26.515

Note: The scaling factor α = 2.8 is indicated.

Fig. 7. Variation of the NFCs vs. the correlation parameter θ of the simply supported thin L-
shape plate.

Liu [2003] and Liu and Chen [2001] are employed. Two distributions of 134 and
506 nodes are given in Fig. 8. Other parameters concerning the materials are the
same as the L-shape plate. A scaling factor of 3.0 and a correlation parameter of
40 are specified in the implementation. Similarly, we calculate the NFCs Ω1, and
the results for the completely free boundary conditions are presented in Tables 9
and 10 considering two important parameters θ and α, respectively. The first six
eigenmodes of the free boundary condition is plotted in Fig. 9. It is noted that
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Fig. 8. Nodal distribution in the plate with a complicated shape hole: 134 nodes (left) and 506
nodes (right).

Table 9. Variation of the NFCs vs. the correlation parameters
θ of the completely free thin plate with a hole of complicated
shape.

Mode Present method

θ = 1 θ = 5 θ = 20 θ = 100 θ = 300 θ = 500

4 3.3260 3.3673 3.3935 3.3611 3.2673 3.0739
5 3.8577 4.0450 4.2488 4.1978 3.8586 3.5723
6 4.8282 5.4967 5.9120 5.8246 4.8038 4.3518
7 5.4868 6.1095 7.3990 7.3216 5.6005 5.0498
8 5.5526 6.1952 7.7121 7.5118 5.6496 4.9870
9 7.2031 8.2838 9.1309 8.8514 7.2605 6.8500

10 7.7305 9.0642 9.7893 9.4577 7.7695 7.0581

Note: The scaling factor α = 3.0 is taken.

Table 10. The variation of NFCs Ω1 vs. the scale factor α of the
completely free thin plate with a complicated shape hole.

Mode Present method

α = 2.0 α = 2.5 α = 3.0 α = 4.0 α = 6.0

4 3.3131 3.3583 3.3931 3.4734 4.2910
5 3.9969 4.1419 4.2773 4.3816 5.0821
6 5.3207 5.7263 5.9362 6.0500 6.9711
7 5.9603 6.5888 7.6390 10.7430 11.8624
8 5.9905 6.7516 8.0050 11.2122 12.0092
9 8.0102 8.6230 9.2254 12.6081 14.1772

10 8.5670 9.3449 9.8929 13.3977 17.5241

Note: The correlation coefficient θ = 40 was fixed.
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Fig. 9. The first six eigenmodes of the free thin plate with a complicated hole obtained by the
proposed method.

the first three frequencies corresponding to the rigid displacements are not listed
in the tables. In Fig. 9, these rigid displacements are also involved to illustrate the
accurate implementation of the proposed method.

For the simply supported boundary condition, the results correspondingly
obtained by the present method are presented in Table 11 and Fig. 10, in which a
comparison with the result studied by Liu and Chen [2001] for the case of S-S-S-S
boundary condition is found. A good agreement is observed evidently. The first 20
eigenmodes is also presented in Fig. 11.

4.4. Thin plate with four holes

The last numerical example examining a thin plate with four holes as depicted in
Fig. 12 including its nodal distributions 131 and 457, respectively, is considered. The
material parameters are the same as the L-shape plate. As above, the completely



February 9, 2011 13:18 WSPC-255-IJAM S1758-8251 S1758825111000853

Eigenvalue Analysis of Thin Plate with Complicated Shapes 39

Table 11. A comparison of natural frequency coefficients Ω1 of
the simply supported thin plate with a complicated hole between
the EFG and the present methods (α = 3; θ = 40).

Mode Liu and Chen [2001] S-S-S-S Present method

134 nodes 506 nodes

1 5.453 5.3647 5.3898
2 8.069 7.4907 7.5023
3 9.554 8.0340 8.3470
4 10.099 10.2125 10.6358
5 11.328 10.9203 11.0484
6 12.765 12.7610 12.8945
7 13.685 12.8975 13.7100
8 14.305 13.6332 14.0620
9 15.721 15.5574 16.6492

10 17.079 16.2277 17.3641

Fig. 10. Comparison of the NFCs of the simply supported thin plate with a complicated shape
hole between the present method and the EFG studied by Liu and Chen [2001].

free and the simply supported boundary conditions are considered. Because no
exact solutions are available for this configuration example, an appropriate solution
based on the FEM (ANSYS) with a very fine mesh (95355 degrees-of-freedom —
DOFs) as a reference solution, is assumed to be as close as a pseudo-analytical
solution. Tables 12 and 13 show the results of natural frequencies implemented by
the FEM and the present method, respectively. A very good agreement is obtained.
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Fig. 11. The first 20 eigenmodes of the simply supported thin plate with a complicated shape
hole obtained by the proposed method.

1 1 1 1 1

1

1

1

1

1

(a)

Fig. 12. The geometry (a) and nodal distributions of the plate with four circular holes of 131 (b)
and 457 (c) scattered nodes.
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(b) (c)

Fig. 12. (Continued)

Table 12. A comparison of natural frequency of free thin plate
with four holes between the FEM and the present method
(α = 2.7; θ = 3.0).

Mode FEM (ANSYS 95355 DOFsa) Present method

131 nodes 457 nodes

4 30.319 32.063 29.916
5 43.119 45.878 43.110
6 50.468 54.854 50.450
7 78.583 72.673 75.550
8 78.583 72.959 75.752
9 133.944 142.686 129.065

10 133.951 148.123 134.401

aDOFs: Degrees of freedom. The first three modes corresponding
to the rigid displacements are not listed.

Table 13. A comparison of natural frequency of simply sup-
ported thin plate with four holes between the FEM and the
present method (α = 2.7; θ = 3.0).

Mode FEM (ANSYS 95355 DOFs) Present method

131 nodes 457 nodes

1 45.241 40.113 42.265
2 113.932 116.196 110.580
3 113.939 117.131 113.410
4 193.258 192.674 192.951
5 219.056 248.420 208.137
6 221.783 252.496 219.175
7 286.406 326.564 281.496
8 286.425 338.155 283.604
9 378.945 432.292 378.441

10 378.970 441.435 379.808
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(a)

Fig. 13. (a) Comparison of the first six eigenmodes between the FEM (ANSYS) (left) and the
present method (right): modes 1, 2, and 3, respectively.
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(b)

Fig. 13. (b) Comparison of the first six eigenmodes between the FEM (ANSYS) (left) and the
present method (right): modes 4, 5, and 6, respectively.
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Furthermore, the first six eigenmodes are also given in Fig. 13 and compared to the
results obtained by the FEM with a remarkable agreement.

5. Conclusion

Natural frequency analysis of classical plates by a novel mesh-free method has
been reported. Different complicated geometrical shapes of Kirchhoff plates are
successfully examined in terms of free vibration investigation. Several numerical
examples dealt with both regular and irregular nodal distributions are considered
and their results obtained are then compared with each other as well as other avail-
able approaches. A good agreement is found evidently. As a result, it successfully
demonstrated the applicability and the effectiveness of the proposed method in
natural frequency analysis of plate structures with complicated shape. The studies
have confirmed that the choice of both the correlation parameter and the scaling
factor is totally dependent upon the problems of interest. In the study, 2 ≤ α ≤ 4
and 1 ≤ θ ≤ 100 must be chosen in practice so that a reasonable solution can be
obtained. Nevertheless, it can be consequently claimed that the technique is robust,
efficient, and accurate. Application of the method for other problems such as lam-
inated composite, piezoelectric, magnetoelectroelastic materials, crack problems,
etc., is generally possible. The fully clamped boundary condition could be developed
by two possibilities, whether applied by a Hermite-type form based approximation
technique introduced by Liu et al. [2006], Cui et al. [2009], or smoothed techniques
by Cui et al. [2010].
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