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Coupling BEM/TBEM and MFS for the simulation of transient
conduction heat transfer
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SUMMARY

The coupling between the boundary element method (BEM)/the traction boundary element method
(TBEM) and the method of fundamental solutions (MFS) is proposed for the transient analysis of
conduction heat transfer in the presence of inclusions, thereby overcoming the limitations posed by each
method. The full domain is divided into sub-domains, which are modeled using the BEM/TBEM and the
MFS, and the coupling of the sub-domains is achieved by imposing the required boundary conditions.

The accuracy of the proposed algorithms, using different combinations of BEM/TBEM and MFS
formulations, is checked by comparing the resulting solutions against referenced solutions.

The applicability of the proposed methodology is shown by simulating the thermal behavior of a solid
ring incorporating a crack or a thin inclusion in its wall. The crack is assumed to have null thickness and
does not allow diffusion of energy; hence, the heat fluxes are null along its boundary. The thin inclusion
is modeled as filled with thermal insulating material. Copyright q 2010 John Wiley & Sons, Ltd.

Received 22 June 2009; Revised 20 January 2010; Accepted 23 January 2010

KEY WORDS: BEM; TBEM; MFS; coupling; transient heat diffusion

1. INTRODUCTION

The heat diffusion field generated by the release of thermal energy from transient sources, such as
those detected by the infrared thermography technique, has been studied in the past few decades.
This interest has been growing since heat diffusion patterns can be used to detect cracks, voids and
other classes of defects in materials and construction elements [1–5]. Several numerical simulation
techniques have been proposed to improve our understanding of how heat waves propagate in solid
and fluid media.
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Most of the models devised to solve transient diffusion heat problems are formulated in the
time domain (time-marching), using Laplace transforms or frequency transforms. After Chang
et al. [6], who were the first to apply a time-domain direct boundary integral method to study
planar transient heat conduction, several authors employed boundary integral approaches, based
on how the temperature and the flux values at each time step are obtained directly in the time
domain [7–10]. An alternative to time marching is to transform the time domain. Since Rizzo and
Shippy [11] proposed the boundary integral representation for transient heat conduction analysis,
based on the Laplace transform, other authors have published different solutions for diffusion-
type problems using Laplace transforms such as those presented by Cheng et al. [12] and Zhu
et al. [13, 14]. More recently, Sutradhar et al. [15] used a Laplace transform boundary element
method (BEM) approach to solve the 3D transient heat conduction in functionally graded materials,
with thermal conductivity and heat capacitance varying exponentially in one coordinate. With the
Laplace transform technique, a numerical transform inversion is required to calculate the physical
variables in the real space after the solution has been obtained for a sequence of values of the
transformed parameter. To overcome the accuracy loss in the inversion process, which magnifies
small truncation errors, Stehfest [16] has proposed a stable algorithm [14, 17].

This work concerns an approach in which a Fourier transform applied in the time domain
deals with the time variable of the diffusion equation to establish a frequency domain technique;
time solutions are obtained by using inverse Fourier transforms into time–space. The time-aliasing
phenomenon is avoided by using complex frequencies to attenuate the response at the end of the
time frame. This effect is later taken into account by re-scaling the response in the time domain
[18–20]. The use of a Fourier transform allows the problem to be seen as a combination of
harmonic heat sources elicited by different excitation frequencies. The problem is thus physically
solved as a system subjected to the propagation of heat waves. The resulting problem can be
computed efficiently because the responses decay quickly at higher frequencies. The results at
frequency 0.0Hz, the static response, can be easily computed since the argument of the functions
is complex.

Among the tools used to analyze heat diffusion in the presence of solid and fluid layering and
other complex systems are the thin layer method (TLM) [21], the finite differences method (FDM)
and the BEM [22].

Analytical solutions are known for very simple geometric and material conditions such as
homogeneous full spaces, half-spaces and circular cylindrical inclusions subjected to line or point
heat sources of constant amplitude and infinite duration. Analytical solutions can also be derived
for solving more complex systems such as layered media, walls and slabs [19, 20]. However,
the resulting integral expressions require great computational effort. These known solutions are
often used as yardsticks against which one can judge the correctness and the quality of semi-
numerical and/or discrete implementations. They can also be used in conjunction with the BEM,
as Green’s functions, to solve problems in stratified media with buried inclusions, thereby avoiding
the discretization of the layer interface boundaries.

The BEM is one of the best tools for modeling homogeneous unbounded systems since the far
field boundary conditions are automatically satisfied, requiring only the discretization of the bound-
aries of the inclusions. Hohage and Sayas [23] have proposed a numerical solution of the heat
diffusion problem using the BEM that uses the Laplace transform. Ma et al. [24] used the BEM
to study the transient heat conduction in 3D solids with fiber inclusions. The work of Wang et al.
[25] is another example of the application of the BEM where time convolution integrals are used
to compute transient diffusion.
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Although the BEM requires only boundary meshing it still needs prior knowledge of fundamental
solutions, i.e. Green’s functions, and it involves sophisticated mathematics. Its efficiency also
depends on the correct resolution of the singular and hypersingular integrals. This leads all too
often to an undesirably high computational cost.

It is also known that when the heterogeneity thickness tends toward zero, as in the case of
delaminations, small imperfections, cracks or thin defects, the conventional direct BEM degenerates
and is no longer a valid basis for a numerical calculation modeling [26]. A traction boundary element
method (TBEM) formulation is frequently implemented to overcome this problem. The TBEM is
suitable to solve wave propagation problems. Prosper [27] and Prosper and Kausel [28] used the
TBEM to model the 2D scattering of waves by flat and horizontal empty cracks of zero thickness
in elastic media. The appearance of hypersingular integrals is one of the difficulties posed by these
formulations. Various attempts have been made to overcome this difficulty [29, 30]. Amado Mendes
and Tadeu [31] solved the case of a 2D empty crack buried in an unbounded medium subjected to a
3D source. Tadeu et al. [32] subsequently proposed a combined (or dual) BEM/TBEM formulation
to solve the case of fluid-filled thin inclusions placed in an unbounded medium.

In recent years, adifferent classofnumerical techniqueshasbecomepopular, the so-calledmeshless
techniques that require neither domain nor boundary discretization [33–38]. The method of funda-
mental solutions (MFS) seems to be particularly effective for studyingwave propagation, overcoming
some of the mathematical complexity of the BEM and providing accurate solutions at substantially
lower computational cost. Godinho et al. [39] studied the performance of the MFS for simulating
the propagation of acoustic waves and heat conduction in the presence of circular geometries. They
concluded that the method can be very efficient, performing even better than the BEM for this type of
problem. Godinho et al. [40] also successfully employed the MFS to study acoustic and elastic wave
propagation around thin structures using a domain decomposition technique.More recently, theMFS
was used to simulate ground rotations along 2D topographical profiles under the incidence of elastic
plane waves [41]. Several authors have proposed the use of enrichment functions to model torsion
problems, including cracks [42]. But theMFShas its owndisadvantageous and limitations inproblems
involving thin inclusions and inclusions with twisting boundaries [40].

This work describes the coupling of the BEM/TBEM and the MFS to overcome some of the
limitations posed separately by each method. These coupling formulations are presented for the
transient analysis of heat diffusion problems in the presence of null-thickness and thin inclusions.
The full domain is divided into sub-domains, which are modeled using the BEM/TBEM and
the MFS, and the sub-domains are coupled by imposing the required boundary conditions. The
approach is implemented to solve 2D problems. Reference solutions are used to ascertain the
accuracy of the proposed coupling algorithms.

The problem is defined in the next section, and then the BEM/TBEM and MFS heat diffusion
coupling formulations are established for different inclusions buried in an unbounded medium. The
coupling formulations are first verified against solutions obtained from analytical, BEM, TBEM
and MFS formulations, used as reference solutions. Then a brief section describes how responses
in the time domain are obtained by means of the fast inverse Fourier transformation. Finally, the
applicability of the proposed method is shown by means of two numerical examples. In the first,
the TBEM/MFS coupling algorithm is used to determine the heat distribution evolution generated
by a heat source placed inside a steel-filled ring with a null-thickness crack in its concrete wall. In
the second, the (combined BEM+TBEM)/MFS coupling algorithm computes the heat diffusion
for the same system in the presence of a thin inclusion, filled with thermal insulating material and
placed within the ring.
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2. BOUNDARY INTEGRAL COUPLING FORMULATIONS

Consider two irregular two-dimensional cylindrical inclusions, 1 and 2, embedded in a spatially
uniform solid medium (Medium 1) with thermal diffusivity K1 (see Figure 1). Media 2 and 3,
inside inclusions 1 and 2, exhibit thermal diffusivities K2 and K3, respectively. Thermal diffusivity
Km is defined by km/(�m cm), where km is the thermal conductivity, �m is the density and cm is
the specific heat of each Medium m. Consider further that this system is subjected to a line heat
source placed at O (xs, ys).

The transient heat transfer by conduction in each homogeneous and isotropic medium can be
described by the diffusion equation in Cartesian coordinates,(

�2

�x2
+ �2

�y2

)
T̂ = 1

Km

�T̂
��

(1)

in which � is time, T̂ (�, x, y) is the temperature at a point (x, y) in the domain. The solution of
this equation can be obtained in frequency domain after the application of a Fourier transform in
the time domain, which leads to the following equation:

(∇2+(k�m )2)T (x, y,�)=0 (2)

where k�m =√−i�/Km , i=
√−1 and � is the frequency.

In the frequency domain, the incident heat diffusion generated at (x, y) by a source placed in
Medium 1 can be expressed by

tinc(x, y,�)= −iA

4k1
H0(k�1r1) (3)

where the subscript inc represents the incident field, r1=√(x−xs)2+(y− ys)2, A is the heat
amplitude and Hn(. . .) correspond to second Hankel functions of order n.

Figure 1. Sketch representing the geometry of the problem.
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Figure 2. Scheme representing the discretization of inclusion 1 with boundary elements. Position of virtual
heat sources and collocation points used to model inclusion 2.

2.1. BEM/MFS coupling formulation

This section describes how the coupling of the BEM and the MFS techniques is formulated to
obtain the 2D heat diffusion field generated by a heat source. Inclusion 1 is modeled using the BEM
technique, whereas inclusion 2 is modeled with the MFS. Three different boundary conditions may
be ascribed to the inclusions’ surfaces: continuity of temperatures and heat fluxes, null heat fluxes
and null temperatures.

2.1.1. Continuity of temperatures and heat flux conditions along the inclusion boundaries. Consid-
ering the inner inclusion 1, bounded by a surface S1 (see Figure 2) and subjected to an incident
temperature field tinc, the boundary integral equation can be constructed by applying the reciprocity
theorem (e.g. Manolis and Beskos [43]), leading to

(a) the exterior domain of inclusion 1 (Medium 1)

ct (1)(x0, y0,�) =
∫
S1
q(1)(x, y,nn1,�)G(1)(x, y, x0, y0,�)ds

−
∫
S1
H (1)(x, y,nn1, x0, y0,�)t (1)(x, y,�)ds+ tinc(x0, y0, xs, ys,�) (4)

In these equations, the superscript 1 corresponds to the exterior domain (Medium 1); nn1 is the
unit outward normal along the boundary S1; G and H are, respectively, the fundamental solutions
(Green’s functions) for temperature (t) and heat flux (q), at (x, y) due to a virtual heat source at
(x0, y0). tinc represents the incident heat field at (x0, y0) when the heat source is located at (xs, ys).
The factor c is a constant defined by the shape of the boundary, taking the value 1

2 if (x0, y0)∈ S1
and S1 is smooth.

Equation (4) does not yet take into account the presence of the neighboring inclusion 2, which
is modeled using the MFS. The MFS assumes that the response of this neighboring inclusion is
found as a linear combination of fundamental solutions simulating the temperature field generated
by two sets of NS virtual sources. These virtual loads are distributed along the inclusion interface
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at distances � from that boundary toward the interior and the exterior of the inclusion (lines Ĉ (1)

and Ĉ (2) in Figure 2) in order to avoid singularities. Sources inside and outside the inclusion have
unknown amplitudes a(2)

n ext and a(2)
n int, respectively. In the exterior and interior fluid media, the

temperature fields are given by

t (1)(x, y,�) =
NS∑

n ext=1
[a(2)

n extG
(1)(x, y, xn ext, yn ext,�)]

t (3)(x, y,�) =
NS∑

n int=1
[a(2)

n intG
(3)(x, y, xn int, yn int,�)]

(5)

where G(1)(x, y, xn ext, yn ext,�) and G(3)(x, y, xn int, yn int,�) are the fundamental solutions,
which represent the temperatures at points (x, y) in Media 1 and 3, generated by heat sources
acting at positions (xn ext, yn ext) and (xn int, yn int). n ext and n int are the subscripts that denote
the load order number placed along lines Ĉ (1) and Ĉ (2), respectively.

The heat field generated by this second inclusion can be viewed as an incident field that strikes
the first inclusion. Hence Equation (4) needs to be modified accordingly,

ct (1)(x0, y0,�) =
∫
S1
q(1)(x, y,nn1,�)G(1)(x, y, x0, y0,�)ds

−
∫
S1
H (1)(x, y,nn1, x0, y0,�) t (1)(x, y,�)ds+ tinc(x0, y0, xs, ys,�)

+
NS∑

n ext=1
[a(2)

n extG
(1)(x, y, xn ext, yn ext,�)] (6)

(b) the interior domain of inclusion 1 (Medium 2)

c t (2)(x0, y0,�) =
∫
S1
q(2)(x, y,−nn1,�)G(2)(x, y, x0, y0,�)ds

−
∫
S1
H (2)(x, y,−nn1, x0, y0,�) t (2)(x, y,�)ds (7)

In Equations (7), the superscript 2 corresponds to the domain inside inclusion 1.

(c) the interior and exterior domain of inclusion 2 (Media 1 and 3)

To determine the amplitudes of the unknown virtual temperature sources, a(2)
n ext and a(2)

n int, the
continuity of temperature and heat flux has to be imposed at interface S2, the boundary of inclusion
2 and at NS collocation points (xcol, ycol). This can be achieved by taking into account the heat
field generated at inclusion 1. The following two equations are then defined:∫

S1
q(1)(x, y,nn1,�)G(1)(x, y, xcol, ycol,�)ds−

∫
S1
H (1)(x, y,nn1, xcol, ycol,�)t (1)(x, y,�)ds

+tinc(xcol, ycol, xs, ys,�)+
NS∑

n ext=1
[a(2)

n extG
(1)(xcol, ycol, xn ext, yn ext,�)]
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=
NS∑

n int=1
[a(2)

n intG
(3)(xcol, ycol, xn int, yn int,�)] (8)

∫
S1
q(1)(x, y,nn1,�)

�G(1)

�nn2
(x, y,nn2, xcol, ycol,�)ds

−
∫
S1

�H (1)

�nn2
(x, y,nn1,nn2, xcol, ycol,�)t (1)(x, y,�)ds+ �tincl

�nn2
(xcol, ycol,nn2, xs, ys,�)

+
NS∑

n ext=1

[
a(2)
n ext

�G(1)

�nn2
(xcol, ycol,nn2, xn ext, yn ext,�)

]

=
NS∑

n int=1

[
a(2)
n int

k3
k1

�G(3)

�nn2
(xcol, ycol,nn2, xn int, yn int,�)

]
(9)

In these equations, nn2 is the unit outward normal along the boundary S2.

(d) final system of equations

The global solution is obtained by solving Equations ((6)–(9)). This requires the discretization of
the interface S1, the boundary of inclusion 1. In this analysis, the interface is discretized with N
straight boundary elements, with one nodal point in the middle of each.

The required 2D Green’s functions for temperature and temperature gradients in Cartesian
co-ordinates are those for an unbounded solid medium, and they are,

G(m)(x, y, xk, yk,�) = −i

4
H0(k�mr)

H (m)(x, y,nn1, xk, yk,�) = i

4
k�m H1(k�mr)

�r
�nn1

�G(m)

�nn2
(x, y,nn2, xk, yk,�) = i

4
k�m H1(k�mr)

�r
�nn2

�H (m)

�nn2
(x, y,nn1,nn2, xk, yk,�) = i

4
k�m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

r
H1(k�mr)−k�m H2(k�mr)

]

× �r
�nn1

�r
�nn2

+ H1(k�mr)

r

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�r
�y

)2 �x
�nn1

�x
�nn2

− �r
�y

�r
�x

(
�x

�nn1

�y
�nn2

+ �x
�nn2

�y
�nn1

)

+
(

�r
�x

)2 �y
�nn1

�y
�nn2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 84:179–213
DOI: 10.1002/nme



186 A. TADEU, N. SIMÕES AND I. SIMÕES

in which r =√(x−xk)2+(y− yk)2 (where (xk, yk) identifies the loaded point). The thermal diffu-
sivities in these equations are the ones associated with the exterior and the interior fluids of the
inclusions (m=1, 2).

The required integrations in Equations (6)–(9) are evaluated using a Gaussian quadrature scheme
when they are not performed along the loaded element. For the loaded element, the existing
singular integrands in the source terms of Green’s functions are calculated analytically, following
the expressions in Tadeu et al. [44],∫ L/2

0
H0(k�r)dr = L

2
H0

(
k�

L

2

)
+�

L

4

[
H1

(
k�

L

2

)
S0

(
k�

L

2

)
−H0

(
k�

L

2

)
S1

(
k�

L

2

)]
(11)

where Sns(. . .) are Struve functions of order ns and L is the boundary element length.
The final integral equations are manipulated and combined so as to impose the continuity of

temperatures and heat fluxes along the boundary of inclusions 1 and 2, to establish a system of
[(2NS+2N )×(2NS+2N )] equations. The solution of this system of equations gives the nodal
temperatures and heat fluxes along boundary S1 and the unknown virtual temperature source
amplitudes a(2)

n ext and a(2)
n int , which allow the temperature field to be defined inside and outside

the inclusions.

2.1.2. Null heat fluxes along their boundaries. In this case, the boundary conditions prescribe null
normal temperature gradients along boundaries S1 and S2. Thus, Equations (6)–(9) are simplified to

ct (1)(x0, y0,�) = −
∫
S1
H (1)(x, y,nn1, x0, y0,�)p(1)(x, y,�)ds

+tinc(x0, y0, xs, ys,�)+
NS∑

n ext=1
[a(2)

n extG
(1)(x, y, xn ext, yn ext,�)] (12)

−
∫
S1

�H (1)

�nn2
(x, y,nn1,nn2, xcol, ycol,�) t (1)(x, y,�)ds+ �tinc

�nn2
(xcol, ycol,nn2, xs, ys,�)

+
NS∑

n ext=1

[
a(2)
n ext

�G(1)

�nn2
(xcol, ycol,nn2, xn ext, yn ext,�)

]
=0 (13)

The solution of this integral for the boundary surfaces (S1) again requires the discretization of the
boundary inclusion 1 into N straight boundary elements and the simulation of inclusion 2 using
NS collocation points/virtual heat sources, following a procedure similar to the one described
above. This gives a system of [(NS+N )×(NS+N )] equations.

2.1.3. Null temperatures along their boundaries. Null temperatures are now prescribed at the
surface of the inclusions, which leads to the following equations:∫

S1
q(1)(x, y,nn1,�)G(1)(x, y, x0, y0,�)ds

+tinc(x0, y0, xs, ys,�)+
NS∑

n ext=1
[a(2)

n extG
(1)(x, y, xn ext, yn ext,�)]=0 (14)
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∫
S1
q(1)(x, y,nn1,�)G(1)(x, y, xcol, ycol,�)ds

+tinc(xcol, ycol, xs, ys,�)+
NS∑

n ext=1
[a(2)

n extG
(1)(xcol, ycol, xn ext, yn ext,�)]=0 (15)

The solution of this equation is once again obtained as described before.
Other combinations of inclusions can be solved by simplifying Equations (6)–(9) according to

the required boundary conditions.

2.2. TBEM/MFS coupling formulation

The TBEM can be formulated applying dipoles, or dynamic doublets, to the heat boundary integral
equations [32], leading to the following equations (16)–(17) that replace Equations (6)–(7) when
modeling the first inclusion:

at (1)(x0, y0,�)+cq(1)(x0, y0,nn1,�)

=
∫
S1
q(1)(x, y,nn1,�)G

(1)
(x, y,nn2, x0, y0,�)ds

−
∫
S1
H

(1)
(x, y,nn1,nn2, x0, y0,�)t (1)(x, y,�)ds+ t inc(x0, y0,nn2, xs, ys,�)

+
NS∑

n ext=1
[a(2)

n extḠ
(1)(x, y,nn2, xn ext, yn ext,�)] (16)

at (2)(x0, y0,�)+cq(2)(x0, y0,nn1,�)

=
∫
S1
q(2)(x, y,nn1,�)G

(2)
(x, y,nn2, x0, y0,�)ds

−
∫
S1
H

(2)
(x, y,nn1,nn2, x0, y0,�)t (2)(x, y,�)ds (17)

Equations (8)–(9) can be kept the same. As noted by Guiggiani [45], the coefficient a is zero
for piecewise straight boundary elements. Factor c is a constant defined as above.

The solutions of these equations are defined as before by discretizing the S1 surface into N
straight boundary elements, with one nodal point in the middle of each element. The required 2D
Green’s functions are now

G
(m)

(x, y,nk, xk, yk,�)= i

4
k�m H1(k�mr)

�r
�nk
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Figure 3. Energy equilibrium on the boundary element being loaded.

H̄ (m)(x, y,nl ,nk, xk, yk,�)

= i

4
k�m

{
−k�mH2(k�mr)

[(
�r
�x

)2 �x
�nl

+ �r
�x

�r
�y

�y
�nl

]
+ H1(k�mr)

r

[
�x
�nl

]}
�x
�nk

+ i

4
k�m

{
−k�mH2(k�mr)

[
�r
�x

�r
�y

�x
�nl

+
(

�r
�y

)2 �y
�nl

]
+ H1(k�mr)

r

[
�y
�nl

]}
�y
�nk

(18)

where nk and nl are the unit outward normal for the boundary segments being loaded and integrated,
respectively. In Equation (16), the incident field is computed by

t inc(x, y,nk, xs, ys,�)= iA

2
k�H1(k�r1)

(
x−xs
r1

�x
�nk

+ y− ys
r1

�y
�nk

)
.

(19)

The integrations in Equations (16) and (17) are performed through a Gaussian quadrature scheme
when the element being integrated is not the loaded one. When the element being integrated (Cl)

is the loaded one, the following integral becomes hypersingular:∫
Cl

H̄ (m)(x, y,nl ,nl , xk, yk,�)dCl

=
∫
Cl

i

4
k�m

[
−k�H2(k�mr)

(
�r
�x

�x
�nl

+ �r
�y

�y
�nl

)2

+ H1(k�mr)

r

]
dCl (20)

This integral can be evaluated analytically, considering the dynamic energy equilibrium of a
semi-cylinder bounded by the boundary element, as illustrated in Figure 3.

The equilibrium is established by assuming that the change in the internal energy within the
material inside the semi-cylinder equals the heat leaving the domain and crossing the boundary
element and the surface of the semi-cylinder.∫

Cl

H̄ (m)(x, y,nl ,nl , xk, yk,�)dCl

=
∫
CR

L

2

�G(m)
(x, y,nk, xk, yk,�)

�r

∣∣∣∣∣
L/2

dCR−
∫
A

�mcm
km

�G(m)
(x, y,nk, xk, yk,�)

�t
dA (21)
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where A is the domain between the boundary element (Cl) and the semi-cylinder surface (CR).
Both integrands on the right side of Equation (21) are well behaved and can be evaluated directly.

∫
CR

L

2

�G(m)
(x, y,nk, xk, yk,�)

�r

∣∣∣∣∣
L/2

dCR = i

2
k2�m

[
L

2
H0

(
k�m

L

2

)
− 1

k�m
H1

(
k�m

L

2

)]
(22)

∫
A

�mcm
km

�G(m)
(x, y,nk, xk, yk,�)

�t
dA =

∫ L/2

0

∫ �

0

�mcm
km

(i�)
i

4
k�mH1(k�mr)sin(�)r dr d�

= i

2
k2�m

[∫ L/2

0
H0(k�mr)dr− 1

k�m
H1

(
k�m

L

2

)]
(23)

This leads to∫
Cl

H̄ (m) (x, y,nl ,nk, xk, yk,�) dCl = i

2
(k�m)2

[∫ L/2

0
H0(k�mr)dr− 1

k�m
H1

(
k�m

L

2

)]
(24)

where L stands for the length of the boundary element. The integral
∫ L/2
0 H0(k�mr)dr is evaluated

as indicated above. The final system of equations is obtained by combining Equations (8)–(9),
and (16)–(17) and imposing the continuity of temperatures and heat fluxes along the boundary of
inclusions 1 and 2.

Manipulating Equations (8)–(9) and (16)–(17) as described above, null temperature and null
heat fluxes can be ascribed along the inclusions’ boundaries.

The present TBEM formulation overcomes the thin-body difficulty for which the classical direct
BEM formulation degenerates. The direct application of this method allows empty or thin inclusions
to be modeled using a single line representation. Where null heat fluxes or null temperatures are
ascribed to null-thickness inclusions, the results identify the temperatures or heat gradient jumps
between the two sides of the element.

2.3. (Combined BEM+TBEM)/ MFS coupling formulation

The TBEM and the BEM formulations can be combined so as to solve the problems described
above. But this technique allows the solution to be defined when inclusion 1 is a thin solid-filled
inclusion. A part of the boundary surface of that inclusion is loaded with monopole loads, whereas
the rest is loaded with dipoles. In this case, the thin bodies can be solved using a closed surface.

3. VERIFICATION AND COMPUTATIONAL EFFICIENCY
OF THE COUPLING ALGORITHMS

This section illustrates first the corroboration of the proposed coupling algorithms [BEM/MFS,
TBEM/MFS and (combined BEM+TBEM)/MFS] using systems composed of circular cylindrical
inclusions, for which analytical solutions are known. Then the coupling algorithms solutions are
verified by solving the problem of a ring system incorporating a thin defect, a crack, for which
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Figure 4. Systems used to verify the proposed coupling solutions: (a) circular cylindrical system composed
of three concentric circular sections and (b) system composed by a cylindrical inclusion embedded in a

spatially uniform unbounded medium that hosts two smaller inclusions.

analytical solutions are not known. This example is also used to assess the computational efficiency
benefits of using the proposed coupling algorithms.

3.1. Systems composed of circular cylindrical inclusions

First, a circular cylindrical ring core, composed of three layers of different materials (Media 1–3),
as illustrated in Figure 4(a), is excited by a harmonic line heat source. The solution for this problem
is known in closed form. It is obtained by applying a technique equivalent to the separation of
variables procedure to the Helmholtz equation given by Equation (2) to each medium in the system.
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Table I. Thermal material properties.

Thermal conductivity, k Density, � Specific heat, c
(W ·m−1 ·◦C−1) (kg ·m−3) (J·kg−1 ·◦C−1)

Medium 1 (concrete) 1.40 2300.0 880.0
Medium 2 (steel) 52.9 7860.0 486.0
Medium 3 (air) 0.026 1.2928 1000.0
Medium 4 (polystyrene) 0.035 35.0 1400.0
Medium 5 1.0 1.0 1.0×10−4

Medium 6 10.0 1.0 1.0×10−4

Medium 7 10.0 1.0 1.0×10−2

The boundary conditions are enforced along all interfaces by using the form of a series of Bessel
functions (see Appendix A).

The proposed coupling solutions are then verified by computing the heat diffusion in a system
composed of a circular solid inclusion (Medium 1), buried in an unbounded fluid Medium
(Medium 3) hosting two other circular inclusions made of different materials (Media 2 and 4) (see
Figure 4(b)). The responses are compared against analytical solutions obtained by applying, as
above, the separation of variables method to the Helmholtz equation in each medium, following
the technique described by Gordeliy et al. [46]. Appendix B outlines the way in which the solution
is computed.

The thermal properties of the different media remain constant in all simulations and are listed
in Table I.

All the calculations are performed in the frequency range [0.0,1.5×10−8]Hz with a frequency
increment of ��=1×10−10Hz, and the imaginary part of the frequency is given by 	=0.7��.

3.1.1. Circular cylindrical system with three concentric circular sections. The circular interface
of the inner media that separates Medium 1 from Medium 2 (the core Medium) has a radius of
0.6m. The outer interface has a radius of 1.2m and separates Medium 1 from the outer unbounded
Medium 3. The harmonic line heat is placed in Medium 1 at (0.0m, 0.8m). Different boundary
conditions are prescribed along the inner interface: continuity of temperatures and heat fluxes
(Case 1) and null heat fluxes (Case 2). In both cases, continuity of temperatures and heat fluxes
are imposed on the outer interface.

The temperature responses are computed at three receivers R1–R3 placed as illustrated in
Figure 4(a). All simulations with BEM/TBEM formulation used 80 and 160 boundary elements
to model the inner and the outer media interfaces, respectively, for the BEM/TBEM formulations.
For the MFS, 80 and 160 virtual sources are adopted to model the inner and outer interfaces,
respectively, placed at distances 0.97×radius and 1.03×radius from the center of the inclusions.
Equal numbers of collocation points are evenly placed along the media interfaces. Figure 5 illus-
trates the position of the boundary elements, the virtual sources and the collocation points when
the inner and outer interfaces are modeled with the BEM and MFS techniques.

Figures 6(a) and (b) present the real and the imaginary parts of the temperature responses for
Cases 1 and 2, respectively. The lines correspond to the analytical responses (see appendix A), used
here as reference solutions, whereas the different MFS and coupling solutions are represented by
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Figure 5. Position of nodal points, virtual sources and collocation points when the inner and the outer
interfaces are modeled with BEM or TBEM and MFS techniques.

the marked points and labeled ‘MFS/MFS’, ‘BEM/MFS’, ‘TBEM/MFS’ and ‘TBEM/BEM’. The
solid and the dashed lines indicate, respectively, the real and the imaginary parts of the response.

Analysis of the results reveals a very good agreement between the proposed coupling solutions
and the analytical, BEM and MFS models’ solutions.

3.1.2. A circular cylindrical system buried in a homogeneous unbounded fluid medium, hosting
two inclusions inside. As described above, in this system the circular solid inclusion with a radius
of 2.4m hosts two circular inclusions with radii of 0.6m (see Figure 4(b)). The center of inclusion
1 is at (0.0m, 0.0m) and the centers of inclusion 2 (filled with polystyrene) and 3 (filled with steel)
are at (−1.2m, 0.0m) and (1.2m, 0.0m), respectively. The proposed formulations are applied
to two situations: first, imposing the continuity of temperatures and heat fluxes along all media
interfaces (Case 3), and second, prescribing null heat fluxes along the boundary of inclusion 2
(Case 4). The harmonic line heat is placed in Medium 1 at (0.0m, 0.8m).

Temperature responses are obtained for four receivers R1–R4 placed as displayed in Figure 4(b).
When the system is solved using the BEM/TBEM formulations, 80 constant boundary elements
are used to discretize the inner inclusions, whereas 160 are placed along the outer interface. When
the inclusions are simulated using the MFS, 80 virtual heat sources are used to model the inner
inclusions and 160 are adopted to model the outer media interface, placed at distances 0.8×radius
and 1.2×radius from their centers. An equal number of collocation points is used to verify the
boundary conditions along the boundary interfaces.

Figures 7 and 8 present the real and imaginary parts of the temperature responses for Cases 3
and 4, respectively. The lines correspond to the analytical responses (see Appendix B), whereas
the different MFS and coupling solutions are represented by the marked points and are labeled
as ‘MFS/MFS/MFS’, ‘TBEM/BEM/BEM’, ‘BEM/MFS/MFS’ and ‘TBEM/MFS/MFS’. As
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Figure 6. Analytical and BEM, MFS or TBEM coupling responses: (a) Case 1: continuity of temperatures
and heat fluxes and (b) Case 2: null heat fluxes along the inner interface.

before, the solid and the dashed lines, respectively, indicate the real and the imaginary parts of the
response.

Analysis of the results again reveals a very good agreement between the proposed coupling
solutions and the analytical solutions. Equally good results were found when the heat sources and
receivers were located in different positions.

3.2. System composed of a circular ring incorporating a thin defect

A ring system filled with solid material incorporates a thin defect, a crack, with null thickness,
in its wall. The inner diameter of the ring is 0.3m and the wall thickness is 0.2m. The crack is
placed in the middle of the ring’s wall, forming a circular concentric arc of 45.0◦ with a radius of
0.4m. The harmonic line heat source is placed at (0.0m, 0.0m) (see Figure 9(a)).
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Figure 7. BEM, MFS and coupling responses—Case 3: continuity of temperatures and heat
fluxes along all media interfaces.

The material thermal properties of its wall (concrete), of the solid filling the ring (steel) and of
the hosting fluid medium (air) are listed in Table I.

This system is subjected to heat diffusion generated by a heat source placed in the inner medium
with excitation frequencies of 0.0Hz and 10.0−6Hz, respectively. Null heat fluxes are imposed
along the boundary of the defect. As there are no known analytical solutions, the BEM/TBEM
solution for a large amount of boundary elements (1440 boundary elements) is used as reference
solution. In this model, the null-thickness crack is discretized as an open line and loaded with
dipole loads (TBEM), whereas the outer and inner interfaces are discretized using classical closed
surfaces and are loaded with monopole loads (BEM). Figures 10(a) and (b) illustrate the real and
the imaginary parts of the reference solutions for excitation frequencies of 0.0Hz and 10.0−6Hz,
respectively. The responses have been obtained by introducing an imaginary part to the frequency
given by 	=0.7×10.0−7.

The TBEM/MFS coupling model discretizes the crack with boundary elements loaded with
dipole loads (TBEM). The inner and the outer surfaces of the ring are modeled using a set of
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Figure 8. BEM, MFS and coupling responses—Case 4: null heat fluxes
along the boundary of inclusion 2.

virtual heat sources placed at 0.05m from the outer boundary and 0.03m from the inner boundary.
The collocation points are evenly distributed along the wall surfaces.

This system is also solved using an MFS model. The MFS is less efficient at modeling thin
inclusions such as cracks. The approach used here to model the heat diffusion around the crack is
based on the decomposition of the inner domain into two different sub-domains, as illustrated in
Figure 9(b). The interface between these two sub-domains will be circular containing the crack, T ,
and a fictitious interface, F . In order to correctly describe the behavior of the null-thickness crack,
null heat fluxes are ascribed to both sides of it and continuity of temperature and heat fluxes are
imposed along F . The inner and the outer surfaces of the ring and the virtual interface that includes
the crack are simulated placing the virtual heat sources at 0.015m from the outer boundary, 0.009m
from the inner boundary and at 0.012m from the virtual interface that incorporates the crack.

To assess the correctness of the solutions, the responses are calculated on a grid of 3034
receivers evenly spaced along the domain defined by a radius of 0.7m. The MFS, TBEM/MFS
and TBEM/BEM errors along the domain are assessed by comparing the responses obtained with
those provided by the reference solution. A global domain error is defined by computing the
integration of the volume generated by the absolute value of the difference between the reference
and the different model responses along the interior grid of receivers.

To evaluate the computational efficiency, the CPU time required to compute the solution on
the full grid of receivers by the three computational models is registered. All solutions have been
computed on a laptop computer with an Intel� CoreTM Duo CPU P9600.
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Figure 9. The ring containing a null-thickness crack: (a) geometry of the cross-section and (b)
position of the nodal points, virtual sources and collocation points when all material interfaces

are modeled with the MFS technique.

Figure 11 illustrates the global domain error registered versus CPU time required by each
formulation, varying the number of degrees of freedom, that is, changing the number of boundary
elements and virtual sources/collocation points.

For each formulation, the number of degrees of freedom varies according to the value of n=1,
20, as follows: the TBEM/BEM solutions were computed discretizing the inner, the outer and the
crack interfaces with 12×n, 20×n, and 4×n boundary elements, respectively; the TBEM/MFS
solutions were obtained using 12×n and 20×n virtual sources/collocation points, to simulate
the inner and the outer interfaces, respectively, and 4×n boundary elements to model the crack
interface; the MFS solutions were obtained simulating the inner, the outer and the crack interfaces
with 12×n, 20×n and 16×n virtual sources/collocation points, respectively.
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Figure 10. Reference solution for the system composed of a circular ring incorporating a thin defect. Real
and imaginary parts of the response for: (a) f =0.0Hz and (b) f =10.0−6 Hz.

The global domain errors shown in Figures 11(a) and (b) are displayed in a logarithmic scale to
allow an easier interpretation of the results. An analysis of the responses shows that all responses
register smaller errors with increasing number of degrees of freedom, which means, all solutions
converge to the reference response. The results reveal that the coupled TBEM/MFS formulation
is the algorithm that requires much less CPU time for reaching the same accuracy, except for
n=1 when large errors are registered. For the same number of n (n>1), the coupled TBEM/MFS
solution exhibits the smallest global domain error. For the same accuracy, the computing time of the
coupling algorithm is in general 5 times shorter than that taken by the TBEM/BEM formulation.
On the other hand, the standard MFS formulation is the algorithm that requires most CPU time to
achieve the same accuracy.

4. TEMPERATURE IN TIME-SPACE

A numerical inverse fast Fourier transform is applied in the frequency domain to find the heat
field in the time domain. Aliasing phenomena are dealt by introducing complex frequencies with
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Figure 11. Global domain error versus CPU time for the system composed of a circular ring incorporating
a thin defect: (a) f =0.0Hz and (b) f =10.0−6Hz.

a small imaginary part, taking the form �c=�− i	 (where 	=0.7��, and �� is the frequency
step). This shift is subsequently taken into account in the time domain by means of an exponential
window, e	�, applied to the response.

The source can have any time variation. We can determine the frequency domain solution by
applying a time Fourier transformation, and it can range from 0.0Hz to quite high frequencies.
Since the heat response falls rapidly with increasing frequency, we do not need to compute the
highest frequencies in the range.

The 0.0Hz frequency is the static response. The use of complex frequencies allows this response
to be computed since the argument of the Hankel functions in the integral equations is −i	, i.e.
other than zero.

Discrete summations over frequencies are carried out for the Fourier transformations. Mathe-
matically, this is the same as adding periodic sources at time intervals Tw =2�/��.

To verify the correctness of the solution given by this methodology, the time-dependent temper-
ature field is compared with a reference solution. The reference solution used is the published
solution provided by Gordeliy et al. [46] and by Furman and Neuman [47], where a line heat
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Figure 12. Verification of the time-dependent temperature field: (a) geometry of the problem: source and
receivers positions; (b) temperature (in ◦C) contours when c2=1.0×10−4 J·kg−1 ·◦C−1, �2=1.0kg ·m−3,
k2=10.0W.m−1 ·◦C−1; and (c) temperature contours (in ◦C) when c2=1.0×10−2 J·kg−1 ·◦C−1,

�2=1.0kg ·m−3, k2=10.0W ·m−1 ·◦C−1.

source illuminates a cylindrical circular inhomogeneity placed at (2.0m, 2.0m) and with a radius
of 1.0m, as illustrated in Figure 12(a). The inclusion is assumed to be perfectly bonded to the
unbounded medium.

The unbounded medium is characterized by a thermal conductivity of k1=1.0W·m−1 ·◦C−1

and a diffusivity of K1=1.0×104m2s−1 (Medium 5 in Table I). The response is computed for two
different inclusion materials that exhibit distinct thermal specific heats (c2=1.0×10−4 Jkg−1 ·◦C−1

and c2=1.0×10−2 J·kg−1 ·◦C−1) and a common thermal conductivity and density (Media 6 and 7
in Table I).

At �=0.0s, a source placed at (xs =0.0m, ys =0.0m) starts heating the solid medium at a
constant rate with a unitary amplitude.
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The calculations are performed in the frequency range [0.0,4096]Hz with a frequency increment
of ��=0.5Hz, and the imaginary part of the frequency is given by 	=0.7��. Figures 12(b) and
(c) show the responses at �=1.0s using a temperature contour plot. The comparison of these plots
with those provided by Gordeliy et al. [46] and by Furman and Neuman [47] indicates that the
results are identical if one allows for the two misprints in Figure 5 of [47].

5. APPLICATIONS

The applicability of the proposed coupling formulations is illustrated by solving the case of a ring
system filled with solid material, incorporating defects in its wall, similar to the geometry used
to verify and evaluate the computational efficiency of the coupling algorithm (Section 3.2). This
system is subjected to heat diffusion generated by a heat source placed in the inner medium. In
the first set of examples, the thermal behavior of this system is addressed assuming the existence
of an inclusion/defect with null thickness. The problem is solved assuming the existence of null
heat fluxes along the boundary of the defect. The second set concerns the computation of the
temperature field produced by the same heat source in the presence of a thin defect that is modeled
as a solid-filled thin inclusion. The geometry of the ring, the material thermal properties of its wall
(concrete), the solid filling the ring (steel) and the hosting fluid medium (air) are constant for all
analyses. The thin defect is assumed to be filled with a thermal insulating material (polystyrene).
The material properties of the different materials are as listed in Table I.

The computations are performed in the frequency domain for frequencies ranging from 0.0 to
0.01026Hz, with a frequency increment of 0.2×10−4Hz, which determines a total time window
for the analysis of 13.89 h.

This system is subjected to a heat line source placed in the steel medium at point O(0.0m,
0.0m). The source time dependence is assumed to be parabolic. It starts emitting energy at instant
�≈1.0h and continues for 2.0 h (see Figure 13). The source’s power is increased from 0.0 to
10 000.0W, reaching maximum power at �≈2.0h.

5.1. Null-thickness crack

The crack is placed in the middle of the ring’s wall, forming a circular concentric arc of 45.0◦
with a radius of 0.4m, as shown in Figure 9(a).

The crack is modeled imposing null heat flux along its surface. The null-thickness crack is
discretized using 80 boundary elements. The inner and outer surfaces of the ring are modeled
using a set of virtual heat sources placed at 0.015m from the outer boundary and 0.009m from
inner boundary. The collocation points are evenly distributed along the wall surfaces. The inner
and the outer interfaces of the ring were modeled using 240 and 400 virtual/collocation points,
respectively.

The temperature distribution is obtained in a very fine two-dimensional grid of receivers. One
thousand eight hundred twenty-one receivers were equally spaced along the inner solid, wall and
outer hosting fluid.

A set of snapshots of the time evolution simulations is presented to illustrate the resulting heat
diffusion across the ring wall. Figure 14 shows the temperature field in the vicinity of a null-
thinness crack with null heat fluxes prescribed along its surface, at different time instants. To allow
a better interpretation of the results, Figure 14 presents the logarithm of the temperature results.
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Figure 13. Heat source power time evolution.

A color scale is used in the plots, with the red and blue shades corresponding, respectively, to
higher and lower values of temperature amplitudes. In the first plot, at �≈1.46h (Figure 14(a)),
after the heat source has started emitting energy, a circular heat field can be observed in the host
medium caused by the energy propagation away from the heat source point. The incident heat
pulse is visible propagating away from the source point without perturbations as it has not yet
reached the wall of the ring. As expected, the amplitude of the temperature is uniform along the
cylindrical heat wavefronts.

At �≈4.18h (Figure 14(b)), the presence of the crack starts causing a perturbation of the
heat transfer along the cross-section of the wall. As time passes, the heat spreads around the
crack. However, the receivers placed in the ring’s wall, behind the crack, register considerably
lower temperatures than the receivers placed on the other side, as can be seen at time �≈7.93h
(Figure 14(c)). Although the source power has already dropped to 0.0W at �≈3.0h, it is interesting
to note that in the last snapshot, which was taken at �≈13.89h (Figure 14(d)), the tempera-
ture is still rising in some regions of the domain. This means that the energy introduced at
the source point continues to propagate to colder regions in order to establish the equilibrium
condition.

5.2. Thin inclusion

In the second application, the temperature distribution is obtained when a thin inclusion is buried
in the wall ring, and excited by a heat point source. The problem is analyzed using the coupling
(TBEM+BEM)/MFS formulation. The thin inclusion is placed in the middle of the ring’s wall,
which is 0.02m thick, forming a circular concentric arc of 45.0◦ with a radius of 0.4m. The
extremities of the thin inclusion are defined by semi-circumferences. As mentioned above, the thin
inclusion is assumed to be filled with thermal insulating material. Figure 15 displays a cross-section
of the problem. A part of the inclusion’s surface is discretized by the TBEM formulation, whereas
the rest is discretized by the BEM. This overcomes the difficulties posed by the BEM and by the
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Figure 14. Temperature distribution (in ◦C) in the vicinity of a null-thickness crack, buried in a pipe wall,
with null heat fluxes prescribed along its surface, heated by a cylindrical line source. Time responses at

�=1.46h (a); �=4.18h (b); �=7.93h (c); and �=13.89h (d).

meshless technique when modeling thin inclusions. The inner and the outer surfaces of the ring
are modeled using the MFS, which allows the use of a more efficient algorithm without loss of
accuracy. The problem is solved assuming the continuity of temperatures and heat fluxes along all
material interfaces.

The thin inclusion is discretized using 160 boundary elements. The inner and the outer
surfaces of the ring are modeled using a set of virtual sources placed, as before, at a distance
of 0.015m from the outer boundary and 0.009m from inner boundary. The inner and the outer
interfaces of the ring were modeled, as before, with 240 and 400 virtual/collocation points,
respectively.

Results were computed at the grid of receivers described above. The numerical results are
presented in 2D views at different time instants (Figure 16), with logarithmic colored scale plots
representing the total temperature field.

In the first plot, at time �≈1.49h (Figure 16(a)), the temperature distribution is similar to that
found before, in the presence of a empty crack, because the heat front has not yet reached the thin
inclusion. When the heat front wave hits the thin inclusion filled with insulating material, only a
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Figure 15. Geometry of a filled thin inclusion buried in a ring’s wall and position of the source (O).

Figure 16. Temperature distribution (in ◦C) in the vicinity of a thin inclusion buried in a pipe wall, heated
by a cylindrical line source. Time responses at �=1.49h (a); �=2.22h (b); �=3h (c); and �=5.32h (d).
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very small perturbation is observed (see Figure 16(b)). At �≈3.0h (Figure 16(c)), the heat front
component that passed through the thin inclusion has already reached the outer grid of receivers
as it is propagating away from the source position. The propagation of heat reflected field and
some diffraction patterns generated by the incident heat field at the extremities of the inclusion
are clearly visible. By the last snapshot, taken at �≈5.32h (Figure 16(d)), the source power has
already dropped to 0.0W and it is interesting, as in the first example, to note that the temperature
is still rising in some regions of the domain.

6. CONCLUSIONS

The coupling of the BEM/the TBEM and the MFS has been proposed for the transient analysis
of heat diffusion. It was shown that the proposed coupling algorithms overcome the limitations
posed by each method, allowing the use of less computational power but maintaining adequate
accuracy.

The TBEM and a mixed formulation that uses both the TBEM and the classical BEM, coupled
with the MFS, was proposed to overcome the thin-body difficulty. Problems involving thin hetero-
geneities, which can be empty or contain material, and other irregular inclusions, have been
successfully addressed in this paper. The proposed coupling formulations were corroborated by
comparing their solutions and analytical solutions, and they were seen to closely follow the behavior
of the conventional direct BEM and TBEM formulations.

Finally, the proposed coupling formulations were applied to a set of numerical examples. The
first example dealt with heat diffusion in the time domain across a solid-filled ring generated by
a heat source, when an empty null-thickness crack is buried in the wall of a ring system. In the
second set, the temperature distribution evolution across a solid-filled ring, in the presence of a thin
inclusion that is filled with thermal insulating material, was computed to illustrate the capabilities
of the proposed techniques.

APPENDIX A: ANALYTICAL SOLUTIONS FOR A CYLINDRICAL
CIRCULAR RING CORE

Consider a ring defined by the internal and external radii, a and b, respectively, bounded by an
exterior and interior medium, as illustrated in Figure A1. This ring is heated by a line harmonic
source, placed in the exterior solid medium (with a thermal conductivity k3, a density �3, a specific
heat c3). The heat generated by this source propagates and hits the outer surface of the ring. After
striking the outer surface of the cylindrical ring, part of the incident energy is reflected back into
the exterior solid medium, and the remaining energy is transmitted into the ring material (with
thermal conductivity k1, density �1, specific heat c1), in the form of propagating energy. This
energy continues to propagate and eventually strike the inner surface of the ring. There, a similar
phenomenon may occur, with part of the energy being transmitted to the inner medium (with
thermal conductivity k2, density �2, specific heat c2) and the rest being reflected back to the ring
medium. This process is repeated until all the energy is dissipated.
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Figure A1. Circular ring core geometry.

A.1. Incident heat field (or free-field)

The incident field for a line harmonic heat source placed at (x0,0) can be expressed by the
following equation:

tinc(r,�)= −iA

4k3
H0(k�3r1) (A1)

with k�3 =√−i�/K3, r1=√(x−x0)2+ y2 . Equation (A1) expresses the incident field as heat
terms centered at the source point (x0,0), and not at the axis of the cylindrical inclusion, which
constitutes a difficulty. In order to overcome this problem, the incident heat field can be expressed
as heat terms centered at the origin. This is achieved by applying Graf’s addition theorem [48],
which results in the expressions below (in cylindrical coordinates):

tinc(r,�,�)=− iA

4k3

∞∑
n=0

(−1)nεn Jn(k�3r0)Hn(k�3r)cos(n�) when r>r0

tinc(r,�,�)=− iA

4k3

∞∑
n=0

(−1)nεnHn(k�3r0)Jn(k�3r)cos(n�) when r<r0

(A2)

in which r0 is the distance from the source to the axis of the inclusion, Jn(. . .) are Bessel functions
of order n, �=arctan(y/x) and

εn =
{
1 if n=0

2 if n 	=0
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A.2. The scattered heat field in the outer medium

The heat generated in the exterior medium depends on heat coming from the external surface of
the cylindrical ring, which propagates away from it. The outgoing heat can be defined using the
following equation:

t1(r,�,�)=
∞∑
n=0

AnHn(k�3r)cos(n�) (A3)

where An are unknown amplitudes.

A.3. The heat field in the ring

Two distinct groups of heat fields exist inside the ring, corresponding to heat generated at the
external surface and traveling inwards, and to heat generated at the internal surface of the pipe
that travels outwards. For the terms generated at the external boundary, the corresponding standing
heat field is given by

t2(r,�,�)=
∞∑
n=0

Bn Jn(k�1r)cos(n�) (A4)

where Bn are unknown amplitudes.
For the heat generated at the internal boundary, there is a corresponding diverging heat field,

which can be defined by

t3(r,�,�)=
∞∑
n=0

CnHn(k�1r)cos(n�) (A5)

where Cn are unknown amplitudes.

A.4. The heat field in the inner medium

In the inner medium (Medium 2), the heat field depends only on heat coming from the internal
surface of the cylindrical ring core, and thus only inward propagating heat is generated. The
corresponding heat field is

t4(r,�,�)=
∞∑
n=0

Dn Jn(k�2r)cos(n�) (A6)

where k�2 =√−i�/K2 and Dn are unknown amplitudes.

A.5. Continuity of temperatures and normal heat fluxes on the two interfaces

The unknown coefficients An , Bn , Cn and Dn are determined by imposing the required boundary
conditions. For the present case, the boundary conditions are the continuity of temperatures and
normal heat fluxes on the two interfaces (see Figure A1). The four equations defined give rise to
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a system of four equations with four unknowns, which yields the unknown coefficients.

tinc(b,�,�)+ t1(b,�,�) = t2(b,�,�) at r =b

k3
�[tinc(b,�,�)+ t1(b,�,�)]

�r
= k1

�[t2(b,�,�)]
�r

at r =b

t2(a,�,�)+ t3(a,�,�) = t4(a,�,�) at r =a

k1
�[t2(a,�,�)+ t3(a,�,�)]

�r
= k2

�[t4(a,�,�)]
�r

at r =a

(A7)

Combining the above equations one obtains a system of equations, which is then used to find
the unknown coefficients (An , Bn , Cn , Dn).⎡

⎢⎢⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
An

Bn

Cn

Dn

⎤
⎥⎥⎥⎥⎦=(−1)nεn

⎡
⎢⎢⎢⎢⎣
b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎦ (A8)

with

a11 = Hn(k�3b), a12=−Jn(k�1b), a13=−Hn(k�1b), a14=0

a21 = 0, a22= Jn(k�1a), a23=Hn(k�1a), a24= Jn(k�2a)

a31 = k3[nHn(k�3b)−(k�3b)Hn+1(k�3b)]
a32 = −k1[nJn(k�1b)−(k�1b)Jn+1(k�1b)]
a33 = −k1[nHn(k�1a)−(k�1a)Hn+1(k�1b)]
a34 = 0

a41 = 0

a42 = k1[nJn(k�1a)−(k�1a)Jn+1(k�1a)]
a43 = k1[nHn(k�1a)−(k�1a)Hn+1(k�1a)]
a44 = −k2[nJn(k�2a)−(k�2a)Jn+1(k�2a)]

b1 = iA

4k3
Hn(k�3r0)Jn(k�3b)

b2 = 0

b3 = iA

4
Hn(k�3r0)[nJn(k�3b)−(k�3b)Jn+1(k�3b)]

b4 = 0
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Note that when the position of the heat source is changed, the terms aij of matrix remain the
same, whereas the independent terms bi are different. As the equations can be easily manipulated
to consider another position for the source, they are not included here.

Null temperatures or null normal heat fluxes can be prescribed to the outer and the inner
interfaces that lead to the simplification of the system defined above.

APPENDIX B: ANALYTICAL SOLUTIONS FOR A CIRCULAR CYLINDRICAL
SYSTEM BURIED IN A HOMOGENEOUS UNBOUNDED FLUID

MEDIUM, HOSTING TWO INCLUSIONS

Consider a circular cylindrical inclusion (Medium 1), centered at (x1, y1) with a radius a, hosting
two circular solid inclusions (Media 2 and 4), centered at (x2, y2) and (x3, y3), with radii b and
c, respectively. This system is bounded by an exterior medium (Medium 3), as illustrated in
Figure B1(a). This system is heated by a harmonic line source, placed in the Medium 1 (x0, y0).
The thermal conductivity, the density and the specific heat of each medium is defined by km , �m ,
and cm , where m is the number of media.

Figure B1. Non-concentric circular inclusions: (a) geometry of the problem and (b) Graf’s addition theorem.
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B.1. Incident heat field

The incident field can be expressed by

tinc(r,�)= −iA

4k1
H0(k�1r0) (B1)

with k�1 =√−i�/K1, r0=√(x−x0)2+(y− y0)2. Equation (B1) expresses the incident field as
heat terms centered at the source point (x0, y0), and not at the axes of the cylindrical inclusions.
This is achieved by applying Graf’s addition theorem [48], which results in the expressions below
(in cylindrical coordinates):

tinc(r,�,�) = − iA

4k1

∞∑
n=−∞

Jn(k�1r0i )Hn(k�1ri )(−1)n ein�0i ein�i when ri>r0i

tinc(r,�,�) = − iA

4k1

∞∑
n=−∞

Hn(k�1r0i )Jn(k�1ri )(−1)nein�0i ein�i when ri<r0i

(B2)

in which r0i is the distance from the source to the axis of the inclusions centered at (xi , yi ), ri is the
distance from the point (x, y) to the inclusion centered at (xi , yi ), �i =arctan((y− yi )/(x−xi )),
�0i =arctan((yi − y0)/(xi −x0)) (see Figure B1(b)).

B.2. The scattered heat field in each cylindrical inclusion

In the inner medium of each inclusion, the heat field depends only on heat coming through its
surface and thus only inwardly propagating heat is generated. In the outer medium, the heat is
expressed by an outwardly propagating heat field.

• inclusion centered at (x1, y1)

t1(r1,�,�) =
∞∑

n=−∞
AnHn(k�3r1)e

in�1 (B3)

t2(r1,�,�) =
∞∑

n=−∞
Bn Jn(k�1r1)e

in�1 (B4)

• inclusion centered at (x2, y2)

t3(r2,�,�) =
∞∑

n=−∞
CnHn(k�1r2)e

in�2 (B5)

t4(r2,�,�) =
∞∑

n=−∞
Dn Jn(k�2r2)e

in�2 (B6)

• inclusion centered at (x3, y3)

t5(r3,�,�) =
∞∑

n=−∞
EnHn(k�1r3)e

in�3 (B7)

t6(r3,�,�) =
∞∑

n=−∞
Fn Jn(k�4r3)e

in�3 (B8)

where An , Bn , Cn , Dn , En and Fn are unknown amplitudes.
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B.3. Continuity of temperatures and normal heat fluxes at the two interfaces

The unknown coefficients are computed by imposing the continuity of normal heat fluxes and
temperatures at the three interfaces (see Figure B1(a)).

k3
�[t1(a,�,�)]

�r1
= k1

[
�[t2(a,�,�)+ t3(a,�,�)+ t5(a,�,�)+ tinc(a,�,�)]

�r1

]
at r1=a

t1(a,�,�)=t2(a,�,�)+t3(a,�,�)+t5(a,�,�)+tinc(a,�,�) at r1=a (B9)

k2
�[t4(b,�,�)]

�r2
= k1

[
�[t2(b,�,�)+ t3(b,�,�)+ t5(b,�,�)+ tinc(b,�,�)]

�r2

]
at r2=b

t4(b,�,�)=t2(b,�,�)+t3(b,�,�)+t5(b,�,�)+tinc(b,�,�) at r2=b (B10)

k4
�[t6(c,�,�)]

�r3
= k1

[
�[t2(c,�,�)+ t3(c,�,�)+ t5(c,�,�)+ tinc(c,�,�)]

�r3

]
at r3=c

t6(c,�,�)=t2(c,�,�)+t3(c,�,�)+t5(c,�,�)+tinc(c,�,�) at r3=c (B11)

Equation (B9) requires that t3(r2,�,�) and t5(r3,�,�) are expressed as heat terms centered
at the axis of (x1, y1); t2(r1,�,�) and t5(r3,�,�) are written as heat terms centered at the axis
of (x2, y2); t2(r1,�,�) and t3(r2,�,�) are written as heat terms centered at the axis of (x3, y3).
This is achieved, as before, by applying Graf’s addition theorem, which leads to the following
expressions:

t2(ri ,�,�) =
∞∑

n=−∞
Bn

∞∑
m=−∞

Jn+m(k�1r1i )Jm(k�1ri )(−1)m ei(m+n)�1i e−im�i (B12)

t3(ri ,�,�) =
∞∑

n=−∞
Cn

∞∑
m=−∞

Hn+m(k�1r2i )Jm(k�1ri )(−1)m ei(m+n)�2i e−im�i (B13)

t5(ri ,�,�) =
∞∑

n=−∞
En

∞∑
m=−∞

Hn+m(k�1r3i )Jn(k�1ri )(−1)m ei(m+n)�3i e−im�i (B14)

where rji ( j =1,2,3) is the distance from the center of the inclusions (x j , y j ) to the axis of the
inclusions centered at (xi , yi ), ri is the distance from the point (x, y) to the axis of each inclusion,
�i =arctan((y− yi )/(x−xi )) , �ji=arctan((yi − y j )/(xi −x j )) (see Figure B1(b)).

Combining the above equations, one obtains a system of equations that is then used to find the
unknown coefficients (An , Bn , Cn , Dn , En and Fn). However, it is not possible to define, as it
was in the case of circular concentric inclusions, a linear system of equations for each value of n.
In this case, the full set of unknowns is defined in a unique system of equations that requires the
maximum values of n and m to be predefined.

Null temperatures or null normal heat fluxes can be prescribed at the inclusions’ surfaces, which
allow the simplification of the above system of equations.
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