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A new constant displacement discontinuity element was presented in a previous paper applied initially
for the numerical solution of either isolated straight cracks or for co-linear cracks of the three fundamen-
tal deformation modes I, II and III due to the special form of the solution. It was based on the strain-
gradient elasticity theory in its simplest possible Grade-2 variant. The assumption of the G2 expression
for the stresses has resulted to a better average stress value at the mid-point of the straight displacement
discontinuity compared to the classical elasticity solution. This new element gave considerably better
predictions of the stress intensity factors compared to the constant displacement discontinuity element
and the linear displacement discontinuity element. Moreover, it preserved the simplicity and hence the
high speed of computations. In this Part I, the solution for this element is extended for the analysis of
cracks of arbitrary shape in an infinite plane isotropic elastic body and it is validated against three known
analytical solutions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It is common knowledge inside the fracture mechanics commu-
nity, that even though much achievement has been made in crack
modeling techniques, a simple and practical crack modeling
technique is still needed, in particular for complex multiple crack
growth problems. Crouch (1976a,b) and Crouch and Starfield
(1990) by employing the Neuber–Papkovich potential functions
corresponding to point dislocations (i.e. displacement discontinu-
ities) has developed such simple and practical technique the so-
called displacement discontinuity method (DDM) for solving crack
and solid mechanics problems. It is worth mentioning here that
DDM may be seen as a special case of the dual Boundary Element
Method (BEM) (Chen and Hong, 1999; Hong and Chen, 1988a,b).
This method is attractive for researchers and practitioners in the
field of Linear Elastic Fracture Mechanics (LEFM) due to its simplic-
ity as compared to cumbersome complex variables theory com-
bined with singular integral equations and numerical integration
rules. As was explicitly shown by Crouch (1976a), the assertion
that the stress at the centre of a straight constant displacement
discontinuity, as is calculated from first principles of the classical
linear elasticity theory, represents the average stress over the ele-
ment, leads to overestimation of displacements at the crack tips
and consequently to large errors for the stress intensity factors
(SIFs).
ll rights reserved.

: +30 28210 37891.
ylos).
Higher order displacement discontinuity elements, as devel-
oped by Crawford and Curran (1982), overcome this deficiency
and greatly improve the accuracy of the displacement discontinu-
ity method. Crawford and Curran showed that both linear and qua-
dratic displacement discontinuity elements give better results than
the constant strength element. In the authors’ formulation of the
higher order method, however, two (for linear variation of
displacement discontinuity) or three (for quadratic variation)
collocation points are taken within each element. Thus, the
improvement in accuracy comes at the expense of an increase in
the number of degrees of freedom in the overall system.

Also, a new formulation of a higher order displacement disconti-
nuity method was subsequently presented by Shou and Crouch
(1995) to model two-dimensional elastostatics problems. The new
method uses three collocation points for each element, one at the
center of the element in question and the others at the centers of
the adjacent elements. Each element therefore has a second-order
(quadratic) distribution of displacement discontinuity but only
two degrees of freedom, which contributes to the efficiency of the
approach. By incorporating a special treatment for crack tips, a crack
with arbitrary geometry can be modeled. The accuracy of the meth-
od was demonstrated by example problems; the results were found
to be in good agreement with the analytical solutions and showed
that the new method is comparable to the conventional higher order
displacement discontinuity method. Also, a special square-root
crack tip element developed by Shou and Crouch (1995) that is
based on the analytical solutions to crack problems which show
that the relative displacement between the crack surfaces is
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Fig. 1. A plane isotropic elastic body containing isolated or mutually intersecting
cracks L1,L2, . . . ,Lk and subjected to normal stresses rx, ry and shear stress s‘ at
infinity.
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proportional to
ffiffiffi
n
p

, where n is measured from the tip along the crack.
In the same paper the analytical formulae for the displacement and
stresses of modes I and II crack problems in general plane elasticity
were given. Also, the numerical results have shown that the dis-
placement discontinuity modeling technique of a crack with the
more elaborate special crack tip elements is very effective.

In a previous work (Exadaktylos and Xiroudakis, 2010a), the
above referenced problem was attacked by viewing it from a differ-
ent perspective. There, the stress at the centre of a straight disloca-
tion was derived from the strain-gradient elasticity theory in its
simplest possible Grade-2 (second gradient of strain or G2 theory)
variant (Vardoulakis et al., 1996; Exadaktylos et al., 1996; Exadaktylos
and Aifantis, 1996; Exadaktylos, 1998, 1999; Exadaktylos and
Vardoulakis, 2001). As it was illustrated, the G2 expression for the
stresses was derived in a straightforward manner from an averaging
procedure that includes the effect of the higher stress gradients
along the crack elements especially for those closer to crack tips. This
was achieved by recourse to a second-term Taylor’s series expansion
of the stress around the centre of the DD element. Then, the value of
the strain-gradient coefficient or length-scale ‘ that gives the exact
agreement of the mid-point displacement of the uniformly pressur-
ized straight displacement discontinuity with the analytical solu-
tion for the uniformly pressurized crack, assuming that the latter
is discretized with only one element, was easily found. Since the er-
rors of the classical DDM are larger in the regions close to the tips
where also the stress distribution along the crack elements display
higher gradients, a simple parabolic dependence of the strain-gradi-
ent coefficient on the x-coordinate of the centre of the ith element
lying along the local Ox-axis along an element was assumed. This
G2 formulation applies only on the crack elements and not outside
them, where it is assumed that the classical stresses are valid; fur-
thermore, it does not alter the nature of the classical elasticity prob-
lem of a cracked body we are aiming to solve. That is to say, no extra
boundary conditions along the crack are imposed that are necessary
for the solution of a strain-gradient elasticity problem, apart from
those prescribed by classical elasticity theory. The efficiency of the
new element was demonstrated for the numerical solution of
straight or co-linear modes I, II and III crack problems. It was shown
that the G2 constant displacement discontinuity (G2CDD) element
is stable and gives considerably better predictions of the SIFs com-
pared to the constant displacement discontinuity (CDD) element
and better predictions compared to the linear displacement discon-
tinuity (LDD) element presented by Crawford and Curran (1982).
Moreover, the new G2 element preserves the simplicity and hence
the high speed of computations. However, this first solution pre-
sented in Exadaktylos and Xiroudakis (2010a) was not general en-
ough to tackle general plane crack problems due to the special
case considered, namely, no variation of crack geometry with
respect to the coordinate axis perpendicular to it. In this Part I, the
method is extended for the analysis of cracks of arbitrary shape in
an infinite plane elastic body as is illustrated in Fig. 1. In Part II
(Exadaktylos and Xiroudakis, submitted for publication), the exten-
sion of the G2CDD element for the solution of half-plane crack
problems, is presented.
2. The general plane G2 solution for arbitrarily inclined straight
modes I, II and III dislocations

In this work the following definitions for the normal, in-plane
shear and anti-plane strain displacement discontinuity (DD)
components for a straight crack lying along Ox-axis are employed

Dx � u�x � uþx ; jxj < 1
Dy � u�y � uþy ; jxj < 1

Dz � u�z � uþz ; jxj < 1

ð1Þ
where ux, uy, uz denote the displacements along Ox-, Oy- and Oz-
axes, respectively, of an Oxyz Cartesian coordinate system, and
y = 0�, y = 0+ denote the negative and positive sides of the line
segment in question. Also, hereafter tensile stresses are considered
as positive quantities and the unit length is chosen to be the
half-width of the DD element since the sizes of the elements are
taken to be equal.

The approach in Exadaktylos and Xiroudakis (2010a) was to
change the boundary value problem of a mode I, II or III straight
crack with prescribed shape in an infinite strain-gradient or G2
solid into one of a semi-infinite G2 solid by exploiting the symme-
try of the stress fields, produced by the three fundamental
displacement modes, about the line y = 0 (Sneddon and Lowengrub,
1969). The upper half-plane y P 0 solution for the stresses in plane-
strain produced by a mode I dislocation occupying the line segment
�1 < x < 1, y = 0± with no loading at infinity and displaying a
constant DD of magnitude Dy may be found by recourse to the Fou-
rier transform technique as follows (Exadaktylos and Xiroudakis,
2010a)
rI
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where the Latin superscript ‘‘I” designates a mode I dislocation, G, m
denote the shear modulus and Poisson’s ratio, respectively, of the
material, ‘ is the strain-gradient coefficient that has dimensions of
length, and Jn(�) is the usual Bessel function of the first kind and
of order n. By recourse to analytical expressions of the above
semi-infinite integrals (Gradshteyn and Ryzhik, 1980), the following
analytical expressions for the stresses may be subsequently derived
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In a similar fashion, the upper half-plane y P 0 plane-strain
boundary value problem of a mode II dislocation occupying the line
segment �a < x < a, y = 0 with no loading at infinity and with a
prescribed shape of a constant DD of magnitude Dx has the follow-
ing solution (Exadaktylos and Xiroudakis, 2010a)
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where the superscript ‘‘II” designates the mode II or in-plane shear
dislocation. Again, the analytical evaluation of the above integral
expressions for the stresses has as follows
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Finally, the upper half-plane y P 0 problem of mode III (anti-
plane strain) dislocation occupying the line segment jxj 6 1, y = 0
with a prescribed constant DD equal to Dz has the following solu-
tion (Exadaktylos and Xiroudakis, 2010a)

rIII
xzðx; yÞ ¼ �

GDz

2

ffiffiffiffi
2
p

r Z 1

0
n1=2ð1� ‘2n2ÞJ1=2ðnÞe�yn sin xndn;

rIII
yzðx; yÞ ¼ �

GDz

2

ffiffiffiffi
2
p

r Z 1

0
n1=2ð1� ‘2n2ÞJ1=2ðnÞe�yn cos xndn:

ð6Þ

where the superscript ‘‘III” designates the mode III dislocation.
Finally, the evaluations of the above semi-infinite integrals for this
case explicitly give
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Fig. 2. Global and local coordinate systems for the problem of normal and shear
constant displacement discontinuities over an arbitrarily oriented, finite line
segment in an infinite body and notations.

Fig. 3. (a) Local coordinates of ith DD element with respect to the jth element, and
(b) influence of DD’s of the jth element on the stresses of the ith element.
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Next, by virtue of the principle of superposition, the general
mixed modes I and II plane-strain linear elastic solutions, as well
as the mode III solution may be found as follows,

rxxðx; yÞ ¼ rII
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where the influence coefficients AI
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xy; AI
yy; AII

xx; AII
xy; AII
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yz

may be easily derived from Eqs. (2)–(8) by dividing the expressions
for the stresses with the appropriate DD’s. As was originally illus-
trated by Crouch (1976a,b) and Crouch and Starfield (1990), the
above stress solution for constant normal, transverse or screw dis-
placement discontinuities over a finite line segment, can be used to
develop a numerical procedure for solving complex boundary value
problems in elasticity. This special boundary element procedure,
the so-called CDD method, consists simply of placing N displacement
discontinuities of unknown magnitude and of equal length along the
boundaries of the region to be analyzed, then setting up and solving a
system of algebraic equations to find the discontinuity values that
produce prescribed boundary tractions or displacements. For easy
reference, this procedure is outlined in the next section.

3. Numerical procedure for a system of curvilinear cracks

The purpose here is to find the new influence coefficients for the
case that the elementary line discontinuities have arbitrary orien-
tation, and finally to set up the equations of the stress boundary
value problem. It is convenient for this purpose to describe each
displacement discontinuity with reference to a local transformed
coordinate system O�x�y attached to it, as is illustrated in Fig. 2. This
local system results from the global coordinate system Oxy after
applying a translation and then a rotation. The components of
the translation are x0, y0, whereas the rotation is defined by the an-
gle b positive in the counterclockwise sense as is shown in Fig. 2.
Hence, this coordinate transformation may be specified as follows

�x ¼ ðx� x0Þ cos bþ ðy� y0Þ sin b

�y ¼ �ðx� x0Þ sin bþ ðy� y0Þ cos b
ð9Þ

As is illustrated in Fig. 3a the local coordinates of point (i),
located at the centre of the ith linear segment, relative to the jth
element are given by the formulae

�xj ¼ ðxi � xjÞ cos bj þ ðyi � yjÞ sin bj

�yj ¼ �ðxi � xjÞ sin bj þ ðyi � yjÞ cos bj

ð10Þ

Subsequently, the stresses at the mid-point of the ith element
due to shear and normal displacement discontinuities of the jth
element (e.g. Fig. 3b) referred to the jth local coordinate system,
could be easily found from relationships (8) and (10) as follows
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yyð�xj; �yjÞDnj
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rtzij ¼ Axzð�xj; �yjÞDzj

rszij ¼ Ayzð�xj; �yjÞDzj

ð11Þ
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where we have changed the notation for the local coordinates of a
given DD segment in such a manner that hereafter Os-axis corre-
sponds to O�x-axis and On-axis to O�y-axis, and the subscript ‘‘t”
denotes the tangential stress component directed along the line
segment for modes I and II dislocations and along Oz-axis for mode
III dislocations.

The general stress equations for the DD method are obtained
from the foregoing results by considering an infinite body contain-
ing N line segments, arbitrarily oriented with respect to the global
Oxy coordinate system. Then, the total stresses imparted to the ith
element referred to its local coordinate system due to the DD’s of
all the N linear segments, may be found by the superposition of
the stresses caused individually from each segment by recourse
to Eq. (11) and then by the application of two consecutive rotations
of coordinates one clockwise with an angle bj and another counter-
clockwise at an angle bi as follows

rti ¼
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n
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Finally, from the above relations a 3N � 3N algebraic system of
linear equations with unknowns the DD components, namely Dsi,
Dni, Dzi (i = 1, . . . ,N), could be formed for the solution of Newmann
or the so-called ‘‘first fundamental” boundary value problem by
substituting the stress boundary conditions rsi = (rsi)0, rni = (rni)0

regarding plane mixed modes I, II problems and rszi = (rszi)0 regard-
ing anti-plane mode III crack problems (i = 1, . . . ,N), where subscript
‘‘0” denotes a known stress value along the ith line segment, i.e.

ðrniÞ0 ¼
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where Ansij, Annij, Assij, Asnij, Aszij (i, j = 1, . . . ,N) denote influence coef-
ficients for the stresses. Explicit expressions for these influence
coefficients could be written, but they clearly would be lengthy. It
is preferable simply to evaluate the coefficients within a computer
program according to the process defined above.

4. Validation of the theory with closed-form solutions for plane
crack problems

Problems involving an infinite body with cracks – even inter-
secting cracks – subjected to complex loading conditions, are
solved almost trivially by the DD method. Each crack is divided
into a series of segments over which stress boundary conditions
are known, and Eqs. (13) are solved for the discontinuity compo-
nents at each segment. Stresses elsewhere in the body then can
be computed by Eqs. (12) by summing the contributions of all
the individual discontinuities.

One of the main objectives of many analyses of crack problems
in the context of LEFM is to obtain values of the SIFs KI, KII, KIII at
the crack tips. A simple way of accomplishing this is to use the
known LEFM relationships

K I ¼ �
G

4ð1� mÞ lim
r!0

ffiffiffiffiffiffiffi
2p
r

r
DyðrÞ

( )

K II ¼ �
G

4ð1� mÞ lim
r!0

ffiffiffiffiffiffiffi
2p
r

r
DxðrÞ

( )

K III ¼ �
G
4

lim
r!0

ffiffiffiffiffiffiffi
2p
r

r
DzðrÞ

( )
ð14Þ

where the negative sign is due to the adopted sign convention for
the DD’s and stresses, Dy(r), Dx(r), Dz(r) are the normal, shear and
anti-plane shear components of displacement discontinuity a dis-
tance r from the crack tip(s). For practical purposes, the limits in
Eqs. (14) can be approximated by evaluating the expressions for a
fixed value of r, small in relation to the size of the crack. The SIFs
are simply calculated numerically by using the displacement dis-
continuity at the mid-points of the crack-tip cracks. Thus, accurate
values of SIFs may be obtained if the DD distributions in the vicinity
of the crack tip(s) are known accurately.

Eqs. (3), (5) and (7)–(13) were implemented into a computer
code called G2TWODD (i.e. acronym for G2 two-dimensional dis-
placement discontinuity code) that is dedicated for fast calcula-
tions of SIFs and stresses of cracked elastic bodies. In this section,
three indicative numerical examples are presented to illustrate
the improved accuracy referring to the determination of SIFs with
the special G2CDD element when compared with the CDD element,
with the higher-order linear displacement discontinuity (LDD) ele-
ment presented by Crawford and Curran (1982), and with the spe-
cial crack-tip displacement discontinuity (SCDD) element (i.e. Shou
and Crouch, 1995).

4.1. Case 1: Periodic array of parallel straight cracks

The first case pertains to the infinite row of periodic parallel
straight cracks subjected to far-field tension and anti-plane shear
tractions, as it is illustrated in Fig. 4. The relative distance of cracks
may be defined as follows

s ¼ a
aþ h

¼ 1
1þ h

a

ð15Þ

It may be seen from the above definition (15) that as h ?1 then
s ? 0, whereas as h ? 0 then s ? 1. Also, the SIFs for the problem
at hand may be expressed in the following manner

K I

K III

� �
¼

r
s‘

� � ffiffiffiffiffiffi
pa
p F Is

F IIIs

� �
ð16Þ

where FIs, FIIIs are configuration correction factors for the two cases
of modes I and III, respectively, with known dependencies w.r.t. the
relative distance s (Tada et al., 1973).

From Fig. 5a it may be seen that as the number of discretization
elements per crack increases, the dimensionless mode I SIF
(K I= ðr

ffiffiffi
a
p
Þ) predicted by the G2CDD method converges to the ana-

lytical solution. It is noted that SIF of a crack is calculated from the
two crack tip elements by recourse to the first of Eq. (14) with r equal
to the half element length. Moreover, the G2CDD gives always a bet-
ter prediction compared to the other two methods, namely CDD and
LDD, whereas LDD predictions are much better than CDD. Fig. 5b
shows the variation of the dimensionless mode I SIF predicted by



Fig. 4. Periodic array of parallel straight cracks in an infinite solid subjected to
far-field uniaxial tensile stress and anti-plane shear stress.
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Fig. 5. Variation of the dimensionless SIF (i.e. KI=ðr
ffiffiffi
a
p
Þ) predicted by the analytical soluti

of elements per crack for a fixed relative distance between the cracks and (b) with the
variation of relative error of SIF with respect to (c) number of elements per crack and
elements per crack.

G. Exadaktylos, G. Xiroudakis / International Journal of Solids and Structures 47 (2010) 2568–2577 2573
the three numerical methods and by the analytical solution, as the
relative crack distance increases. Also, LDD and CDD do not converge
to the true solution with increasing number of elements since as the
element size reduces the mid-point of crack tip elements approach
the actual crack tips. Finally, the relative errors (relative error =
(computed value � analytical value)/analytical value � 100) of the
three distinct numerical methods with increasing number of ele-
ments for fixed relative crack distance s = 0.5, and with increasing
relative crack distance for a fixed number of discretization elements
per crack (N = 50) are graphically presented in Fig. 5c and d, respec-
tively. From these figures the much better accuracy and convergence
of the G2CDD compared to the CDD and LDD methods may be ob-
served. It is further noticed here that similar conclusions have been
drawn for the behavior of mode III SIF for the case of far-field anti-
plane shear traction.

4.2. Case 2: The symmetrical star crack

Next, we consider the symmetrical star crack configuration sub-
jected to a far-field all-around uniform tension, as it is shown in
Fig. 6. Due to symmetry, the only surviving SIF is the mode I that
is acting on the non-common tips of the cracks since there is no
stress concentration at the common crack tips. The SIF is given
by the following abridged form

K I ¼ r
ffiffiffiffiffiffi
pa
p

FðnÞ; n P 2 ð17Þ

wherein F(n) is the corresponding configuration correction factor gi-
ven w.r.t. the number of radial cracks n (Tada et al., 1973). The fol-
lowing approximate formula holds true in this case
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on and the three distinct displacement discontinuity techniques with (a) the number
relative distance s of cracks for fixed number of elements per crack (N = 50), and

fixed relative distance, and (d) the relative distance of cracks for fixed number of



Fig. 6. Radial straight cracks of equal length emanating from a common point in an
infinite solid subjected to far-field biaxial tension.

Fig. 8. The curved crack which is a part of a circle in an infinite isotropic plane
subjected to biaxial tensile and anti-plane shear stresses.
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FðnÞ � 2ffiffiffi
n
p ; n P 10 ð18Þ

First it should be noted here that the existence of a node com-
mon to all the elements at the central intersection point of the star
crack system, is possible only for an even number of cracks due to
symmetry arguments. For this particular case a common node at
the centre was not applied, since cases of odd number of cracks
Radial cracks problem: Mode I SIF (n=6)
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Fig. 7. Variation of the dimensionless SIF (i.e. KI=ðr
ffiffiffi
a
p
Þ) predicted by the analytical soluti

of elements per crack for six radial cracks, and (b) with the number of cracks for fixed nu
relative error of SIF with respect to (c) number of elements per crack for a fixed number o
crack.
have been also examined. The comparison of the effectiveness of
the three numerical methods, namely the CDD, G2CDD and LDD,
in computing the mode I SIF at the crack tips for various values
of discretization elements and radial cracks, may be seen in
Fig. 7a–d. This example also illustrates the effectiveness of the
G2CDD method compared to the other two methods for the calcu-
lation of the SIF. Fig. 7a displays the convergence of the three tech-
niques with increasing number of elements for the case of n = 6,
whereas Fig. 7b presents the comparison of the numerical predic-
tions of the three methods with the respective analytical solution
Radial cracks problem: Mode I SIF (N=50)
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for N = 50 elements per crack and for various number of radial
cracks, n. The relative errors of the three methods are also graphi-
cally presented in Fig. 7c and d as the discretization density and
number of cracks increases, respectively. From Fig. 7c it may be
observed that G2CDD method gives the smaller relative error,
while convergence to the analytical solution is not possible since
Curvilinear crack problem:
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Fig. 9. Dependence of the SIFs (i.e. Ki=ðr
ffiffiffi
a
p
Þ, i = I, II, III) at the tip A of the arc crack on th

(c) mode III cases.
for larger number of elements the closer at the tip is the node of
the crack tip element. It is worth noticing from Fig. 7d that even
for the case of a large number of radial cracks n = 40, the absolute
value of the relative error of the SIF predicted by G2CDD is lower
than 4.2%, as compared to the relative errors of the other two
methods that are greater or equal to 10%. From this analysis it
 Mode I SIF (N=50)
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could be immediately observed: (a) the LDD method considerably
reduces the error of the SIF compared to the CDD, and (b) the
G2CDD method is always more accurate compared to LDD method
and more efficient in terms of speed of calculations, since the linear
displacement discontinuity pattern is represented by displace-
ments at two element nodes whereas the G2 displacement discon-
tinuity by only one node.

4.3. Case 3: The curvilinear crack problem

This case illustrated in Fig. 8 refers to the smooth arc crack,
which is a part of a circle, in an isotropic infinite plane subjected
to biaxial tension and anti-plane shear stress at infinity. The closed
Curvilinear crack problem M
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Fig. 10. Variation of the dimensionless SIFs (i.e. Ki=ðr
ffiffiffi
a
p
Þ, i = I, II, III) at the tip A of the arc c
form expressions for the modes I, II and III SIFs at crack tip A are
given as follows (Tada et al., 1973)
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wherein u stands for the half-angle of the sector prescribed by the
crack, a is the radius of the circle, rdenotes the far-field biaxial ten-
sion, and slthe far-field anti-plane shear stress.

In this particular problem, apart from the G2CDD, LDD and CDD
methods, the special crack-tip displacement discontinuity (SCDD)
element method (Shou and Crouch, 1995) was also implemented
into G2TWODD code and applied for the numerical calculation of
mode I, II and III SIFs. For the numerical implementation of the
SCDD, the two special crack tip displacement discontinuity ele-
ments of each crack are placed locally at the corresponding left
or right crack tips, while the rest of the elements that cover the
crack apart from the tips are constant displacement discontinuity
elements. It is worth noticing that the SCDD requires more compu-
tational effort than the G2CDD since in the former case the influ-
ence coefficients between the special crack tip elements and the
CDD elements are given in integral form and should be calculated
by virtue of Gauss quadrature (only in the case of straight cracks
these integrals may be found analytically), while those of the latter
are given in analytical form.

The graphical representations of the variation of modes I, II and
III SIFs with the half-angle of the arc crack are also illustrated in
Fig. 9a–c, respectively. From these figures it may be seen that the
two methods, namely the G2CDD and SCDD, give always more clo-
ser results to the analytical solution than the other two numerical
methods (i.e. CDD and LDD). It is also noted that for half-arc angles
u 6 30�, G2CDD gives the smaller relative error compared to all the
other methods, whereas for higher values of the angle u the SCDD
gives slightly better predictions compared to G2CDD. It could be
also remarked from this analysis that even for a small number of
elements, i.e. N = 10 the G2CDD method is close to the analytical
solution, while as the number of elements increases the numerical
solution given by this method oscillates around the analytical one.
Finally, Fig. 10a–c presents the variation of the normalized mode I
SIF with the number of elements along the curvilinear crack for a
constant half-arc angle equal to 40�.

5. Conclusions

In this work the G2CDD element was further elaborated for
calculating the SIFs for general plane isotropic elasticity crack
problems. A number of crack configurations were considered in or-
der to compare the efficiency and accuracy of the G2, as well as of
the constant, linear, and special crack tip DD elements. These
examples show that the G2DD element is very efficient and more
accurate for SIF calculations of complex plane cracks in infinite
domains compared to the CDD and LDD elements. Also, the pro-
posed element has comparable accuracy with the SCDD element,
but it is more efficient since it avoids extra numerical integrations
for the calculation of the influence coefficients. Hence, the use of
this element allows accurate analysis of a crack tip without
recourse to a special crack tip element or elements with more than
one collocation points (e.g. linear), and makes the DD method suit-
able for the solution of crack problems. The method can be ex-
tended to cope with the interaction of cracks of arbitrary shape
with a free surface (i.e. the half-plane problem). This extension of
the method is presented in Part II (Exadaktylos and Xiroudakis,
submitted for publication).
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