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In the previous Part I, the G2 constant displacement discontinuity element was presented that is dedi-
cated for the fast (only one collocation point per element), stable and accurate numerical solution of
modes I, II and III cracks of arbitrary shape in an infinite plane isotropic elastic body. Herein, another
G2 constant displacement discontinuity element is constructed for the case of cracks in the half-plane.
It is successfully validated against existing semi-analytical and numerical solutions of crack problems
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1. Introduction

In the previous Part I (Exadaktylos and Xiroudakis, submitted for
publication), the G2 constant displacement discontinuity (G2CDD)
element was tailored for the analysis of modes I, II and III cracks
of arbitrary shape in an infinite plane isotropic elastic body in the
context of the displacement discontinuity method (DDM) (Crouch,
1976a,b; Crouch and Starfield, 1990). It is worth mentioning here
that DDM belongs to the family of the dual Boundary Element
Method (BEM) (Chen and Hong, 1999; Hong and Chen, 1988a,b).
The proposed G2 element is based on the strain-gradient elasticity
theory, and more specifically on its Grade-2 (G2) variant, and gives
considerably more accurate results for the Stress Intensity Factors
(SIFs) compared to the classical constant displacement discontinu-
ity (CDD) method. In the following Section 2, the G2CDD approach
is further elaborated to incorporate automatically traction-free
boundary conditions for a semi-infinite region by using the classical
method of images (Hirth and Lothe, 1982; Crouch, 1976a). Finally,
in Section 3 it is validated against existing semi-analytical solutions
of crack problems in the half-plane. These solutions refer to the
pressurized crack parallel to the free surface, the crack normal to
the free surface subjected to far-field tension or shear, and the cur-
vilinear crack close to the free surface of the half-plane.

2. The half-plane G2 solution for an arbitrarily inclined finite
line segment

For the extension of the G2CDD method to situations in which
the region to be analyzed is affected by the proximity of a trac-
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tion-free plane surface, it is necessary to obtain the solution for a
constant displacement discontinuity over an arbitrarily oriented,
finite line segment in a semi-infinite body. This solution is con-
structed by superposition from the infinite body results presented
in Part [ by using the classical method of images (Hirth and Lothe,
1982). It consists of two parts, namely, the actual solution already
found in Part I for an infinite body with a constant displacement
discontinuity over an arbitrarily oriented, finite line segment in
y <0, as is shown in Fig. 1, an “image discontinuity” in y > 0 that
cancels out the shear stresses on y =0, and a continuous distribu-
tion of normal stress on y = 0 that cancels out the normal tractions
on the free surface of the half plane. Hence, the complete solution
is given by the sum of the three separate solutions. The Cauchy
stress tensor due to the actual DD will be denoted by aia), while
the stress tensor due to its image by o), and those resulting from
the supplemental solution by oyis), wherein indices i, j denote the
Cartesian coordinates x, y. Then, the complete solution for the
half-plane may be represented as follows:
0ij = Oij) + Oijay + Tijis)  1j =X,y (1)
Hereafter, tensile stresses are considered as positive quantities and
the unit length is chosen to be the half-width of the DD element,
since the sizes of the elements are taken to be equal.

As is illustrated in Fig. 1, local coordinate systems attached on
the actual and image finite linear segments are adopted in the fol-
lowing fashion, respectively,

Xa=XCoSB+ (y+h)sing; ya=—xsinp+ (y+ h)cos§p, (2)
and
X =xcosp—(y—h)sing; ¥y, =xsinp+ (y—h)cosp. 3)
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Fig. 1. Arbitrarily oriented finite line segment in the lower half-space with its image in the upper half-plane and coordinate systems.

where p denotes the inclination angle of the straight dislocation
w.r.t. the horizontal in the manner shown in Fig. 1 and h is the
depth of the dislocation centre. For y = 0 the image local coordinates
given from Eq. (3), take the following form

hy=xcosp+hsinp; h, =xsinf—hcosp. (4)
The solution for the stresses in plane strain conditions produced by
an actual finite straight Mode I dislocation occupying the line seg-
ment —1 < X4 < 1, y4 = 0 with no loading at infinity and displaying
a constant DD of magnitude D; may be found from Eq's (2a-c) of
Part I (Exadaktylos and Xiroudakis, submitted for publication) by
applying the appropriate rotations in order to refer to the global
coordinate system Oxy, i.e.

14\[ / 214 2)(1 - cos(2)[yalé)

x COS(Xa&)Jy 5 (&)e Yalode

1_\}[/ S 4 28 sin2h)ya

x sin(Xa&)Jy o (E)e Al de (5a)

W) =52 2l [T 2 4 e
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Similarly, the solution for image element (Fig. 1) referred to the glo-
bal coordinate system may be found by substituting the global coor-
dinates in Eq. (2) of Part I (Exadaktylos and Xiroudakis, submitted

for publication) with the local coordinates of the image element
and applying the appropriate rotation as follows:

T (X,Y) = l—v f/ 21+ £28)(1 - cos(2p)yil¢)
X cos(x,f)]l/z( ye Milsde

1_v \[/ 21+ 22)sin2p)7

x sin(X¢)f; p(&)e " de (6a)

GD, 2. [
! - _ S ek 3/2 2.2
Ty (X Y) = 30 ) \[n“”'/o B2(1 4+ 2

&de —

GDy

x sin(2p)]; (E)e V" cos(x, 30 V)

o [

x sin(x;&)d¢ (6b)

Er1+0£8) cos(2B)];2(¢ &)e ik

Tl (X.Y) = 1_V\[/ 21+ 2E)(1 + cos(2p)yi]¢)

x cos(x,é)]]/z( &e Wilge

17v \[/ E2(1+ &) sin2p)y
x sin(X¢)]; p(&)e Vkde (6¢)

wherein as in Part I the Latin superscript “I” designates a mode I dis-
location, G, v denote the shear modulus and Poisson’s ratio of the
material, respectively, ¢ is the strain-gradient coefficient that has
dimensions of length, ¢ is the real-valued transform parameter,
and J,(+) is the usual Bessel function of the first kind and of order n.

It may be easily verified by adding respectively, Egs. (5b) and
(6b) as well as Egs. (5¢) and (6¢) that the line y =0 is free from
shear tractions and display non-zero normal tractions, since nor-
mal stresses produced by the actual and image discontinuities
are equal along the line y =0, i.e.
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(ny(A) + ny(l ) O
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(ayy(f\) + Oy ) (20 ) =0 — (zo-yyU))y:O

(7)

The above normal tractions may be removed from the line y = 0 by
superimposing a supplemental (or fictitious) solution for the half-
plane y > 0 that has appropriate stress boundary values on y = 0.
So, we seek the solution of the following stress boundary value
problem for the half-plane y <0

ol =0,
> } ~o<x<oo, y=0 8)
ny() ayyl)

The solution of this boundary value problem may be found in Part |
(Exadaktylos and Xiroudakis, submitted for publication), to be

Thys) (6,Y) = =2(1 + |y|&)By(£)e" o)

where the ‘bar notation’ denotes the one dimensional Fourier trans-
form of stress w.r.t. x coordinate. First, by substituting y = 0, and fur-
thermore changing the nature of the gradient length scale by setting
¢=1¢| where |¢| denotes the modulus of the imaginary parameter ¢,
as is explained in (Exadaktylos and Xiroudakis, 2010a), into Eq. (6c)
it is derived

vy (%,0) =

GDy hy—1-hysin(2f) h,+1—hysin(2p)
27m(1-v) (he—1)*+h; (he+1)*+1;
o (hy—1)cos(2p) +hysin(2p)  (hx+1)cos(2p) +hysin(2p)
(h—1)"+h5) (+1)" +hy)°
Y hy—1-3hysin(2p) hy+1-3h,sin(2p)
((hy—1)° +h2)? ((he+1)° +h2)?
_ap? (hy—1)(1—3cos(2p)) +6hysin(2p)
((he—1)" +h2)*
(he+1)(1—3cos(2p)) +6hysin(2p)
((he+1)° +h2)°
Sapt ((hx—l)cos(2ﬁ) hysin(2p)  (hy+1)cos( Zﬂ —hysin(2p) )H
- y 2,4 2
((he—1)* +1)* ((he+1)*+h2)

(10)

where [ = v/—1 is the usual imaginary unit and it was set || =
Then, the only unknown By(¢) is found by requiring J§y(5)
(x,0) = =20}, (x,0), that is to say

a5 (%,0) = 72\[/ By(£)e™de = —2a1, (x,0) =
By(¢) = \/%/0 O-J’/y(l)(xv 0)el " dx

Hence, the function B,(¢) for the mode I case could be found analyt-
ically in a formal way by substituting in the r.h.s. of Eq. (11) the rep-
resentation for a§y(, (x,0) given by Eq. (10) and by assuming that
h > |sin (B)| and &> 0, as follows

2  GDy
Bz(f) = - \/;2(17_}/0)6(7

— 162" (cos(e ¢) sin(B) + I sin(e™ é)h)e@”‘)é
+ 2 {1e"#P (cos(e"P ¢) sin(B) + I sin(e!P &)h)
x (2cos(4p)e!” — e3¢ — sin(e"" &) (cos(3p)
+ 3sin(2p) sin p + 2Isin(p ) ) (12)

(11)

M sin(e¢) cos(B)

Finally, the supplementary solution for the stresses for the lower
half-plane (y < 0) may be found to be

L (x.Y) = \@m{ [y expnrends
Orys) (%,Y) = =23 {\[/ ¥EBa(¢ exp(IXc)ey“dc} (13)
S) (x,y) = 293{\/7/ (1 —y&)By(& exp(IxE)ey‘dg}

in which R, 3 denote the real and imaginary values of what they
enclose, respectively. The analytical solutions of above semi-infinite
integrals may be found as follows:
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For brevity of the presentation, the analytical expressions of the
supplemental stresses derived after evaluating in an explicit man-
ner the real and imaginary parts of Eqs. (14) above, are presented
in Appendix A.

Proceeding further, the solution referring to the global coordi-
nate system Oxy for the stresses in plane strain conditions, pro-
duced by an arbitrarily oriented finite straight Mode I
dislocation lying in the lower half-plane and occupying the line
segment —1 < X4 < 1, ¥4 = 0 with no loading at infinity and dis-
playing a constant DD of magnitude Dy in local coordinates
(Fig. 1) may be found from Eq’s (4a-c) of Part I (Exadaktylos
and Xiroudakis, submitted for publication) by applying the
appropriate rotations in order to refer to the global coordinate
system Oxy, i.e.

GDy 2 [ .
Y A RTINS
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= vr/ EPA+ PN () (208~ Jad
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Similarly, the solution for image element (Fig. 1) referred also to the
global coordinate system, could be found by substituting the global
coordinates in Eq. (4) of Part I with the local coordinates of the im-
age element lying in the upper half-plane and applying the appro-
priate rotation in the following manner:

b V2 [T s p @0 3o

_ . GDx 2
i = K X
x sin2fcos x;ée dg+2(1 )\/’

wn(XY) =
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GDy
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VR [ p e -ne
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I
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GDx
-0 JA/ ERA+PA O - 318)

. GDy 2
: X EevedE + —X 2
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0
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As in the mode I case, the total shear stress vanishes along the free
surface y = 0, but the total normal stress still does not vanish at the
free surface, that is to say Eq. (7) hold also true for the mode II case.
The normal stress may be removed from the line y = 0 by superim-
posing a supplemental (or fictitious) solution for the half-plane
y > 0 that has appropriate stress boundary values on y = 0. For this
purpose, we seek the solution of the following stress boundary va-
lue problem for the half-plane y <0

a” =0,
—o<X<oo, y=0 (17)
Ggy@ = 20y, }

The solution of this boundary value problem may be also found in
Part I (Exadaktylos and Xiroudakis, submitted for publication), that
is

ahs (%) = 21(1 + |y|&)By (&)e* (18)

For this purpose, first the values y = 0 and ¢ = I|¢|, where |¢| denotes
the modulus of the imaginary parameter ¢ as in the mode I disloca-
tion, are substituted in Eq. (16c), and the result is evaluated analyt-
ically in the following manner,
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wherein it was set || = 4.

Next, the r.h.p. of the above equation is substituted into the sec-
ond of Eqgs. (17) and the resulting equation is solved w.r.t. B;(¢)
after applying the inverse Fourier transform,

o'l ¢ (x,0) = 21\/> / By (¢)edé = 20T (x,0) = By (¢)

= 1\/‘ / 159 iy (20)

Hence, the function B; for mode II case may be found by assuming
that h > |sin(B)| and ¢ > 0 in the following fashion

Bi(¢) = 1\/72(16%0) e [—(cos(e" ¢)sin(p)

Neyhyel20eB e, + sin(e™ ¢)sin(p)
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+ Isin(e!

Subsequently, the supplemental stress solution can be easily found
as follows:

9 =225 [0 yemo e
5 (%) —29&‘{\/7/ (Y&)B1 (&) exp(Ixé)es df} (22)
s (X.Y) = —23{\/; / (1-y9Bi(9) exp(lxé)eyﬁdc}

The analytical forms of the above semi-infinite integrals are the
following
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Fig. 2. Geometry and coordinate system for the uniformly pressurized horizontal crack parallel to the free surface and lying in the lower half-plane.

Uniformly pressurized crack parallel to the free surface (N=50)
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Fig. 3. Dependence of mode I and II SIF's on the dimensionless distance of the crack from the free surface as is computed with classical and special gradient elasticity elements
with N =50 elements.
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As in the mode I case, the analytical expressions of the above sup-
plemental stresses after the evaluation of their real and imaginary
parts, are presented in Appendix A.

3. Validation of the G2CDD method against solutions of half-
plane crack problems

Problems pertaining to a half-plane with cracks - even inter-
secting cracks - subjected to complex loading conditions, are
solved almost trivially by the DD method. Each crack is divided
into a series of segments in the form of dislocations over which
stress boundary conditions are known, and Eq. (13) in Part I
(Exadaktylos and Xiroudakis, submitted for publication) with influ-
ence coefficients appropriately modified according to the formulae
presented in the previous Section, are solved for the discontinuity
components at each segment. Stresses elsewhere in the body then
can be computed by equations analogous to Eq. (12) of Part I

(Exadaktylos and Xiroudakis, submitted for publication) by sum-
ming the contributions of all the individual discontinuities. The
equations derived here were also implemented into G2TWODD
computer code that is dedicated for fast calculations of SIF's and
stresses of cracked elastic bodies. In this section, three indicative
numerical examples are presented to illustrate the improved accu-
racy referring to the determination of SIFs with the G2CDD method
when compared with the CDD method.

3.1. Straight crack parallel to the free surface

The first problem that is used as a validation example of the
proposed numerical method, is the straight crack which is parallel
to the stress-free boundary of the half-plane and is subjected to
uniform internal pressure —p(p > 0) as is displayed in Fig. 2. This
problem is relevant to the fundamental rock mechanical problem
of cracks or joints pressurized by the fluid that may contain (e.g.

Uniformly pressurized crack parallel to the free surface (N=50)
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Fig. 4. Variation of the relative error of modes I and II SIFs for horizontal crack with (a) relative crack depth for N = 50, and (b) number of discretization elements with h/o = 1.
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water) and lying near the free-surface of the wall of an excavation
or borehole.

Fig. 3 presents the variation of the dimensionless mode I and II
SIFs (K;/(pv/a),i = I,II) on the relative crack distance (h/o) from the
stress-free surface (y = 0) as they are predicted by the G2CDD, and
CDD methods, while the crack was discretized by 50 mode I dislo-
cation elements. The continuous and dashed curves present the
semi-analytical solution referring to the mode I and II SIF’s, respec-
tively, proposed by Itou (1994). This author solved quite accurately
this specific problem by using the Fourier transform technique and
the theory of dual integral eqns. It is worth noticing that for low
values of h/a, the presence a mode II SIF is quite appreciable, while
it attenuates fast as h/ax > 0.5. The very good agreement of the
G2CDD results with the semi-analytical solutions may be seen
from this figure, as well as from Fig. 4a and b in which the relative
error (relative error = (computed value-analytical value)/analytical
value x 100) is plotted w.r.t. h/o for N = 50 and w.r.t. the number of
discretization elements, N, for fixed relative distance equal to 0.1,
respectively.

3.2. Straight crack normal to the free surface

The second half-plane problem that is considered here is illus-
trated in Fig. 5. This case refers to the straight crack normal to
the free-surface of the half-plane subjected to uniform horizontal
tension and in-plane shear stress at infinity. The closed form
expressions for the mode I, and II SIFs at crack tips A and B are gi-
ven as follows, respectively

(2, (o))
(5, (o)

wherein o, h stand for the half-length of the crack and its depth
from the free surface, respectively, ¢ denotes the far-field horizontal
tension, 7 the far-field in-plane shear stress, whereas the configura-
tion correction factors referring to the tips A, B are denoted as Fa(h/
o), Fg(h/a), respectively and are given by Tada et al. (1973). It is

Fig. 5. Straight crack of length 2« normal to the free surface of the half-plane subjected to far-field uniform horizontal tension ¢ and in-plane shear stress 7.

Uniformly pressurized crack vertical to the free surface (N=50)

Dimensionless SIF
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Fig. 6. Comparison of the dependence of mode I SIF at the two tips A, B of the vertical crack discretized with N = 50 elements, on its relative distance from the free surface
predicted by the semi-analytical solution (continuous and dashed lines) and the two numerical methods CDD and G2CDD.
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Uniformly pressurized crack vertical to the free surface (h/o.=1.1)

45 i
|

| | |

5 E O A I A
TS IR N A U A N S O Y
el L+ | & [ a4 .
00 I SO O s S Y S
Esl L

ol ]

e e e e e

0.0 | | | | | | | | |

Number of elements
——KIA o G2CDDA ¢ CDDA — —-KIB O G2CDDB a CDDB

Fig. 7. Dependence of the mode I SIF at the two crack tips A, B on the number of discretization elements for a fixed dimensionless depth of the crack hjo = 1.1.

Fig. 8. A curvilinear crack along a part of a circle in the half-plane subjected to far-field horizontal tension.

Circular crack in half plane with horizontal far field stress (I/h=0.5, N=100)
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Fig. 9. Variation of modes I and II SIFs with the dimensionless parameter §/¢for fixed number of discretization elements (N = 100) and relative depth of the crack ¢/h = 0.5 as is
predicted by the singular integral formulation (referred as “analytical”here) as well as the G2CDD and CDD methods.
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worth noticing that the modes I and II SIF’s are equal provided that
the magnitudes of the far-field tensile and in-plane shear stresses
are equal. Therefore, the following diagrams presented in Figs. 6
and 7 are concerned only with the mode I case.

Fig. 6 shows the variation of the dimensionless mode I SIF at the
two crack tips A, B as is predicted by the two numerical methods,
namely CDD and G2CDD, and by the semi-analytical solution, as
the relative crack distance from the free surface increases and for
a fixed number of discretization elements of the crack (N = 50).
On the other hand, the dependence of the SIF on the number of dis-
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cretization elements for the relative crack depth at hand, is dis-
played in Fig. 7. From these figures the very nice agreement of
the G2CDD method and its superiority compared with the CDD
method may be noticed.

3.3. Curvilinear crack close to the boundary

After the first two relative simple problems considered above,
we consider the last more complicated problem referred to the first
fundamental problem of the theory of elasticity for a half-plane

Circular crack in half plane with horizontal far field stress (8/1=0.5, 1/h=0.7)
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Fig. 10. Variation of mode I and II SIFs with increasing number of discretization elements N for fixed dimensionless parameter 5/¢ = 0.5 and relative depth of the crack ¢/
h=0.7 as is predicted by the singular integral formulation (referred as “analytical” here) as well as the G2CDD and CDD methods.

Circular crack in half plane with horizontal far field stress (8/1=0.5, N=100)
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weakened by curvilinear crack along an arc of a circle, as is dis-
played in Fig. 8. This problem has been solved by Datsyshin and
Marchenko (1984) by virtue of the method of singular integral
eqns and Gauss’ quadrature formulae. As is shown in the same fig-
ure, the half-plane is subjected at infinity with uniform tension
oy = p > 0 parallel to the boundary.

In this case Figs. 9-11 present three diagrams in which the pre-
dictions for the modes I and II SIF’s of the numerical solution of the
singular integral formulation (Datsyshin and Marchenko, 1984) are
compared with the respective predictions of the G2CDD and CDD
methods. From these figures the very close agreement of the

G2CDD solution with the singular integral solution for the whole
range of the independent variables considered in each case may
be observed.

4. Conclusions

The G2CDD element for half-plane problems has been shown to
yield results which for the same number of equations, is superior
to those achieved using the CDD elements. The test cases have
shown that this element is stable and that the numerical results
are very close to the correct solutions.

Appendix A. Analytical evaluations of the supplemental stresses for the mode I and II dislocations

The supplemental stress solution for the arbitrarily inclined straight mode I dislocation close to the free surface of the half-space has as

follows
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Finally, the supplemental stress solution for the inclined mode II dislocation that interacts with the free surface of a half-space reads as
follows
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