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ABSTRACT

The accurate evaluation of nearly singular boundary integrals is an important
issue in boundary element analysis, and the importance of this problem is next to the
singular boundary integrals.  Although many ways of evaluating nearly singular inte-
grals have been developed in recent years, and obtained varying degree of success,
questions still remain.  In this paper, a new efficient transformation is proposed, based
on a new idea of transformation with variables.  The proposed transformation can
remove the near singularity efficiently by smoothing out the rapid variations of the
integrand of nearly singular integrals, and improve the accuracy of numerical results
of nearly singular integrals greatly without increasing the computational effort.  Nu-
merical examples of potential problems are given, with results, showing the high effi-
ciency and the stability of the suggested approach, even when the internal point is
very close to the boundary.
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 I. INTRODUCTION

The accurate computation of the kernels’ inte-
gration is a critical aspect in the implementation of
the boundary element method (Kisu et al., 1988; Chen
et al., 1994).  These kernels are weakly singular,
strongly singular, or even hypersingular functions
when the collocation point belongs to the integration
element, and many effective methods(Brebbia et al.,
1984; Kisu et al., 1988; Sun., 1999; Liu, 2000; Chen
H.B. et al., 2001; Chen J. T. et al., 1994;1999; 2004;
2005; 2006a; 2006b; 2007a;2007b; Niu et al., 2004;
Zhang et al., 2000; 2001; 2004; 2006; Wang, 2005)
have been developed to handle them.  Another im-
portant issue is the integration of the kernels for the

collocation points which are close to but not on the
integration element.  The ensuing integrals, although
regular in nature, are termed nearly weak singular,
nearly strong singular and nearly hypersingular inte-
grals since the integrand varies very rapidly within
the integration interval, the integrand varies more rap-
idly the closer the collocation point is to the integra-
tion element, and can not be computed accurately with
standard Gaussian quadrature.  Practice shows that
using standard Gaussian quadrature procedures, which
neglect the pathological behavior of the integrand as
the collocation point approaches the integration
element, will lead to a decrease in the accuracy of
the solution, even to no accuracy, which is the so-
called boundary layer effect.

The accurate numerical evaluation of the nearly
singular boundary integrals is crucial to some engineering
problems, such as crack problems when the crack
tip is deformed to have a small opening displacement,
contact problems when the contact area of the two con-
tacting bodies is very small, as well as thin or shell-
like structure problems.
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In BEM, the importance of the accurate evalua-
tion of nearly singular integrals is next in importance
to singular boundary integrals.  Therefore, a great
amount of attention has been attracted and many nu-
merical techniques have been developed for it in re-
cent years.  These proposed methods can be divided
on the whole into two categories: “global algorithms”
(Cruse, 1974; J.C. Lachat, J.O, 1976; Wang et al.,
1994; Chen et al., 1998; Zhang et al., 2000; Mukerjee
et al., 2000; Sladek et al., 1993; Granados, 2001) and
“local algorithms” (Jun, 1985; Telles, 1987; Cerrolaza
et al., 1989; Tanaka et al., 1991; Lutz, 1992; Cruse,
et al., 1993; Lutz, 1993; Huang et al, 1993; Luo et
al., 1998; Schulz et al., 1998; Liu, 1998; Johnston,
1999; Sladek et al., 2000; Niu et al., 2000; 2001;
2005; Chen et al., 2001; Zhang et al., 2001; Padhi et
al., 2001; Ma, 2001; 2002a; 2002b; Zhou et al., 2003;
MA et al., 2004; Zhang X.S. et al., 2004; Davey et
al., 2004; Wang et al., 2005;).  The “global algo-
rithms” are mainly to calculate indirectly or avoid cal-
culating the nearly singular integrals by establishing
new regularized boundary integral equations, such as
the virtual boundary element method (Sun et al., 1999;
Zhang et al., 2001), rigid-body displacement method,
or the simple solution method, as well as other glo-
bal regularization methods (Cruse, 1974; Lachat,
1976; Sladek et al., 1993; Wang et al., 1994; Chen et
al., 1998; 2001; Liu, 2000; Mukerjee et al., 2000;
Granados, 2001; Zhang Y.M. et al., 2004).  The vir-
tual boundary element method can avoid calculating
the singular integrals or nearly singular integrals, but
its theoretical foundation is only confirmed in some
cases(Sun et al., 1999; Zhang et al., 2001).  Simple
solution method and rigid-body displacement method,
which benefit from the regularization ideas and tech-
niques for the singular integrals, eliminate the nearly
zero factor in the denominator of kernel function by
the zero factor in density function, but the accuracy
of their calculated results are not satisfactory.  The
“local algorithms” are calculating or approximating
the nearly singular integrals directly.  They usually
include interval subdivision(Jun et al., 1985; Tanaka
et al., 1991), special Gaussian quadrature (Lutz, 1992;
MA et al., 2004), analytical or semi-analytical meth-
ods (Cruse et al., 1993; Schulz et al., 1998; Liu, 1998;
Zhang et al., 2001; Padhi et al., 2001; Niu et al., 2001;
2005; Zhou et al., 2003; Zhang X.X. et al., 2004;
Davey, 2004; Wang et al., 2005) and transformations
(Telles, 1987; Cerrolaza, 1989; Lutz, 1993; Huang,
1993; Luo et al., 1998; Johnston, 1999; 2000; Sladek
et al., 2000; Ma et al, 2001; 2002a; 2002b; Zhang et
al, 2006), etc.  The interval subdivision method is an
effective method but it is not recommended, because
the number of the divided intervals depends on the
distance from the computing point to the boundary,
with more intervals, the closer the computing point

is to the boundary, which requires great computation
efforts and can increase the accumulative error.  The
special Gaussian quadrature method needs to deter-
mine the weight coefficients and integration points
of the quadrature formula based on the form of the
integrand, and the weight coefficients and integration
points will change with the changes of the distance
from the calculating point to the boundary curve.
Thus, heavy and complicated derivation work must
be done in this method and it usually is used in con-
junction with other methods.  The analytical method
for nearly singular integrals seems more difficult than
for singular integrals and is generally considered im-
possible for curved elements.  The semi-analytical
method primarily separates the nearly singular parts
by the “plus-minus method” with the separated parts
computed analytically and the regular parts computed
by standard Gaussian quadrature formula.  However,
this method does not remove the near singularity
completely, and the regular parts still retain weak near
singularity, meanwhile, more derivation work has to
be done before numerical implementation.  At present,
the most common of the “local algorithms” are vari-
ous non-linear transformations, for example, the cu-
bic polynomial transformation (Telles, 1987), the
bi-cubic transformation (Cerrolaza, 1989), the sigmoi-
dal transformation (Johnston, 1999), the semi-sigmoi-
dal transformation (Johnston, 2000), the coordinate
optimization transformation (Sladek et al., 2000), the
attenuation mapping method (Lutz, 1993; Luo et al.,
1998), the rational transformation (Huang et al.,
1993), and the distance transformation (Ma et al.,
2001; 2002a; 2002b).

The basic ideas of the above transformations can
be generalized into two categories: one (Telles, 1987;
Cerrolaza, 1989; Lutz, 1993; Luo et al . ,  1998;
Johnston, 1999; 2000; Sladek et al., 2000) is remov-
ing the nearly zero factor in the denominator of the
kernels using zero factor (usually generated by
Jacobian); the other one (Huang et al., 1993; Ma et
al., 2001; 2002a; 2002b) is converting the nearly zero
factor in the denominator of the kernels to be part of
the numerator, which profits from the idea of the re-
ciprocal transformation for the regularization of
weakly singular integrals.  Numerical tests show that
the transformations based on the former idea are ef-
fective for the calculation of weakly singular inte-
grals but not satisfactory for strong singular or
hypersingular integrals.  The latter transformations,
based on the idea of reciprocal transformation, can
convert nearly singular kernels into normal kernels,
but the original regular parts behave nearly singularly
after the transformations, so they are suitable only
for a case when the regular part of the integrand is
constant.

Recently, some new developments (Shiah et al.,
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2006; 2007; Chen, 2007) in the range of nearly sin-
gular computation have been reached.

This paper constructs a general variable trans-
formation based on the idea of diminishing the dif-
ference of the orders of magnitude or the scale of
change of operational factors.  The constructed trans-
formation can smooth out the rapid variations of
nearly singular kernels and extremely high accuracy
of numerical results for nearly singular integrals can
be achieved with this method.  Furthermore, the sug-
gested transformation is effective whatever the regu-
lar part of the integrand may be.

II. THE NEARLY SINGULAR INTEGRALS IN
THE EQUIVALENT NONSINGULAR BIES

In this paper, we always assume that Ω is a
bounded domain in R2, Ω c its open complement, and
Γ  = ∂Ω their common boundary.  t(x), n(x) are the
unit tangent and outward normal vectors of Γ  to
domain Ω at point x, respectively.  In BEM, if bound-
ary conditions are given properly, the domain vari-
ables can be computed by corresponding integral
equations after the boundary quantities are all
obtained.  For plane potential problems, the equiva-
lent non-singular BIEs with indirect variables are
given in Zhang (2006).  For the domain Ω, the equa-
tions are given as

φ(x)dΓ x
Γ

+ f (x)dΩ
Ω

= 0 (1)

u(y) = φ(x)u*(x, y)dΓ x
Γ

+ f (x)u*(x, y)dΩ
Ω

+ C ,

y ∈ Γ (2)

∇ u(y) = φ(y) + [φ(x) – φ(y)]
Γ

∇ u*(x, y)dΓ

– φ(y) [t(x) – t(y)]
Γ

∂u*(x, y)
∂t x

dΓ

+ [n(x) – n(y)]
Γ

∂u*(x, y)
∂nx

dΓ

+ f (x)∇ u*(x, y)dΩ
Ω

,  y ∈ Γ. (3)

For the domain Ω c, the equations are given as

φ(x)dΓ x
Γ

+ f (x)dΩ c

Ωc

= 0 (4)

u(y) = φ(x)u*(x, y)dΓ x
Γ

+ f (x)u*(x, y)dΩ c

Ω c
+ C ,

y ∈ Γ . (5)

∇ yu(y) = [φ(x) – φ(y)]
Γ

∇ yu
*(x, y)dΓ x

– φ(y) [t c(x) – t c(y)]
Γ

∇ u*(x, y) ⋅ t c(x)dΓ x

+ [nc(x) – nc(y)]
Γ

∇u*(x, y) ⋅ nc(x)dΓ x

+ f (x)∇ yu
*(x, y)dΩ c

Ω c
,   y ∈ Γ ,    (6)

Where t c(x), n c(x) are the unit tangent and outward
normal vectors of Γ to domain Ω c at point x, respectively.

For the internal point y, the integral equations
can then be written as

u(y) = φ(x)u*(x, y)dΓ x
Γ

+ f (x)u*(x, y)dΩ
Ω

+ C ,

y ∈ Ω (7)

∇ yu(y) = φ(x)∇ yu
*(x, y)dΓ x

Γ

+ f (x)∇ yu
*(x, y)dΩ

Ω
, y ∈ Ω . (8)

In the Eqs. (1)-(8), φ(x) is the density function to be
determined, f (x) the body function, and in Eq. (7) and
(8) Ω^ = Ω or Ω c.

For the Eqs. (7) and (8), when the internal point
y is far enough from the boundary Γ , the standard
Gaussian quadrature procedures without any trans-
formation can get desired results.  However, when
the point y approaches the boundary Γ , the accuracy
of the results computed by the conventional quadra-
ture algorithm degenerates rapidly, and with the in-
ternal point closer to the boundary, the results will
be out of true, namely, the “boundary layer effect”
because of the near singularity of the kernel of the
fundamental solution.  These nearly singular integrals
can be expressed as

I1 = ψ(x)
Γ

lnr2dΓ

I2 = ψ(x)
Γ

1
r2α dΓ

, (9)

where α > 0, r the distance between the internal point
y and the integration point x, and ψ(x) is a well-be-
haved function (which may be different in different
integrals).  Obviously, the near singularities of the
integrals in Eq. (9) come from the distance r.

1. Linear Element Approximation of Geometry
Boundary ΓΓΓΓΓ

Assuming x1 = (x1
1, x1

2), x2 = (x2
1, x2

2) are the two



440 Journal of the Chinese Institute of Engineers, Vol. 31, No. 3 (2008)

extreme points of the linear element Γ j, then the ele-
ment Γ j can be expressed as

xk(ξ) = N1(ξ)xk
1 + N2(ξ)xk

2 (–1 ≤ ξ  ≤ 1), k = 1, 2

(10)

here N1(ξ) = 1
2 (1 – ξ), N2(ξ) = 1

2 (1 + ξ).  Letting si =
xi

2 – xi
1, wi = yi – 1

2 (xi
2 + xi

1), one has

r,i =
ri
r =

yi – xi
r =

siξ/2 + wi
r (11)

r2 = |x – y|2 = riri = Aξ 2 + Bξ  + E

= L2[(ξ  – η)2 + d2], (12)

where A = 1
4

sisi, B = siwi, E = wiwi, η  = – B
2A

, L = A ,

d = 1
2A 4AE – B2 .  If E < A , i.e., when the distance

from the point y to the middle point of the element Γ j

is less than half length of the element, by using the
hölder inequality we have

η =
siwi
2A ≤ sisi wiwi

2A = E
A

< 1 .

Thus, the integrals I1 and I2 in Eq. (9) can respec-
tively be divided into two parts at point η as follows

I1 = lnL2 g(ξ)dξ
– 1

1
+ +

– 1

η

η

1
g(ξ)ln[(ξ – η)2

+ d2]dξ (13)

I2 = 1
L2α +

– 1

η

η

1 g(ξ)
[(ξ – η)2 + d2]α dξ , (14)

where g(.) is the regular function that consists of shape
function and Jacobian (ri = yi – xi included in the Eq.
(14)).

2. “Arc Element” Approximation of the Boundary ΓΓΓΓΓ

The interpolation approximation with “arc
element”, which was proposed in Zhang (2004), is
nearly accurate if the boundary of the domain is
circular.  Suppose (R, θ1), (R, θ2) are the coordinates
of the two extreme points of the arc element Γ j,
respectively, then the element Γ j can be expressed as

x1 = R cosθ
x2 = R sinθ , θ =

1 – ξ
2 θ1 +

1 + ξ
2 θ2

 (–1 ≤ ξ ≤ 1)

For the interior point y = (R0cosθ0, R0sinθ0), we can

suppose θ1 < θ0 < θ2, then θ0 =
1 – η

2 θ1 +
1 + η

2 θ2(–1

< η  < 1).  Thus

r2 = |x – y|2 = 4RR0{sin2[β(ξ – η)] + d 2},

here γ = β(ξ – η), β = 
θ2 – θ1

4 , d = R – R0

4 RR0

.

The integrals I1 and I2  in Eq. (9) can respectively
be divided into two parts at poin η there as follows

I1 = g(ξ)ln(4RR0)dξ
– 1

1
+ +

– 1

η

η

1
g(ξ)

⋅ ln{sin2[β(ξ – η)] + d2}dξ (15)

I2 = 1
L2α +

– 1

η

η

1
g(ξ) 1

{sin2[β(ξ – η)] + d2}α dξ ,

(16)

Where L = 2 RR0  and g(.) is the regular function that
consists of shape function and Jacobian.

III. THE TRANSFORMATION FOR THE
NEARLY SINGULAR INTEGRALS

The variable in the two integrals in front on the
right side of Eq. (13) can be replaced by

ξ = η  – k1d(ek(1 + t) – 1), ξ  = η  + k2d(ek(1 + t) – 1)

(17)

Here k1 = 1 + η , k2 = 1 – η , k = [ln(1 + d) – lnd]/2.
Then we have

I1 = lnL2 g(ξ)dξ
– 1

1
+ kd lnd2 [k 1g1(t)

– 1

1

+ k 2g2(t)]ek(1 + t)dt

+ kk 1d g1(t)ek(1 + t)

– 1

1
ln[k 1

2(ek(1 + t) – 1)2 + 1]dt

+ kk 2d g2(t)ek(1 + t)

– 1

1
ln[k 2

2(ek(1 + t) – 1)2 + 1]dt ,

(18)

Where g1(t) = g[η  – k1d(ek(1 + t) – 1], g2(t) = g[η  +
k2d(ek(1 + t) – 1)].

The two integrals on the right side of Eq. (14)
can be transformed in the same way as Eq. (17) into
the following forms

I2 =
kk 1d1 – 2α

L2α
g1(t)ek(1 + t)

[k 1
2(ek(1 + t) – 1)2 + 1]α

– 1

1

dt

+
kk 2d1 – 2α

L2α
g2(t)ek(1 + t)

[k 2
2(ek(1 + t) – 1)2 + 1]α

– 1

1

dt (19)
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here g1(t), g2(t) are the same as those above.
For the Eqs. (15) and (16), we have

I1 = ln(4RR0) g(ξ)dξ
– 1

1
+ g1(t)ln(t2 + d2)dt

0

t1

+ g2(t)ln(t2 + d2)dt
0

t2

(20)

I2 = 1
h

g1(t)

(t2 + d2)α dt
0

t1

+
g2(t)

(t2 + d2)α dt
0

t2

, (21)

where

h = L2a, t
1
 = sin[β(1 + η)], t

2
 = sin[β(1 – η)],

g1(t) = 1
β 1 – t2

g(η – 1
βarcsin t) ,

g2(t) = 1
β 1 – t2

g(η + 1
βarcsin t) .

As long as θ2 – θ1 ≤ π
4

, so |β(1 ± η)| < π
8

, hence

|t1|, |t2| = |sin[β(1 ± η)]| ≤ sin π
8

≈ 3.826834E-01 << 1

thus g1(t), g2(t) are both regular functions.
Similarly, the second and the third integrals on

the right hand side of the Eq. (20) and the integrals in
the Eq. (21) also can be transformed in the same way
as Eq. (17).

IV. NUMERICAL EXAMPLES

In this section, the transformation suggested for
evaluating the nearly singular integrals is applied to
determine the potentials and gradients of plane prob-
lems in the BEM.  In the following three examples
the potentials or the potential gradients are computed
using EBIEs, in which the above types of integrals in
Eq. (9) are calculated by the developed algorithm at
internal points increasingly close to the boundary.
The results obtained by using the present method, the
ones computed by the conventional algorithm and
exact solutions are all presented for convenience of
comparison, which can demonstrate the usefulness of
the proposed method.  Eight-point Gaussian integra-
tion is used unless specified explicitly when the nu-
merical integrals are done.

Example 1. A prism with square section and infinite
length is considered in the example with prescribed tem-
peratures or fluxes on boundaries, as shown in Fig. 1.

There are 28 uniformly linear boundary elements

divided over the boundary of the square section, and
linear discontinuous interpolation (Zhang, 2004) is
adopted to approximate the boundary functions.

The temperatures u and the fluxes qx1
 (in the x1

-direction) of internal points are computed with their
boundary integral equations in BEM.  The conven-
tional Gaussian quadrature was used for the ordinary
boundary elements far from the computed points but
for those close to the computed points the proposed
transformation was applied in the computation.

The numerical solutions of the square domain
are listed in Tables 1 and 2, in which the conven-
tional method is also employed for the boundary ele-
ments close to the computing points for the purpose
of comparison.  We can see that when the computed
points are not too close to the boundary, both the
methods are effective and obtain excellent results, but
the results of the conventional method become less
satisfactory as the computed points get increasingly
close to the boundary, i.e., when the distance from
the internal point to the boundary is equal or less than
0.01.  In contrast, the results of the proposed method
are steady and satisfactory even when the computed
points are very close to the boundary.  On the other
hand, the relative errors with respect to the exact so-
lutions are also shown in Tables 1 and 2, which fur-
ther demonstrate the efficiency and the usefulness of
the developed algorithm.

In addition, with the increase of the discretized
boundary elements, the relative errors of the computed
temperatures u and fluxes qx1

 related to the exact so-
lutions at point (1E-6,3.0) on the boundary, are re-
spectively shown in Fig. 2 and Fig. 3, from which we
can observe that the convergence speeds of the com-
puted temperatures u and fluxes qx1

 are still fast when
the distance of the computed point to the boundary
reaches 10–6.

Example 2: The second example is an infinite

∂u
∂n

= 0

∂u
∂n

= 0

6

x2

x1O

u 
=

 0

u 
=

 3
00

Fig. 1  The boundary conditions on the square section of the prism
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column with radius 1.0, as shown in Fig. 4.  The tem-
perature distribution along the boundary is u(r, θ)

=
1 , 0 < θ < π
0 , π < θ < 2π .  Under steady state, the analytical

solutions of the problem can be expressed by using
the Fourier series (Brebbia, 1984) as in the following:

u(r, θ)
u0

= 1
2 + 2 1

nπ( r
R)nsin nθΣ

n = 1

∞
,  n = 1, 3, ...

Table 1  Temperatures u at internal points increasingly close to the boundary

Points Conventional (no transform) Present

x1 x2

Exact
Numerical RE(%) Numerical RE(%)

0.5E-00 3.0 0.2750000E+03 0.2749770E+03 0.8348682E-02 0.2749770E+03 0.8348635E-02
0.1E-00 3.0 0.2950000E+03 0.2949620E+03 0.1288605E-01 0.2949980E+03 0.6706921E-03
0.1E-01 3.0 0.2995000E+03 0.2985807E+03 0.3069466E+00 0.2995055E+03 -0.1833155E-02
0.1E-02 3.0 0.2999500E+03 0.2987465E+03 0.4012188E+00 0.2999563E+03 -0.2116890E-02
0.1E-03 3.0 0.2999950E+03 0.2987600E+03 0.4116704E+00 0.3000014E+03 -0.2145655E-02
0.1E-04 3.0 0.2999995E+03 0.2987613E+03 0.4127259E+00 0.3000059E+03 -0.2148536E-02
0.1E-05 3.0 0.3000000E+03 0.2987615E+03 0.4128315E+00 0.3000064E+03 -0.2148824E-02
0.1E-06 3.0 0.3000000E+03 0.2987615E+03 0.4128421E+00 0.3000064E+03 -0.2148853E-02

Table 2  Fluxes qx1
 at internal points increasingly close to the boundary

Points Conventional (no transform) Present

x1 x2

Exact
Numerical RE(%) Numerical RE(%)

0.5E-00 3.0 -0.5E+02 -0.5004011E+02 -0.8022837E-01 -0.5004012E+02 -0.8023469E-01
0.1E-00 3.0 -0.5E+02 -0.4871553E+02 0.2568941E+01 -0.5007336E+02 -0.1467267E+00
0.1E-01 3.0 -0.5E+02 -0.2153601E+02 0.5692798E+02 -0.5009417E+02 -0.1883398E+00
0.1E-02 3.0 -0.5E+02 -0.1527870E+02 0.6944259E+02 -0.5009671E+02 -0.1934161E+00
0.1E-03 3.0 -0.5E+02 -0.1464388E+02 0.7071224E+02 -0.5009796E+02 -0.1959296E+00
0.1E-04 3.0 -0.5E+02 -0.1458039E+02 0.7083922E+02 -0.5009675E+02 -0.1934916E+00
0.1E-05 3.0 -0.5E+02 -0.1457404E+02 0.7085192E+02 -0.5008621E+02 -0.1724289E+00
0.1E-06 3.0 -0.5E+02 -0.1457340E+02 0.7085319E+02 -0.5008603E+02 -0.1720534E+00
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To solve this problem numerically the bound-
ary is discretized by 24 linear elements with 48
discontinuous interpolation points.  The temperatures
of internal points are calculated respectively by
using the conventional method and the method pro-
posed in this paper.

The numerical results are shown in Table 3, from
which it can be seen that the conventional method
and the proposed method are both efficient when r <

Fig. 2 Modules of relative errors (%) for temperature u at point
(1E-6,3.0) change along with element numbers

Fig. 3 Modules of relative errors (%) for flux at point (1E-6,3.0)
change along with element numbers
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0.96, but the conventional method fails when the in-
ternal point becomes close to the boundary.  However,
the results obtained by using the proposed algorithm
are excellently consistent with the analytical solutions
even in the very unfavorable computational condi-
tion r = 0.9999999 or greater, i.e., when the distance
of the computed point to the boundary is 10–7 or
smaller.  The relative errors are also shown in Table
3, from which we can see that the accuracy of the
results of the proposed method are high and steady
even when the computed points are very close to the
boundary, while the relative errors of the conventional
method are relatively too large to be accepted with
the computed points increasingly close to the
boundary.  Because of the convergence problem of
the above Fourier series of the analytical results, the
fluxes are not given here.

Example 3: As shown in Fig. 5, this example is concern
with a cylinder with infinite length whose inner and outer
radii are 0.5 and 1, respectively.  The corresponding
boundary conditions are also described in Fig. 5.

There are 48 total arc elements divided along the
boundaries of the cylinder, 18 elements over the inner
boundary, and 30 elements over the outer boundary.
Linear discontinuous interpolation is adopted to ap-
proximate the boundary functions.  When the temperature

gradients are computed, we use eight-point Gaussian
integration for the ordinary integrals and sixteen-point
Gaussian integration for the nearly singular integrals
that occur in the computation.

The calculated results of the temperatures u and
the fluxes qx1

 (in the x1-direction) at internal points
close to the inner boundary are shown in Tables 4 and
5, respectively.  Table 4 shows that the results obtained
by the conventional method are out of true with the
relative errors already greater than thirteen percent when
r ≤ 0.501, i.e., when the distance from the computed
point to the inner boundary is 0.001 or smaller.  On
the other hand, the results of the proposed algorithm
are very consistent with the exact solutions with the
largest error less than 0.00005% even when the dis-
tance of the internal point to the inner boundary reaches
10–7.  In Table 5, the fluxes computed by the conven-
tional method are unacceptable when r ≤ 0.51, in con-
trast with which the computed results of the present
method are still acceptable even when the computed
points are very close to the boundary.

For the internal points increasingly close to the
outer boundary the computed temperatures and fluxes
are shown in Fig. 6 and 8, respectively.  The relative
errors related to the exact solutions are shown in Figs.
7 and 9.  In Fig. 7 only the errors of the proposed
method are given, since the errors of the conventional
method are relatively too large, and in Fig. 9 several

Table 3  The numerical results for u at interior points

Points Conventional (no transform) Present

r(θ = 37.5°)
Exact

Numerical RE(%) Numerical RE(%)

0.9000000 0.9453504E+00 0.9495592E+00 -0.4452156E+00 0.9452007E+00 0.1583243E-01
0.9600000 0.9786810E+00 0.9659999E+00 0.1295734E+01 0.9787327E+00 -0.1608756E-01
0.9900000 0.9947453E+00 0.5438051E+00 0.4533223E+02 0.9950226E+00 -0.2787484E-01
0.9990000 0.9996119E+00 0.2707488E+00 0.7291460E+02 0.9998467E+00 -0.2348945E-01
0.9999000 0.1000281E+01 0.2483153E+00 0.7517544E+02 0.1000328E+01 -0.4661747E-02
0.9999900 0.1000360E+01 0.2461421E+00 0.7539464E+02 0.1000376E+01 -0.1607714E-02
0.9999990 0.1000368E+01 0.2459255E+00 0.7541649E+02 0.1000380E+01 -0.1280416E-02
0.9999999 0.1000368E+01 0.2459038E+00 0.7541867E+02 0.1000381E+01 -0.1243939E-02

Fig. 4  Temperature boundary conditions

Fig. 5  Surface temperature for the cylinder
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points are outside plots for the same reason.  It can
be seen that the errors of the temperatures are always
less than for the fluxes, although the largest error of
the latter is less than 0.03%.

V. CONCLUSIONS

A new efficient transformation has been
proposed to deal with the nearly singular integrals
which occur in the analysis of the BEM.  With the
proposed transformation, the near singularities of the
nearly singular integrals are removed efficiently, and
fairly high accuracy of numerical results is achieved
for the nearly singular integrals with standard Gauss
quadrature procedures.  Numerical examples of the
potential problem are presented to test the proposed
algorithm, with which excellent results are obtained.
The results verify the feasibility and the effective-
ness of the present method, and the boundary layer
effect has been overcome successfully with the pro-
posed transformation techniques in the applications.
The algorithm is also general and can be applied to
other problems in BEM, which will be discussed later.

Compared with existing approaches, the presented
transformation is more general.  The existing ap-
proaches are suitable only for cases when the regular
part of the integral is constant while ours is effective
whatever the regular part of the integrand may be.

The remarks are given in the conclusion.
The above numerical examples show that the

computation for ∂u
∂x1

 and ∂u
∂x2

 is effective and stable.

Furthermore, using ∂u
∂n

= ∂u
∂x1

n1 + ∂u
∂x2

n2 , ∂u
∂t  = ∂u

∂x1
t1 +

Table 4  Numerical results of temperature at interior points

Internal points Conventional (no transform) Present

r(θ = 70°)
Exact

Results RE(%) Results RE(%)

0.70000000 0.7427134E+01 0.7488457E+01 -0.8256649E+00 0.7427134E+01 0.1518929E-07
0.60000000 0.6315172E+01 0.6389339E+01 -0.1174423E+01 0.6315172E+01 0.5957411E-07
0.51000000 0.5142846E+01 0.5086907E+01 0.1087693E+01 0.5142846E+01 0.1152673E-05
0.50100000 0.5014413E+01 0.4347926E+01 0.1329141E+02 0.5014413E+01 -0.1460620E-04
0.50010000 0.5001443E+01 0.4214516E+01 0.1573399E+02 0.5001442E+01 0.9724757E-05
0.50001000 0.5000144E+01 0.4200390E+01 0.1599462E+02 0.5000144E+01 0.1243599E-05
0.50000100 0.5000014E+01 0.4198970E+01 0.1602084E+02 0.5000015E+01 -0.1357227E-04
0.50000010 0.5000001E+01 0.4198828E+01 0.1602347E+02 0.5000004E+01 -0.4404773E-04
0.50000001 0.5000000E+01 0.4198814E+01 0.1602373E+02 0.5000002E+01 -0.3133504E-04

Table 5  Numerical results of flux at interior points near the inner boundary

Internal points Conventional (no transform) Present

r(θ = 70°)
Exact

Results RE(%) Results RE(%)

0.55000000 0.4485734E+01 0.4485116E+01 0.1378972E-01 0.4485734E+01 -0.2458256E-06
0.51000000 0.4837557E+01 0.4223326E+01 0.1269712E+02 0.4837557E+01 -0.1954462E-06
0.50100000 0.4924459E+01 0.2701467E+01 0.4514185E+02 0.4924459E+01 -0.1041388E-04
0.50010000 0.4933321E+01 0.2490725E+01 0.4951221E+02 0.4933311E+01 0.2104592E-03
0.50001000 0.4934209E+01 0.2469512E+01 0.4995122E+02 0.4934311E+01 -0.2060567E-02
0.50000100 0.4934298E+01 0.2467390E+01 0.4999512E+02 0.4934084E+01 0.4333926E-02
0.50000010 0.4934307E+01 0.2467177E+01 0.4999951E+02 0.4933384E+01 0.1870474E-01
0.50000001 0.4934308E+01 0.2467156E+01 0.4999995E+02 0.4933914E+01 0.7969778E-02

Fig. 6 Temperatures u at the interior points increasing close to
the outer boundary
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∂u
∂x2

t2, we can easily obtain normal and tangent flux

and the computation is stable.
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