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ABSTRACT

In the early nineties, Dvorak (1991), and Dvorak and Prochdzka
(1996), put forward Transformation Field Analysis (TFA), which con-
sists of expressing a linear relationship between either eigenstrains or
eigenstresses and on the other hand strains and stresses in a structure.
By means of these eigenparameters, mechanical and thermal phenom-
ena in materials can be simulated. In this paper, the TFA is applied to
homogenization of nonlinear composites. A very useful numerical tool,
the BEM, has been applied to the solution of integral equations. A
sample example shows the ability of the procedure proposed. The prob-
lem is solved on a unit cell at microscopic level, but more complicated
structures of fibers on, say, reference volume elements with stochasti-
cally distributed fibers may be studied.

1. INTRODUCTION

During the past decades, the boundary element
method as a solving tool for integral equations gov-
erning both linear and nonlinear problems for two and
three-dimensional bodies, isotropic or anisotropic,
has rapidly become very efficient. Application to ho-
mogenization problems, especially in connection
with transformation field analysis, seems to be very
promising.

In recent years some papers (Lene, 1978; Suquet,
1985) have been devoted to homogenization of com-
posite or laminated materials, mostly making use of
Eshelby’s forces. He used integral equations as a
basic tool. In the present paper we concentrate our
attention on homogenization of locally physically
nonlinear, bodies by means of a special treatment pro-
posed by Dvorak (1991) and extended by Dvorak and
Prochdzka (1996). The main idea consists of sepa-
rating the mutual effect of eigenstrains (eigen-
stresses) from one inclusion (internal cell) to the
other. One of the most suitable numerical techniques

dealing with homogenization is the boundary element
method (BEM). This method provides many advan-
tageous features in comparison with the finite ele-
ment method. The influence functions (concentration
factors) may be computed at each point of the inter-
nal cells with high accuracy, nonlinearity in a matrix
can easily be introduced by the procedure proposed
in this paper and the computation can effectively be
carried out.

The influence functions enable one, according
to Dvorak (1991), to solve the elastic-plastic and
viscoplastic composite systems based on a change
of eigenstrains or eigenstresses, while the other quan-
tities remain unchanged during the incremental
process.

Basic formulations for boundary element tech-
niques including a brief description of the numerical
approach are presented. For more details the reader
is referred to Bittnar and §ejn0ha (1997), Prochdzka
and éejnoha (1996) and Telles et al. (1981), where
more theoretical arguments are discussed.

It is worth noting the paper by Castenada (1991),
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where explicit overall mechanical properties are pre-
sented for nonlinear isotropic com-posites.

I1. BASIC RELATIONS

In this section we will deal with the either the
eigenstrain or the eigenstress field and involve it in
the formulation. Assume that no body forces are
present.

Let us consider a coordinate system Oy,y, in 2D
(for the sake of simplicity we restrict our discussion
to 2D, the case of 3D is similar), and a bounded do-
main (unit cell) Q=QUQ™ with a boundary 9Q, see
Fig. 1. In what follows, the subscripts run the set
{1, 2}, considering only the case of 2D. The interfa-
cial boundary fiber—matrix is denoted by T".

Define average quantities () by

(@)o = ey | 4012, (1)

where meas Q means the volume of Q.

The homogenization can start by introducing an
overall (average) strain tensor E, or a stress tensor X,
defined as )

£y= (60, =(o0), @

where 0j; are components of the stress tensor and g;
are components of the strain tensor. There are a
couple of possibilities for introducing the boundary
conditions in connection with the solution of elastic
or elasto-plastic problems. Without loss of generality,
we focus only on the given E. Then we have to solve
the problem:

div 6(»)=0 in Q, u,(y)=E,;y; on 0Q. 3)

The real displacements u«;(y) and the real strains
£;(y) may be written in the form of the sum of Ej; and
the fluctuating terms u; and g} (y) as,

ui(W)=Eijyjtu;(y), €)=Ey+e; (v). (3a)

In the case of elastic behavior of both fiber and ma-
trix it holds

(£),=0. (3b)

cf. Suquest (1985).

The solution procedure £ is split into two steps,
as done in Prochédzka and éejnoha (1996). Here, spe-
cial boundary conditions have to be considered.
First, let u?, 83- =E;; and 0'2- be known
displacement, strain and stress fields, respectively,
on a comparative homogeneous medium L°. The

matrix ov

282

fiber | 0 \ y

unit cell

Fig. 1. The domain (unit cell) - geometry and denotation.

stresses 0'8- and small strains 83- =E;; are related by
the linear homogeneous Hooke’s law:

0)=L)yE; inQ, (4)
u?:E,.jyj on Q. (4b)
The matrix Lgk, is so far not fixed.

In the second step a geometrically identical
body is considered, which is anisotropic, non-
homogeneous, and may exhibit nonlinear behavior.
Displacements u;, strains €; and stresses oy; are un-
known and the generalized Hooke’s law, including

the eigenstresses A;;, or eigenstrains y;;, can be writ-

ten as:
0=Liju€u+A; in Q, (5a)
u;=E;y; on 0Q, (5b)
Ay==Lijibly. (5¢)

Note that the eigenparameters may stand for
prestressing, change of temperature and/or plastic
stresses, or plastic strains.

Similar to the classical Hashin-Shtrikman
theorem, (Hashin and Shtrikman, 1962), define the
symmetric stress polarization tensor T;; by:

O-ij=L8‘k[ Ext Ty 6)
Also define
u;=u~u? in Q, u;=0 on IQ, (7

and consequently

! =g —F.. ' =5.—00
&, =&;~E;, 0/,=0;~0) in Q. (8
Our aim is to obtain relations between strains

or stresses and eigenstrains or eigenstresses. Since
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both o;; and 0'3- are statically admissible, the follow-
ing equations have to be satisfied in the sense of
distributions:

do; _
Wj =0 in Q, (9)
T~ [Lij] €—A;=0 in Q, (10)
u;=0 on 9Q, (11a)
where
[L.jkz(Y)]=L,jk1(Y)—Lgk[ . (11b)

Subtracting (4a) from (6) we get

’
ij

O =LiyEy+T;. (12)

III. INTEGRAL FORMULATION

Solution of problems involving linear or non-
linear behavior of composite bodies is mostly formu-
lated in terms of integral equations. Consequently,
the natural way to solve these problems is to describe
the behavior of such bodies subject to external or in-
ternal loading (including eigenstrains and
eigenstresses) by the boundary integral equation
method.

Integral equation equivalent to (6) and (10) can
be expressed as:

ui(f)= Lg u i, Ep )T () - LQ P, Eui(dT()
U P

- | e, OmuoMew), e 0, (13)

where the starred quantities are known kernels, see
Telles and Brebbia (1981). The domains 92, and 0Q,
are the disjoint parts of dQ where displacements and
tractions, respectively, are given. Because of the va-
lidity of the boundary condition (2.4,) and dQ=0%,,,
the second integral on the right hand side of (13) dis-
appears and we get:

u()= jm Wy, Ep ()T () - .[Q £440 T HMQ)

ke Q. _ (13a)

Differentiating the latter equation with respect
to & we arrive at the expression

€& = fa 0, Op M) L Vi DT 0HQW)

~Clry8) Ee Q. (14)

The appropriate convected term C can be
found in Bittnar and éejnoha (1997), and arise at
the internal point £€ Q by the exchange of integra-
tion and differentiation when deriving (14) from
(13a).

Note that an important property of the kernel
V’ukl is its symmetry with respect to indices i, j and &,
[. The same result holds for huk with respect to i and
J-

It is worth noting that severa] useful conclusions
follow from (14). Since h’, jx are decaying as r ! in
2D and as ™ in 3D (see e. g. [1] for exact expres-
sions for kernels needed), and If]); is bounded, the
first integral on the right hand side in (14) tends ob-
viously to zero for supp 7;; (closure of a set of nonva-
nishing values of 7;;) far from the boundary dQ. This
occurs, for example, when Lukl represents the stiff-
ness of the matrix, with the fibers being distributed
far enough from the boundary (assumption of
Eshelby, Mori & Tanaka, etc.). Then (14) is simpli-
fied as

£©)=-

QN suppt;

‘V.,u(v ETMQY) - Clry ()1,

(15)

which can be transformed to the form:

EU (é) EU (5) f [!/I:j/\](y ’ 6)([‘ kIHm(Y) -L glnm )8,””0’)

QN suppt if

+ Ay0)IdQAy) - CIL 3, (§) - LUAI)gkl(g) + 4,01
(16)

The nature of the kernels requires only 3D
problems, while the 2D problems are “too singular”.
It will not be necessary to impose this requirement in-
the following text.

Willis (1977) proved that the relation (16) is a
positive definite and symmetric integral operator in
the standard norm. He considers the Green’s tensor
of homogeneous media vanishing on the boundary.
This is virtually possible only for some particular un-
bounded domains in 3D, not in 2D, which case is also
used in this study.

In the same manner it can be ploved that the
relation (16) is not bounded with respect to the norm
induced by the scalar product of L,~functions and
their L,—derivatives.

Levin (1976) uses other assumptions leading
to the vanishing boundary terms in (14). Levin de-
rived(15) without considering the effect of
eigenstresses.
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IV. TRANSFORMATION FIELD ANALYSIS

Our goal now is to derive the relation between
the strains and the eigenstresses of the form

e=AE +GA, (17)

where A and G are the influence function tensors
(A is mostly referred to as the mechanical concentra-
tion function tensor). Note that once computed,
these matrices do not change their values during in-
cremental processes for nonlinear solution of
plasticity, optimization, etc. They completely de-
pend only on the shape of the body under study and
its material properties in the initial stage of the
iteration.

Let us concentrate our attention on a special
case of material properties. The starting elastic ho-
mogeneous body possesses a stiffness L” while the
body under study is divided into 2 subdomains €’ and
Q" representing the phases with the stiffnesses L’ and
L", respectively. The tensor [L] admits the represen-
tation

L= Ef [L],K0) (18a)
where
[L],=L*L°, (18b)

and K, is a characteristic function of the phase a=m,
[, being equal to one inside and zero outside the phase
Q% Substituting (18) to (16) and using the definition
of polarization tensor 7in (9), we arrive at the fol-
lowing expression

E,j(é) = E,‘j - [Q l//;'k[(Y7 6){0( 5' 1 [L k/l:lrz]aKa(y)glrlil(y)

+ Ag0)Q0) CL Y 1Lyl Ko 4y,

(19)

and, after removing the characteristic functions, we
have

glj(g) =Eif_ { Z ! [Q l//;;k/(y’ 6){[Lkllvill]a811111@)

a=m,f .

A= Cl 2 (Ll Kal()ey(©)

+ 2,01, EcQ. (20)

Now we describe the procedure leading to the
influence functions. Let us assume that both the
original problem involving Hooke’s law according
to (4) and the problem involving the polarization ten-
sor T have the same geometry as well as the same

geometrical boundary conditions. Placing the point
& on the boundary, (13) yields

0= jml W, Ep0HTE)

i

- Z rla E:;\'](Y’ g){[Lklmn]agmn(y) + lu(}’)}dQ(X} 3

Eeoq. @)

After discretizing the boundary and after
discretizing the domain Q into M internal cells, both
(21) and (14) take the form

Up' -S'e-SA=0, (22)
g€=Hp -We-¥YA, (23)

where U is a square matrix (2Nx2N) and 2N is a num-
ber of degrees of freedom on the boundary in 2D
(using, say, linear approximation of tractions), p'
is the vector (2N) of discretized unknowns p' at
nodal points on dQ, S, S' are the matrices (2Nx3M)
of influences of the strains and eigenstrains in
the discretized domain (in 2D three components of
strain tensor are independent), H is a (3Mx2N) ma-
trix and, finally, ¥ and ¥’ are square matrices
(BMx3M).

Since the system is well-posed, the regular ma-
trix U may be inverted. Elimination of p' from (22)
and (23) provides

We=g,+TA, or We=E +TA, (24)
where
W=I+¥' -HU"'S', T=—Y+HU"'S. (24a)

Obviously, W is a regular (6Mx6M) matrix, as
for a given Ay, (i, j being fixed) a unique response &
may be expected. The sought influence function ten-
sor G is equal to W™'T while W™' is the mechanical
concentration function tensor A.

V. APPLICATION IN COMPOSITE
MATERIALS

We start with concentration factors for the
phases. There is a certain freedom in selecting the
matrix L°, as this does not affect the relation (17),
setting A=0. Setting it successively at L°=L" and L°=
L’ in (20), we obtain the integral over Q,, in the first
case and the integral over £, in the second case
disappears:
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g’J(é) = Eij B "Qf W:j/\'[(y’ g)L.ilmugmn(Y)de(y)

- ClLyyk e &)1, e, (25)

and
El.j(g) = E{,‘ - JQ’” W,;k/(}’, g)L Z;mngmn(),)de(Y)

- ClLjjuxo(8)e ()], Se Q" (26)

where L/ and L" are stiffness matrices of fiber and
matrix, respectively.

Discretizing the integral equations in the sense
described in Section 4, we get the discretized strains
in each subdomain:

¢=AE, €"=A"E. (27a)
From the latter equations it immediately follows that
Al+A"=1. (27b)

where I is the unit matrix (unit tensor). The last rela-
tion makes clear why we concentrated our attention
on the splitting of integrals into integration over Q'
and over Q". Because of (27b) we can simply calcu-
late integrals either over matrix or fiber, excep-
tionally. Then, using (27b), we get the second needed
concentration factor.

Hence, in the case of elastic behavior, the ho-
mogenization is straightforward:

2=(0),= <ff£f>gf+ <f'"s’”>ﬂm

=(T7a’) ,+(T"a")_E. (28)
Since we deal with discretized fields, L %, o=f,

m, have the form:

L0 0 .. 0
o
Teo| 00 0] 29)
000 ..L"

and L% is a (3Mx3M) matrix under the assumption
that we have ordered tensors &, and so on, in the vec-
tor form, as is usual in numerical applications. The
overall stiffness matrix L becomes,

L’ =(T7a%) y+(T"a") (30)

QI“ *

It is worth noting that multiplying (20) by the
appropriate stiffness matrix and discretizing the in-
tegral equation into boundary elements and internal
cells, we get stress concentration function B* as

6*=B°X. 31

Note that in a general case the relations (31) is calcu-
lated from given X. This leads to similar integral
equations, but the solution is not unique. Since the
external forces are equilibrated, the rigid motion of
the unit cell is disregarded, and the solution is then
unique. Here we use the relation (28) and the possi-
bility to invert L".

Including (5¢) in the calculation, one can de-
rive from (20) and discretization of integral equations
the relations

€ =AE +D ¥, 6*=B°T+F ,A*,
o=f, m, k=1, ..., M. (32)

The relations (32) are starting points for theo-
ries established by Dvorak (1991). He assumes that
the concentration functions are estimated by approxi-
mate formulas following Mori-Tanaka, or the Self-
consistent method. The calculations presented in this
paper may be very accurate and fast.

VI. EXAMPLE

In the examples we did not used the useful rela-
tion (27a), in order to enhance the accuracy of the
computation. Since the procedure leads to a linear
relation at each stage of E, for given (increasing step
by step) values of components of either the stress ten-
sor (elastic and relaxation part) or strain tensor (elastic
and plastic part) of “unit impulses” we need not com-
pute influence tensors. Now the procedure fully de-
scribed in Dvorak (1992) can be used. Note that in
Dvorak (1992) the values of concentration tensors,
which are the most important quantities for numeri-
cal computation, are computed by very approximate
methods. )

The quarter of a unit cell is considered with fi-
ber volume ratio equal to 0.6, according to Fig. 2.
We used the following elastic material properties of
phases: Young’s modulus of fiber E/=210 MPa,
Poisson’s ratio v'=0.16; on the matrix £”=17 MPa,
and v"=0.3. Moreover, the ideally elasto-plastic con-
stitutive law is imposed on the matrix, whereas the
fiber remains elastic in every stage of loading and
unloading.

For fiber volume ratio 0.6, the radius of the
fiber is r=0.714. The homogenized elastic matrix L"
in this case possessed the following values:
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Fig. 2. Discretization.

182 62 -0.05
@LH' =| 62 182 0034
~075 -1.1 98

From the above matrix one can conclude that
the responses on normal unit strains are computed
with high accuracy (comparing the symmetry), while
the results from shearing strains are less accurate, but
still very precise.

In Fig. 2, the mesh of internal cells and bound-
ary elements is depicted. In Fig. 3 a draft of ideally
elasto-plastic material behaviour of the matrix is
shown.

Using von Mises’s hypothesis without harden-
ing, and choosing 6g=10 MPa, E=0.65 is the limit
value for elastic behaviour of the matrix. Increasing
E, and using von Mises’s hypothesis, (Dvorak, 1991),
we get an elasto-plastic overall stiffness matrix
(L. In this step we use (32), where we apply itera-
tive computations on linear relations (it is therefore
possible only to multiply matrices, not solve
equations) to get the appropriate values of A¥ in the
internal cells k. From the relation (5¢) we obtain
eigenstresses, and, consequently, the appropriate
strains.

The number of iterations depends on the differ-
ence between the currently applied E and the previ-
ous one. We applied seven steps to reach the value
0.1. At each step ten iterations were supposed to get
the one percent error.

Recall that a very important property of this pro-
cedure is the fixed, unchanged values of the matrices
F , and D ;. Although the mesh was not very fine,
the results were very reasonable, see Fig. 2 and the
overall matrix.

The computation was run on a Pentium II
PC, 366 MHz in FORTRAN. The program for gen-
eration of meshes of internal cells as well as the
boundary nodes had been prepared, as obviously seen
from Fig. 2. According to the wish of the user, the
meshing can be improved. The consumption of time

&

Fig. 3. Ideally elasto-plastic o—& diagram.

for computation of even large systems of equations
(150x150), which can be stored in memory without
use of hard disc or extended/expanded memory was
negligible in each step of E. Our illustration does
not reach such dimensions of computation. It is also
not necessary for such problems to increase the pre-
cision of the meshing, it loses efficiency. The itera-
tions at each step of loading were also very fast.

It is worth noting that similar computations were
carried out by the FEM, but finer meshing had to be
imposed to get a result comparable with the BEM in
the procedure presented. The comparison has been
tested in such a way that the sum of the concentra-
tion factors should be the unit tensor.

VII. CONCLUSIONS

In this contribution we have presented the fun-
damental idea of a numerical procedure leading to an
overall elasto-plastic stiffness matrix on a unit cell.
Based on Transformation Field Analysis it is possible
to obtain the strain and stress influence matrices, re-
lating the strains and stresses and on the other hand
the eigenstrains and eigenstresses. Since the prob-
lem leads to integral equations, the most suitable nu-
merical tool appears to be the BEM. The obvious
advantage of this procedure can be found in a priori
computed influence matrices (concentration tensors)
A, B, D, and F in (32). They may be stored into a
computer and hence, the iteration process for solving
nonlinear material behavior of structures is very
efficient. Moreover, a concentration may be focused
on integrals over either the matrix or the fiber.

A very important property of the above proce-
dure is the linearity of the problem at each stage of
E. The accuracy of the overall elasto-plastic stiffness
(compliance) matrix is not dependant of the size of
the step of E, providing there is not “unwanted” un-
loading in any internal cell at the current stage of E.
When it is so, the time prolongs slightly, as the
standard iterative process has to be carried out. It
was not the case in our computations.

Although there is no intent to discuss cases of
eigenstrain fields, it is appropriate to mention the
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connection between the present formulas and those
obtained in studies of the thermoelastic response in
composite materials subjected to a uniform change
of temperature 6. The corresponding eigenstrains as-
sume the form u;=m@4;;, where §; is Kronecker’s
delta, and m is the thermal expansion coefficient.
There are some methods which are based on homog-
enization starting with the change of temperature.
Such methods may also use the above integral for-
mulations and solution by the BEM.
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