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ABSTRACT

In this paper the dual boundary element formulation is developed
to study crack surface contact problem with friction dynamic loads.
The nonlinear three-dimensional dynamic problem can be treated as
linear problem by three assumptions. The dual boundary integral equa-
tions are given in the Laplace transform domain with the boundary
varibles of displacement and traction on the external boundary and dis-
placement discontinuities on the crack surface. Durbin’s Laplace
tranfrom inversion method is used and the dynamic stress intensity fac-
tors are determined by crack opening displacement. A rectangular bar
containing a slant circular crack under a pressure Heaviside load is
studied. The influrence of different elasticity waves on the dynamic

stress intensity factors Kj;(¢) and Kyj;(¢) are analysed in detail.

I. INTRODUCTION

Contact problem research in many areas is very
important for engineering design. In solid static
research, Hertz, in 1882, obtained analytical so-
lutions for the contact pressure and the indentation
for elastic bodies with quadratic surfaces without
friction. In general, the contact region and contact
pressure depend on the external load, the elasticity
properties and the friction between contact bodies.
Such dependence makes the contact problem nonlin-
ear and as such the only possible way to solve this
problem is to use numerical methods such as the
finite element method (see Wilson and Parson,

*Correspondence addressee

1970 and Chan and Tuba, 1971). The boundary ele-
ment method (BEM) has also increasingly been used.
As the contact is on the boundary, BEM would be
more suitable to the analysis of contact problem, see
for example by Andersson (1983) and Man, et al.
(1993). Traction boundary integral equations were
deduced by Hong and Chen (1988) and applied to
crack problems with high accuracy. Comprehensive
review can be found in paper by Chen and Hong
(1999).

There is particular type of contact in fracture
mechanics. The two crack surfaces contact can
occur under the external load. For instance, if the
stress intensity factor K is less than zero, the contact
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occurs at least in front of the crack tip. By use of
the displacement discontinuity method, Wen and
Wang (1991) studied an arc crack under uniaxial
tension and pressure and obtained the real stress
intensity factors with consideration of frictional
contact between two crack surfaces. An approximate
analysis of dynamic contact between crack sur-
faces without friction for two dimensional problem
was introduced by Wen, et al. (1995) using indirect
boundary element method with successive ap-
proximation.

In this paper we study three dimensional flat
crack contact problems using the dual boundary ele-
ment method which was developed for three
dimenisonal elastostatic problems by Mi and Aliabadi
in 1992. Because the embedded crack is flat in the
body, the contact region and the direction of friction
are assumed to be known. With two assumptions,
the nonlinear dynamic problem can be transformed
to a linear problem. Boundary integral equations,
with external boundary condition and crack contact
condition, are given in the Laplace transform domain.
The unknown boundary values (traction or
displacement) on external boundary and displacement
discontinuities and contact pressure on the crack sur-
face can be determined numerically. Dynamic stress
intensity factors Kj; and Kpj; in the time domain are
obtained by use of the Durbin’s Laplace transform
inversion method (1974). Numerical calculations
have been carried out for a square bar containing a
slant circular crack under dynamic uniform load at
the top. The influence of elasticity waves on stress
intensity factors can be seen clearly from these re-
sults.

II. DUAL BOUNDARY ELEMENT METHOD IN
LAPLACE TRANSFORM DOMAIN

Consider a cracked isotropic elastic body € en-
closed by an outer boundary I',. The body contain-
ing a crack, boundary I',, is subjected to a dynamic
load on the external boundary.

The Navier—Cauchy equation in the time domain
is given in Balas et al. (1989), for zero body force,
by

2
c%ui‘kk+(c%-—c%)uk‘,d=%, i=1,2,3, (1)

where ¢; and ¢, are the velocities of dilatation and
shear waves respectively. Taking Laplace transforms,
Eq. (1) becomes

2= 2y 25
('Zui.kk+(cl_Cg)uk,ki_‘g%’i (2)

where the initial (#=0) displacements and velocities
are assumed to be zero. The Laplace transform of a

function fix, t) is defined as

Llfe, 1) = fee, 5) = fo " foe, te=dt 3)

where s is Laplace transform parameter. In the trans-
form domain, the solution of (2) should satisfy the
boundary conditions, i.e.

4)
on displacement boundary and
fie, ) =10, s) BRE)

on traction boundary, where ﬁ?(x,s) and f?(x,s) re-
spectively denote transformed displacement and trac-
tion boundary conditions.

The displacement at a point X' in the domain Q
(called a collocation point) can be determined from
the boundary values of displacement and traction
through the Somigliana’s identity. If the tractions
on a flat crack surfaces are equilibrium, i.e. f;(x)z
—t;(x)=t;(x), we have

iX’,s)= fr U, (X', x, $)t )dT(x)
-j F,00, %, $)i 0)T@)
re

_J T (X', x, $)Aii (x)dT(x)
rC

i7j=1’ 293 (6)

By use of Hooke’s law, the stress components at point
X' can be expressed as following:

8,X’, s)= jr Uk,-j(X', x, )t ()T (x)
[, T s are)

_ [r Ty X', X, $)AG )T ()

i, j=1,2,3 @)

where Ad,(x)=dj(x)-i,(x) are displacement
discontinuities on the crack surface I';, u} and uj are
displacements on the upper and lower crack surfaces
respectively, ﬁU(X‘, x, s) and T,.j (X', x, s) are the
Laplace transformed fundamental solutions of
elastodynamic displacement and traction respectively



P.H. Wen et al.: Approximate Dynamic Crack Frictional Contact Analysis for 3D Structure 787

and the functions Ukij (X', x, s) and fk,j X', x, s) con-
tain derivatives of the fundamental solutions (see Wen
et al., 1998).

The displacement boundary integral equation for
the point on the external boundary I', can be obtained
from Eq. (6) by considering the limit as the domain
point X'—=x' on the boundary. The same procedure
as illustrated in Aliabadi and Rooke (1991) can be
used to obtain the displacement boundary integral in
the Laplace domain as

6= [ 0,63, 907 0dre)
~f 7@x 90 @)
r(’

—j T 6, x, )M ()dT)  (8)
|—‘(.‘

where | denotes a Cauchy principal—-value integral
and ¢;(x'") is a function of the geometric shape at the
boundary point x'; ¢;(x")=;/2 for a point on a smooth
boundary. The traction can be written, on the crack
surface, as

tc)=n ,fr) U@, x, 5)1 ()T (x)
| Fx i)

_ n,.:[? Ty, x, AT )T) 9)

where n,(x") is the normal unit vector on the bound-
ary and £ denotes a Hadamard principal-value inte-
gral (1923). By solving these Eqgs. (8) and (9), the
displacements and tractions on the external bound-
ary I', and discontinuity displacements on the crack
surface I', can be obtained numerically with given
boundary conditions for linear elastodynamic
problem. The stress intensity factors in the Laplace
transform domain is evaluated by discontinuity dis-
placements at the nodes in front of the crack tip di-
rectly as shown in Wen and Wang (1991).

III. FRICTIONAL CONTACT ANALYSIS

Consider a body with a flat crack subjected to a
dynamic load F(x, f)n', where n' is unit vector of load,
the local coordinate system (x,, x5, x3) is established
on the crack as shown in Fig. 1(a). The axis x, is
along the normal of crack (n,=n), n,, n, and n' are in
the same plane, i.e. n' » (n,x1,)=0. The contact be-
tween two crack surfaces is caused by an external
load.

e |11

Xy
X
X3
(a)
X1k Au S— Au
o« Au,
,{ (friction force)
X3
(b)

Fig. 1. Flat crack and local co-ordinate.

1. Mode of Contact

Under the external dynamic load F(x, r)n', the
contact will occur on the crack surfaces. There are
three modes to describe the contact between crack
surfaces: separation mode, slip mode and stick mode.
The boundary values on the crack surface should sat-
isfy the contact conditions for different modes in the
time domain. The different contact conditions can
be written as:

(i) Separation mode:
11(1)=0; 1,(1)=0; 13(£)=0 and Au,>0, (10)
with unknowns Au,(t), Au,(r) and Aus(r).

(ii) Slip mode:

Au
Au,t)=0; z](t)=—,ur2(r)2—'2
vV Auj+Auj
and
1) = — (e (11
’ P  au?

with unknowns 7,(r) (£0), Au,(£)(20) and Ausz(£)(#0)
[see Fig. 1(b)].
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(iii) Stick mode:
Aui(1)=0; Auy(1)=0; Aus(1)=0

and

@O+ 1507 -y, (12)

with unknowns #(¢), t,(f) (£0) and #5(¢). The term u
denotes the coefficient of friction.

As the contact region depends on the magnitude
of dynamic load and time and the relationship between
contact pressure and the friction is nonlinear in the
stick region, it is difficult to solve the problem in the
Laplace transform domain. Wen, et al. (1995) de-
veloped a successive technique to analyse the dynamic
frictionless contact for symmetrical crack problems.
Because the crack is flat and the ratio |Aus}/|Au,| is
very small for frictionless contact problems, this
highly nonlinear contact problem can be simplified
with two assumptions:

e The contact region is initiated in the slip mode.

e The friction #5(¢) is zero.

Under these two assumptions, this nonlinear
problem can be simplified to linear problem and the
boundary condition on the crack surface can be writ-
ten as

Auy(0)=0; 1, (1)=ur(¢) and 13(1)=0, (13)
and in the Laplace transform domain, they become
Aiiy(s)=0; 1,(s)=put(s) and £4(s)=0. (14)

with unknowns Aii,(s), Aii4(s) and 7,(s) (contact
pressure). After the analysis, the contact tractions
and displacements are checked and the above condi-
tions are corrected accordingly.

2.Traction Boundary Integral Equation
Consider the normal n,=0, n,=1 and n3=0 in the
local coordinate, substituting traction Eq. (9) into con-

tact condition Eq. (14) gives the following equations
for the collocation point on the crack surface

Aii,=0; (15)

fr [0 ' %, 5) = 4 g’ X, $)17 0T )
- fr [T 101, X, 8) = UT 1 px', X, )i, (6 )dT(x)

—{? [T 12y, X, 8) = UT 10o(x', X, AT, 0)IT(x) =0

(16)

and

fr Uk23(x',x, s)tl,(x)dl“(x)—’r 7~",~,23(x',x,s)dk(x)dl"(x)

']LF T o3, X, $)Ai 6)dT(x) =0 . (17)

The numerical results for frictional contact problems
can be obtained approximately by solving boundary
integral Eq. (8)(9)(16) and (17) with external and
crack boundary conditions given by Egs. (4)(5) and
(15).

3. Numerical Technique for Boundary Integral
Equations

For an embedded crack problem, the displace-
ment and traction boundary integral Egs. (8),(9),(16)
and (17) are discretized with two different types of
elements, quadratic continuous elements on the ex-
ternal boundary I', and quadratic discontinuous ele-
ments on the crack surfaces I'.. The displacement or
discontinuity displacement and traction on the ele-
ment n are approximated as

BE m= T NE i (8)
or

ATNE = X MOE i (19)
and

i m= 3 NE i 0)

where @’%, Ai"® and ¢;” are displacement or dis-
continuity displacement and traction values at the
node o, N%&, 1) and M*(&, i) are shape functions
which depend on the type of elements. The use of
these approximations enables the displacement and
traction boundary integral Egs. to be discretized, in
matrix form, as

i _ .
H{M} —Gli) Q1)
where
HBB HeC —_ Gee
H_[Hce HCC ’ G_ GCE},

matrix H contains integrals involving iu‘ and f.kij’
and matrix G contains integrals involving U ; and U ;
respectively. The vectors &, Az and ¢ consist of all
nodal displacement, discontinuity displacement and
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traction components on the boundary. After applica-
tion of the boundary conditions and rearrangement
of the columns in matrices H and G all the unknowns
are passed to a vector x on the left side, leading to
the following linear system of equations

{A}{x}={y} (22)

where y is the vector for known components. All
boundary values on nodal points of i, Ai, and 7,
can be obtained after solving Eq. (22). Stress inten-
sity factors at crack tips can be obtained from dis-
placement discontinuity (COD) directly as illustrated
in Mi and Aliabadi (1992). Contact pressure can be
determined from following equation for flat crack:

1,x")= jr U %', x, )t ) T(x)

- fr T oyt X, ), 00T ). (23)

4. Durbin’s Inversion Method

The time—dependent values of any of the trans-
formed variables must be obtained by an inverse
transform. The calculation formula used is as follows,
Durbin (1974)

fy=2

e .
- AR @)

* éo Otf(c + i Eycos I fc + iz"T”)éin Ay

(24)

where f(sk) stands for the value in Laplace space at
the sample point

Sp=c+2kmi/T and i=/-1.

The sample points are chosen for k=0, 1, ..., L. Good
results have been obtained for ¢7T=5 and 7/1,=20,
where ¢, is unit time, for instance ty=ct/h for rectan-
gular bar in the following example [/ is half of height
of the bar (Wen et al., 1998)].

To check if these two assumptions are correct,
the time dependent contact pressure p(£)=—t,(t) and
discontinuity displacement Au,(r) and Aus(t) can be
plotted. When p(£)<0 (separation mode) or Au,(#')=0
and Aus(t')=0 (stick mode) occurs in contact region,
successive modification technique (Wen et al., 1995)
should be used to obtain more accurate solutions.

IV. NUMERICAL EXAMPLE

We consider a square bar with a slant circular

poH(®)

-
d—

C
X1
B A
X3
(®)

Fig. 2. Cracked body and local co-ordinate on the crack surface.

crack loaded by a uniform pressure stress F(x, )=
poH(?) at the top of the bar as shown in Fig. 2. The
bottom of the bar is fixed [u (#)=0, k=1, 2, 3]. The
width of the bar is 2w, the height 2A, the radius of
circular crack a with h=2w, a=0.5w and the slant angle
B=45°. The Poisson’s ratio v=0.3, and the shear wave
velocity ¢,=0.5345¢,. There are 40 continuous ele-
ments used on the external boundary with 122 nodes
and 20 discontinuity elements on the crack with 160
nodes as same as Mi and Aliabadi (1992).

It is well known that the dynamic stress inten-
sity factors are influenced by elastic waves which start
from traction boundary (Lin and Ballman, 1993; Wen
et al., 1996). Fig. 3 shows the dynamic shear stresses
7,(#) at points A and B in the local coordinate system
without the crack in the body under load pyH(t), where
the number of Laplace transform parameter L is cho-
sen to be 95. There are ten main elasticity waves as
listed in Table 1 to make shear stress curves change
sharply. The first wave (/) arrived at point A is a P—
wave leaving from the top at normalized time 7 =
¢t/h=0.823 (see Fig. 4). Since the boundary of bar
is free, a P-wave and S—wave will be produced there
to satisfy the free boundary condition. So the second
wave should be the P—wave starting from the corner
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Table 1. Elasticity waves at point A

number k speed time to arrive 7, number k speeds time to arrive 7,
1 c 0.823(1y) 6 1+, 2.334(1¢)
2 ) 0.884(1y) 7 c1+C 2.614(17)
3 Cr 1334(13) 8 C1+Cy 2894(18)
4 cy 1.614(14) 9 c1+cy 3.688(/y)
5 Co 1894(15) 10 C+Cy 4284(1|0)
Table 2. Elasticity waves at point B
number k speed time to arrive 7, number k speeds time to arrive 7,
1 cy 1.177(1)) 6 e 2.688(1¢)
2 ) 1.221(1,) 7 c\+ey 2.968(17)
3 Cp 1688(13) 8 C1+Cy 3248(]8)
4 (op) 1.968(14) 9 C1+¢y 3334(19)
5 Cy 2248(15) 10 (SR ) 3894(1]0)
1.6 f «\\
b N top - e h top b
[ /
I I /
< 12 4 n
S 1/
< / 13
: A fs I, A 1a
§ 0 J s
@ 08 N Ie
5 B 0
i = Is - 0
Q 15 1)
g £ & v
s 1 0 = =
5\ 04 2 E
c bottom d g bottom c
2wrh 2w/h

qt/h

Fig. 3. Dynamic shear stress at point A and B.

e (wave [,) at 72=ex =0.884. Waves 3,4 and 5 (I3,
14, Is) should be the S-waves coming from the four
free boundaries (front, back, left and right) as shown
in Fig. 4 (see Lin and Ballman, 1993 for two dimen-
sional problem), where 8=sin™'(co/c;). Wave 6 (I4)
should be produced by the elastic waves traveling
from the front boundary (b) to the back (e) at speed
¢, and then travelling at shear waves speed to A, the
time t4=be +1,=2.334. The waves 7 (I;) and 8 (/5)
are similar to wave 6, t,=hb +1, and rg=eb +15.
Waves 9 (Iy) and 10 (/,p) are caused by the shear
waves reflected from to point A. It is clear that
t9=2+0.177+0.323¢ctgf=3.688 and #,(=2+0.177+
0.617ctg6=4.248. In addition there should be more
elastic waves reflected from the boundaries, such as
the waves from the junction lines. The shear stress

(a) (b)

Fig. 4. Elasticity waves and their paths to point A without crack.

at point B can be explained in the same way. The
arrival times of elastic wave to point B starting from
the top or being reflected from the boundary are listed
in Table 2. The waves are labelled as J;.

The dynamic stress intensity factors K’,‘,(t), K?,(t)
at crack tips A and B and K §,(r) at point C are shown
in Figs. 5, 6 and 7 for friction coefficient =0, 0.1
and 0.2, where K°=pyv/2a/r and the number of
Laplace transform parameter L is chosen to be 50. It
is evident that the curves of dynamic stress intensity
factor (at point A or point B) have the similar con-
figuration of shear stress (at point A or point B) as
shown in Fig. 3. The influence on dynamic stress
intensity factors by waves 1, 3,5, 6, 8, 9 and 10 are
very significant because the stress intensity factors
change greatly at these times Tk. In addition, the
stress intensity factors must be influenced by P—waves
and surface waves travelling along the crack surface
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Fig. 5. Dynamic stress intensity factors at point A for different

friction coefficient.
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Fig. 6. Dynamic stress intensity factors at point B for different
friction coefficient. :

as illustrated in Lin and ballman (1993); Wen et al.
(1996). As the accuracy of numerical method, those
influence can not be seen _here clearly.

To check the contact pressure in contact region,
the pressure p(t)/py when friction coefficient u=0
along the line AB is shown in Figs. 8 and 9 (there is
very little difference between the results for =0 and
u=0.2). From Fig. 8, it is seen that the contact (no
separation) occurs on the whole crack surface as
p()>0 when 0<7 <6. Since the displacement discon-
tinuity Au(f) and Aus(t) do not change their signs and

2.0
B
X
T
-
=
= 154
(]
B
13
g
g
G-
2 1.0
‘@
=
2
£
v
7]
£
v 05 —
2
£
<
=
>
&
0.0 —
0.0

qt/h

Fig. 7. Dynamic stress intensity factors at point C for different
friction coefficient.
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Fig. 8. Contact pressure p(t)/py between two point A and B (3D
plot).

the pressure p(r) are larger than zero in the whole con-
tact region when (0< ¢ <6), the assumptions (1) and
(2) are correct for this example.

V. CONCLUSION

The flat crack closure frictional contact prob-
lem is analysed in this paper. Two assumptions al-
low the highly nonlinear elasodynamic problem to be
transformed to a linear problem in the Laplace trans-
formed domain. Boundary integral equations are
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C1L/h

2.00 I L ] | | 1 1 1 |
“e.25 -e.15 -2.05 0.05 8.15 022 %

X]/h

Fig. 9. Contact pressure p(t)/po (contour plot).

given for flat crack under simple dynamic load and
solved numerically by quadratic elements. Durbin’s
inversion technique is used to obtain the solutions in
the time domain. By considering of the dynamic shear
stresses without crack under the same load, the influ-
ences on dynamic stress intensity factors by elastic-
ity waves are discussed.
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