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ABSTRACT

A boundary element method is derived for the solution of bound-
ary value problems for inhomogeneous isotropic elastic materials. Some
particular problems are considered to illustrate the application of the

method.
I. INTRODUCTION

Following the early work of Rizzo (1967) a large
number of authors have used the boundary element
method to effectively obtain numerical solutions to a
variety of elastic problems for homogeneous isotro-
pic elastic materials (see Brebbia and Dominguez
(1989)). In contrast the application of the method to
problems for inhomogeneous isotropic elastic mate-
rials is very limited due to the difficulty in obtaining
appropriate Green’s functions for the kernels of the
relevant boundary integral equations. Recently
Manolis and Shaw (1996) obtained a suitable Green’s
function for the vector wave equation in a mildly
heterogeneous isotropic continuum. Their Green’s
function was obtained for a particular variation in the
material parameters and in particular is restricted to
the case when the Lamé parameters A and u are equal.
This leads to a Poisson’s ratio of 0.25 which restricts
the application of the method but as Manolis and Shaw
(1996) point out, this particular value of Poisson’s
ratio is a common value for rock materials (see
Turcotte and Schubert (1982)).

The present note builds on the work of Manolis
and Shaw (1996) to develop a perturbation procedure
for the solution of plane static problems for isotropic

*Correspondence addressee

inhomogeneous media with Lamé parameters given
by

Ax)=Ag(x)+eAV(x),

Hx)=uVg(x)+eu'(x),

where x=(x,, x5, x3) is a vector in R*, g(x) is a func-
tion which must satisfy particular constraints, A¥=
4 are constants and € is a small parameter. Within
these constraints these forms permit a wide choice of
variations for the elastic parameters A(x) and p(x).
Boundary integral equations are obtained for the so-
lution of problems for materials with Lamé param-
eters of this form and these integral equations are used
to solve some particular boundary value problems.

I1. BASIC EQUATIONS
Referred to a Cartesian frame Ox x,x; the equi-
librium equations in an elastic material in the absence
of body force may be written in the form

0;,=0, "

where oj; for i, j=1, 2, 3 denotes the stress tensor, the
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indexed commas indicate partial differentiation
with respect to the spatial coordinates x; and the re-
peated suffix summation convention (summing from
I to 3) is employed. The stress-displacement rela-
tions are

0= A(X) Oyt j+ (X ) (u j+ut; ), (2)

where u; for k=1, 2, 3 denotes the displacement and
0; the Kronecker delta. Also in (2) A(x) and p(x)
with x=(x|, x5, x3) denote the Lamé parameters which
are taken to be twice differentiable functions of the
spatial variables x|, x, and x3. Substitution of (2) into
(1) yields

[AQ) 8ty st () (u; j+ ;) =0 (3)

III. STATEMENT OF THE BOUNDARY
VALUE PROBLEM

An inhomogeneous isotropic elastic material
occupies the region Q in R® with boundary 9Q
which consists of a finite number of piecewise smooth
closed surfaces. On dQ, the displacement u; is speci-
fied and on 9€; the stress vector Pi=0yn; is specified
where dQ=0Q,00Q, and n=(n,, n,, n3) denotes the
outward pointing normal to Q. It is required to find
the displacement and stress throughout the material.
Thus a solution to (3) is sought which is valid in
Q and satisfies the specified boundary conditions on
0Q.

IV. REDUCTION TO CONSTANT
COEFFICIENT EQUATIONS

In this section the procedure developed in
Manolis and Shaw (1996) is used to obtain a bound-
ary element method for particular classes of coeffi-
cients A(x) and u(x). This derivation is achieved by
introducing a transformation of the dependent vari-
able u;(x) to transform (3) to a constant coefficients
equation. The coefficients A(x) and u(x) are required
to take the form

Ax)=Ag(x), u(x)=p""g(x), (4)

where A” and u® are constants. Use of (4) in (3)
yields

L8 ) { AV Sjjuay gt 'V (ut; j+uj ) }1;=0. (5)
Let
yi)=g "2(x)ui(x) (6)

so that (5) may be written in the form

(G A 6;(8™ 2w w1 V(g™ y) + (g™ Py )] = 0.

Thus

-2

AOLe(e™ ) 1)+ 1 Vlg(g vl

+1Vg( 87"y 1,=0. )

Now

Le(g™ w4l

=%g_3/zg.ig.k V’k‘%g

=172 -1/2

g,kiWk“%g 8.k Wk.i

+%8_”28,1Wk.k+8 ki

=—¢'Pyy+g'"” Wk.ki_%g_l/zg,k V/k.i'*'%g_”zg.iu/k,k- (8)
Similarly
le(e " w) 1 ,=—¢ ZZ vi+e'"y; i )
(e(e™" .l =—g P wirg v

1 _-n

8 3.:‘1///.1'“‘%8

~-1/2

gV (10)
Substitution of (8), (9) and (10) into (7) yields

g A5, l//k.k;*ﬂ(())( Vil

—[A"ig iUV wig P g 1]

~AO-p )5 a8 VkAI=0. (1)

If g(x) assumes the form

g(x)=(ax +Pxo+yrs+d)’, (12)
where a, B, yand § are constants and also

A=), (13)

so that A(x)=p V(o +Pxy+yx3+8)*=u(x) then (4.8) re-
duces to

AV 8w st (Wi i+ y;.01,=0 (with 29=p ). (14)

Thus if y; is any solution of the equations of
equilibrium in displacement form for a homogeneous
isotropic elastic material with Lamé constants A’ and
U then a corresponding solution of the equations of
equilibrium for an inhomogeneous isotropic elastic
material with Lamé parameters A(x) and u(x) given
by the multiparameter form (4) may be written, from
(6), in the form
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=172

ui(x)=g"""(x)y(x)
=( 0w +Bxr+ s +6) T yi(x).

The corresponding stresses obtained from (2) are
given by

0, == vl +g ol
where
0',[]‘1»'=A(0)5ij(g ) 4 1O [8r(8'") 8k (8"") ).
O',Ijv"=/1m)5ijlllk,k+/~1m)(‘//i.j+ Vi)
and the stress vector
P=—yiP+g'" PV, (15)
where
PRl=oln,, PM=clh, . (16)
A boundary integral equation for the solution

of (14) with ; given on dQ, and P'i"’I given on dQ, is
given in Brebbia and Dominguez (1989) in the form

Ny o) = J [P~ T,y s . (17)

where xg is the source point, =0 if xoe Q, n=1 if
xo€ Q and 77—— if xoe 0Q and 02 has a continuously

turning tanoent at xo. Also for the three dimensional
case

_ 13- +d d .
= e s, +ddj),  (18)
rU=__'—[afl{(1 ~2V)8,;+3d d ;)
87(1 - v)d’

+(1-2v)n,d j—nd )] (19)

and for two dimensional case

= e[ - 4vllog 1 2
@, = 87[;1(0’(1 S[B-4viog ;8 +d d ). (20)

_ I ad
Fi == g —ygton (1 72005 + 24 )

+(1=2v)n,d j—nd )], (21

where d=|jx—xy||, v=/1‘0’)(2(/,t‘°’+/1‘°’)) and dd/on=d yn;.
Use of (6) and (15) in (17) yields

ng llz(x ())uj(xo)
- J g~ "2D,)P, - (g T — P, Jds.  (22)

This equation provides a boundary integral equation
for determining u; and oj; at all points of €.

V. A PERTURBATION METHOD

The boundary element procedure described
in the previous section provides an effective nu-
merical method for determining u;(x) when g(x)
takes the form (12) and the parameters A” and p®
satisfy the relation (13). In this section a procedure
is obtained for the case when the coefficients
A(x) and p(x) are perturbed about A”g(x) and
ug(x) respectively while retaining Egs. (12) and
(13).

The coefficients A(x) and u(x) are required to
take the form

A(x)=A0g(x)+eA"(x), (23)

Ux)=ug(x)+e A" (x), (24)
with

A9=p* and g ?=0

and where A" and u'" are twice differentiable
functions. Therefore from (3)

[g{ AV up it (4150 )]
=—€[l‘"5,ju,\,.,\.+,u‘”(u;._,-+uj,,-)J. (25)

Now use of the transformation (6) and follow-
ing the analysis used to derive (11) from (5) gives

g [R5,y 1O (W i+ 0]

-1/2

=—€[AV8;(g™" y) i+ { (&7 Py (e P

This equation may be written in the form
(A8 w1 Wi+ w01
=—eg "*[(A;+Bi;} Wi+Bjjwi+(A+D )y,
+(BAD ) y; j+(Bi+C ) y; +H(C+D)y; i+ Dy, s,
(26)

where



264 Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

A(x) A(l) —[/7 B(x) u(l) —I/Z
C(x) /’L(l) =172 D(x) ‘Ll(]) —I/’

A solution to equation (26) is sought in the form
wix)= ZO €yx). (27)
r=

Substitution of (27) into (26) and equating the coef-
ficients of powers of € yields

[AQ8; W0 +1 (W P+ w1 =0 (28)
(A0S Y%+ W)+ D1,

=—g " "[(A;+B; )y~ 4By

+AAD DY V+(BAD DY V+(BAD
+HC+DYy!'7 DDy V], for r=1, 2, (29)

The integral equations for (28) and (29) are re-
spectively

u,(())(x ) J [(DU P!W(O)] ij W’(_O).]ds’ (3 0)

W) = f [, P T,y s + J hO,dS, (31)
Q

[/

where h f’) is the right hand side of (29) for r=1, 2, ...
From (6) and (27) the displacement u; may be
written in the series form

1y (6) = 20 ulde), (32)

where u{” corresponds to ¥ according to the rela-
tionship

ww) =g Pulx), for r=0, 1, .... (33)
Also
PWI= g2p®) 0P for 1=0, 1, .., (34)
where
PP =[A96,ul) + nOu) + udn i
for r=1, 2, ..., (35)

and P%'is given by (16). Thus the integral Egs. (30)
and (31) may be written in the form

ng " o)“,('o)(x 0
= [ 6 0P 0~ P s . 36)

J

ng e g 7x )
:.[ag [ @ )P - (g "T; - PI{'D u)ls + JQ h{®yds

for r=1, 2, ... (37

where the function 1 is given by

h{==g ™" u{ =" (g"B; +¢ (B+D )
+“,(-r_ b {gHz(Aj.i*'Bi,j)"'g.l,-/Z(Aj‘*D.j)"'g }/Z(Bﬁc.i) }
+L1§'.}"){gl/z(Bj+D:,-)+2g3/2D}
+u 7V {g" A+ D )+g A (C+D))
+u=V{ g (B+C )+g 2(C+D))
+ul7 Vg"*D+ul= Vg "*(C+D)],
for r=1, 2, .... (38)

Now the corresponding value of P; may be writ-
ten as

Pi=gP”+ L €GP +G), (39)
where
G(')—[l(l)é u("”+,u(')(u("”+u(’ I))]n (40)

To satisfy the boundary conditions in Section 3
it is required that u®=u; on 9Q, where u; takes on its
specified value on dQ2;. Also it is required that on
0Q, (0)—g"P,- where P; takes on its specified value
on dQ,. It then follows from (32) and (39) that u{’=0
on dQ, for r=1, 2,3 ... and P,("):—g"G,(.") on 0Q, for
r=1, 2,3, ....

The integral Eqgs. (36) and (37) may now be used
to find the numerical values of the unknowns on the
boundary dQ and the numerical values of 4" and
derivatives in the domain Q for r=0, 1, .... At each
stage in using (37) to determine u{" the P\"=—g'G"”
occuring in (37) may be obtained from (40) which
may be evaluated from the previous iteration. Equa-
tions (32) and (39) then provide the values of u; and
P; throughout the domain Q.
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Table 1 Numerical displacement u; results for Problem 1

Position BEM 40 segments BEM 80 segments BEM 160 segments
(x7.x3) u ]/7 u/uw ulu uJu AT
(0.1,0.5) 0.0289 0.0000 0.0299 0.0000 0.0304 0.0000
(0.3,0.5) 0.0881 -0.0002 0.0896 -0.0001 0.0903 0.0000
(0.5,0.5) 0.1451 -0.0002 0.1470 0.0000 0.1479 0.0000
(0.7,0.5) 0.2002 -0.0001 0.2023 0.0000 0.2033 0.0000
(0.9,0.5) 0.2530 -0.0001 0.2557 0.0000 0.2568 0.0000
Table 2 Analytical displacement u; solutions for e
Problem 1 P/P=0
Position Analytical solutions up/u =0
0,1
(x7x%) u,uw u/uw ©.h D C
(0.1,0.5) 0.0309 0.0000
(0.3,0.5) 0.0910 0.0000
(0.5,0.5) 0.1488 0.0000
(0.7,0.5) 0.2044 0.0000 wi/a=0 P/P=1
(0.9,0.5) 0.2580 0.0000 up/T =0 ‘ BJ/P=0
VI. NUMERICAL RESULTS
In this section some partiéular boundary value A B X1
problems in plane strain are solved numerically by P/P=0 (1,0)
employing the integral equations obtained in section up/T =0
5. In implementing this method to obtain numerical

results standard boundary element procedures are
employed (see for example Clements (1981)). For
the chosen variations in the elastic parameters the
right hand side of (29) is small so that it is only nec-
essary o retain two terms in the expression (32).

For all the problems considered the domain Q
is taken to be a square of side [ and each side of the
square is divided into a number of M (a multiplica-
tion of 5) segments of equal length. Simpson’s 3/8
rule is applied to evaluate the line integrals on each
segment. For the domain integral in (37) the domain
is divided into M? equal square cells and the integrand
is assumed to be constant taking on its value at the
mid point of each cell. However, the values of the
previous iteration solutions =" and derivatives in
(38) are evaluated only at a number of 5x5 mid-points
of sub-squares of side //5 and are assumed to be con-
stant over each sub-square. Specifically the values
of u~" and derivatives in a particular sub-square
are the same over a number of (M/5)? cells contained
in the sub-square.

1. Problem 1

Consider the boundary value problem given in
Fig. | for a material with elastic coefficients

Fig. | The geometry for Problem |

l(x)=].2l()(l+0.]/\',l)2, (41)
U(x)=Ao(140.1x7)%, 42)

where Ag is a reference elastic modulus and x|=x,/[.
The elastic coefficients (41) and (42) take the form
(23) and (24) with g(x)=(1+0.1x})%, u'P=A", AV=
Ao(1+0.1x7)%, ¢"=0 and €=0.2.

The boundary conditions (see Fig. 1) are

P,/P=0, u/u=0, on AB,

P/P=1, P,/P=0, on BC,

P/P=0, uyu=0, on CD,

uJuw=1, u,/u=0,onAD,
where T is a reference displacement and P=A u /L.
This problem admits the analytical solution u,/7 =
x1/[3.2(140.1x))], u,=0 with the stress given by

o1/ P =1, 012/ P =0 and 0,5/ P =0.375.
Tables 1-4 show the analytical and BEM results
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Table 3 Numerical stress o;; results for Problem 1
Position BEM 40 segments BEM 80 segments
(xy) o,/P o,/ P 0yl P o,/P o,/ P 0yl P
(0.1,0.5) 0.9900 0.0002 0.3767 0.9956 0.0000 0.3756
(0.3,0.5) 0.9907 0.0002 0.3822 0.9953 10.0001 0.3782
(0.5,0.5) 0.9926 0.0005 0.3822 0.9960 0.0001 0.3784
(0.7,0.5) 0.9952 0.0003 0.3809 0.9972 0.0001 0.3778
(0.9,0.5) 0.9467 0.0000 0.4195 0.9978 0.0001 0.3787
Table 4 Numerical and analytical stress oj; results for Problem 1
Position BEM 160 segments Analytical
(x].x5) o,/P o,/ P 0,/ P o,/P o/P 0yl P
(0.1,0.5) 0.9978 0.0000 0.3751 1.0000 0.0000 0.3750
(0.3,0.5) 0.9975 0.0000 0.3764 1.0000 0.0000 0.3750
(0.5,0.5) 0.9978 0.0000 0.3766 1.0000 0.0000 0.3750
(0.7,0.5) 0.9984 0.0000 0.3763 1.0000 0.0000 0.3750
(0.9,0.5) 0.9992 -0.0002 0.3764 1.0000 0.0000 0.3750
Table 5 Numerical displacement u; results for Problem 2
Position BEM 40 segments BEM 80 segments BEM 160 segments
(xfx%) u/uw wyluw w\/uw ulu u/u uyuw
(0.1,0.5) 0.1036 0.0000 0.1058 0.0000 0.1069 0.0000
(0.3,0.5) 0.3159 -0.0008 0.3175 -0.0002 0.3182 -0.0001
(0.5,0.5) 0.5210 -0.0008 0.5218 -0.0002 0.5220 0.0000
(0.7,0.5) 0.7188 -0.0006 0.7189 -0.0001 0.7185 0.0000
(0.9,0.5) 0.9091 -0.0004 0.9096 0.0000 0.9084 -0.0001
for some points in the domain Q and for the cases
when the boundary dQ is divided into 40, 80 and 160
segments. X3
The results converge to the known solution as o
the number of segments increases. The displacement “l/f ~ gl
displays fourth figure and the stress third figure ac- .1) v/t =
curacy when 160 boundary segments are used. 1o C
2. Problem 2
Now consider the boundary value problem given B : _
in Fig. 2 with the coefficients A(x) and u(x) again "‘jﬁfg Z‘%fé
given by (41) and (42). wre= M=
The boundary conditions (see Fig. 2) are
u/uw=xy, u/u=0, on AB,
— - A B
w/u=1, u,;u=0, on BC, X1
ul/ﬁz l'll (1,0)
u\[T=x}, uyw=0, on CD, uefE=0

u/w=0, u,/T=0, on AD,

Fig. 2 The geometry for Problem 2
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Table 6 Numerical stress oj; results for Problem 2

Position BEM 40 segments BEM 80 segments

(x7xp) o,/P o,/ P 0yl P o,/P o/P 0,/ P
(0.1,0.5) 3.4965 0.0000 1.3159 3.4827 0.0000 1.2940
(0.3,0.5) 3.4481 0.0009 1.3084 3.4259 0.0003 1.2793
(0.5,0.5) 3.3983 0.0024 1.3066 3.3763 0.0005 1.2807
(0.7,0.5) 3.3489 0.0014 1.3045 3.3285 0.0002 1.2827
(0.9,0.5) 3.1544 0.0005 1.3932 3.2825 0.0006 1.2601

Table 7 Numerical stress o;; results for Problem

2

Position BEM 160 segments

(x}.x5) o, /P o,/ P Oyl P
(0.1,0.5) 3.4699 0.0000 1.2852
(0.3,0.5) 3.4143 0.0001 1.2670
(0.5,0.5) 3.3643 0.0002 1.2688
(0.7,0.5) 3.3166 0.0002 1.2715
(0.9,0.5) 3.2698 0.0000 1.2498

There is no explicit analytical solution to this
particular problem. Tables 5-7 show the BEM
results for some points in the domain €2 and for the
cases when the boundary dQ is divided into 40, 80
and 160 segments. As for problem | the results con-
verge as the number of boundary segments increases.

VII. SUMMARY

A boundary element method for the solution of
certain classes of elastic boundary value problems for
isotropic inhomogeneous media has been derived.
The methods are generally easy to implement to ob-
tain numerical values for particular problems. They
can be applied to a wide class of important practical
problems for inhomogeneous isotropic materials. The
numerical results obtained using the methods

indicate that they can provide accurate numerical
solutions.
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