A 100000 T
EJ061200000269

Journal of the Chinese Institute of Engineers, Vol. 23, No. 3, pp. 269-274 (2000) 269

EFFICIENCY INCREMENT IN 3D MULTI-ZONE BOUNDARY
ELEMENT ALGORITHMS BY USE OF ITERATIVE SOLVERS

Francisco C. Aratjo*, Geraldo J. Belmonte and Marcilio S. R. Freitas
Department of Civil Engineering
Universidade Federal de Ouro Preto
CEP 35400-000 Ouro Preto - MG, Brazil

Key Words: multi-zone BEM algorithms, iterative solvers, 3D
problems.

ABSTRACT

In this work general aspects of developing efficient generic
multi-zone BEM algorithms are discussed, focusing specifically on
three-dimensional formulations. The main idea followed in the article
for coupling a certain number of subregions discretized with boundary
elements is that the global sparse matrix of the coupled system is im-
plicitly considered, without condensing the problem quantities into the
interface variables and also without manipulating any of the zero blocks
appearing in the system matrix. Thereby an algorithm, optimum in
respect to storage requirements, is developed. Also, the performance
of the proposed coupling algorithm is further increased by making use
of iterative solvers. Recently reported research emphasising the effi-
ciency of such solvers in comparison with direct ones and the results
obtained in this paper for a simple 3D elasticity problem are used to

show the efficiency of the multi-zone BEM strategy presented.

I. INTRODUCTION

Boundary element formulations based on sub-
region techniques are commonly used for treating
problems defined in nonhomogeneous domains and
also for simulating domain cracks, thin barriers, etc.
In order to develop such formulations, it is necessary
to idealise the whole definition domain of the prob-
lem as an assemblage of a series of homogeneous parts
(subregions or zones) to which the boundary integral
equation of the physical problem being considered
can then be applied (Brebbia et al., 1984; Brebbia
and Dominguez, 1989). An algebraic system of equa-
tions for each subregion can then be derived, and with
further considerations of coupling conditions on the
interfaces between the subdomains, the approximated

*Correspondence addressee

response of the problem in each subdomain is
obtained.

As multi-zone BE algorithms originate coupled
system matrices exhibiting a great deal of
blockmatrices with zero coefficients, some researches
has been developed in recent years in order to get
optimised boundary element algorithms (Bialeck er
al., 1996; Kane er al., 1990; Santiago and Telles,
1997) concerning the storage and manipulation tech-
niques of the matrix coefficients. The ideas adopted
for developing such optimised algorithms consist
mainly in making use of special node renumbering
schemes for each subregion, such that an optimum
arrangement of the final coefficient matrix, i.e. an ar-
rangement minimizing the fill-in effects (Kane et al.,
1990; Rigby and Aliabadi, 1995), is obtained;
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furthermore, direct solvers e.g. the Gaussian
elimination, possibly restricted to the non-zero blocks,
have usually been employed for solving the resulting
~ system of algebraic equations (Bialecki ef al., 1996;
Santiago and Telles, 1997). Nevertheless, by
analysing problems consisting of various coupled
subregions with a direct-solver-based BE multi-zone
algorithm, the originally zero blocks are normally
filled with non-zero entries along the coefficient
transformations of the direct procedure - the so-called
fill-in phenomenon - so that such a class of coupling
algorithms cannot be properly classified as an ideal
multidomain BEM strategy.

In this work an algorithm for coupling a generic
number of subregions based on the implicit consid-
eration of the global sparse matrix of the coupled sys-
tem is presented. Special characteristics of this
algorithm are that no condensing of the problem quan-
tities into the interface variables (common surfaces
between the subdomains) is carried out and also none
of the many blockmatrices with zero coefficients ap-
pearing in the coupled system is considered. The use
of iterative techniques for handling the resulting sys-
tem of equations makes possible only blockmatrices
with non-zero coefficients being stored and manipu-
lated during the analysis process, because by apply-
ing iterative solution schemes the coefficient matrix
remains unchanged through the whole solution
process, whereas by using direct solvers it is altered
(transformed). The way in which the blockmatrices
are organised and stored in the coupled system for
further manipulation in the solution phase is also
discussed. The efficiency of the algorithm also de-
pends on this fact.

By means of research developed in the last ten
years it was possible to establish reliable iterative
solvers for treatment of BEM unsymmetric systems
of equations (see Aratjo and Mansur (1989), Araujo
et al. (1990), Kane et al. (1991), Mansur e al. (1992),
Barra er al. (1992) and Prasad et al. (1994). The re-
sults reported in these articles hint that if the verified
iterative procedures are used together with good pre-
conditioning matrices (Aradjo and Mansur, 1989;

Aradjo et al., 1990; Barra et al., 1992; Mansur et al.,

1992; Prasad et al., 1994), e.g. the Jacobi (or
diagonal) preconditioner, the lack of convergence nor-
mally found in anterior works concerning iterative
techniques (Bettess, 1983; 1987; Mullen and Rencis,
1987), can be completely avoided for normal Engi-
neering systems (non-singular or non-quasi-singular
ones). Specifically the study done in this work fo-
cuses the performance of a 3D multidomain BE algo-
rithm based on the iterative Lanczos process with and
without Jacobi preconditioning (Aratjo and Mansur,
1989; Aradjo er al., 1990; Mansur et al., 1992);
however, the ideas followed in this article are

naturally applicable to other iterative procedures as
well. Details of the formulation and a brief conver-
gence analysis of the iterative process are presented.
A simple 3D elastostatic problem discretized
with diverse subregions is used to observe the per-
formance of the proposed multi-zone BEM strategy.
With the aid of the results obtained in this paper (in
terms of CPU times, required storage room and
accuracy), the authors endeavour, concretely, to show
the efficiency of the proposed coupling algorithm.

II. MULTI-ZONE STRATEGY

As is well-known, direct BEM formulations are
derived for general stationary physical problems from
a boundary integral equation of the following aspect:
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where p? and u; are the fundamental kernels and c;
is the integral-free term dependent upon the bound-
ary geometry in . Details of the physical problem
will not be given further attention here, solely the
coupled geometric definition of the problem domain
will be highlighted. But, naturally, the ideas in this
work are equally applicable to general physical situ-
ations (also transient ones).

Concerning the proper multi-zone algorithm pro-
posed in this work, just two points should be
commented, namely, (1) how the coefficient blocks
of each subregion in the coupled system (whether
condensed or not) should be organised and (2) how
they should be ideally stored. Defining a coefficient
block as the submatrix of the coefficient matrix of a
certain subregion that corresponds only to degrees of
freedom of the external boundary or only to degrees
of freedom of the intersections of the subregions with
each other (common surfaces) or, simultaneously,
two, three or more others (curves and points), the
points above can then be discussed. In respect to the
first point, the option adopted was not to condense
the field quantities in variable blocks, but to allocate
them in a global sparse matrix involving all the sys-
tem unknowns. Thereby, the necessary inversions of
submatrices that were necessary in order to get the
condensed coupled system are avoided. The second
point - concerning the way in which the coefficients
should be stored - was then treated by storing,
exclusively, the non-zero blocks in a work vector,
beginning with the first column of the first non-zero
block of the first subregion, and so on, column by
column, block by block, subregion by subregion.
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Some details on the storing procedure are that the
coefficient blocks (in terms of global node number-
ing pertaining to them) are determined
during the mesh generation in the pre-processing mod-
ule of the computer code and, furthermore, two vari-
ables indicating the position of each block in the
coupled sparse matrix of the whole system (in terms
of its initial and final lines and columns) and one other
variable pointing the position of the first element of
each block in the work vector are used.

In order to give a more concrete idea of the
multi-zone algorithm, the domain of Fig. | with three
substructures will be considered'. By writing Eq. (1)
in algebraic form (after discretizing it with boundary
elements) for each substructure of the body in Fig. |
and by introducing the equilibrium and compatibility
conditions in points of common variable blocks (not
pertaining to the external boundary), the following
coupled system, organised in terms of the block vari-
ables in a non-condensed form, is obtained:

271

Q|

Fig. | Body with substructures

no further discussion about numbering schemes be-
ing necessary, as will be seen.

III. ITERATIVE SOLVERS

There are nowadays some important works
emphasising the efficiency of iterative solvers (Araijo
and Mansur, 1989; Aradjo et al., 1990; Barra et al.,
1992; Davey and Rosindale, 1994; Kane et al., 1991;
Mansur et al., 1992; Prasad et al., 1994; Urekew and
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The superscripts in Eq. (2) indicate the subregion or
subregions to which the degrees of freedom pertain.
After introducing the boundary conditions of the
subdomains, a system of equations of the form

Ax=b, 3
usual in the Boundary Element Method, then results.
Though, implicitly, the matrix A of the coupled sys-
tem is treated as the matrix on the left-hand side of
Eq. (2), explicitly this matrix is the work vector com-
mented on above. The coupling formulation of a
generic number of subregions is therefore concluded,

Rencis, 1993; 1994; Walker and Lee, 1997). In this
study only the solution scheme based on the Lanczos
tridiagonalization algorithm is considered (Wilkinson,
1965).

In order to apply the Lanczos algorithm for solv-
ing algebraic systems of equations the iterative for-
mula

n=1|

u”+]=f7n+|7’n+1"”+Pu+1u“+(I_Pn+|)u s (4)
which gives the system solution at iteration n+1, is
adopted, the corresponding residue at this iteration,
r'*! (obtained by r"*'=b—Au™") being consequently

' A domain with any number. of substructures could naturally be taken into account. In the computer code the subregions and all their

variable blocks are established in the data pre-processing module.
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Table 1 Storage and CPU timing results

CPU time (s)

Mesh Work vector (Mbytes) Preconditioner [terations Matrix assemblage Solver
I 2.396 none 24 56.3 3.2
11 2.144 none 30 64.3 4.8
I 2.396 Jacobi 20 56.3 2.9
I 2.144 Jacobi 25 64.3 3.9
PSP (<Y AT )+ (1= P (5) m
The residue vector (5) has the aspect of the TH
vectors derived from the A-matrix by the Lanczos Y Y
algorithm. This fact hints the consideration of vec- palli HEd
tors 7" *' associated with A” of the form af
Tn+l=7)_n+l('—_7n+lAT7”+?”)+(] _7)_11+I)7,'+I' X y

(6)

n+1 n+l

By proposing now that vectors r"*' and 7
are in fact Lanczos vectors, expressions for the pa-
rameters in iterative formulae (4), (5) and (6) can then
be obtained. It results in:
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with pj=1 and r'=F'. With these expressions two
vector sets r', 2, ... and 7', 72, ... are then gener-
ated for which the orthogonality property

¢, 7H=0if iz (8)

is verified; this property makes such iterative schemes
very attractive, then the generated set 7!, 72, ... be-
ing linearly independent (see Wilkinson (1965)) and
the residue vector r" pertaining to the N-dimensional
Euclidean space R", where N is the system order, so
it must be found that r"'=0. Naturally, as a conse-
quence of errors introduced in the data processing in
the computer, it may happen that convergence is not
reached for n<N, mainly for ill-conditioned systems.
This eventual lack of convergence has then been
avoided by considering preconditioning matrices in
the iterative schemes (Aratijo and Mansur, 1989;
Barra et al., 1992; Kane et al., 1991; Mansur et al.,
1992; Prasad et al., 1994). It should be also observed
that there is no difficulty in avoiding the manipula-
tion of all zero blocks, as the most complex opera-
tion in the Lanczos algorithm is a matrix-vector
multiplication. In Aradjo (1989) the complete

mesh | mesh ||

Fig. 2 Prismatic bar and adopted BE discretization meshes

derivation of all expressions involved in the Lanczos
solution scheme is given.

IV. APPLICATIONS

The performance of the multi-zone algorithm
with the Lanczos-based iterative solver (precon-
ditioned and non-preconditioned) is observed by
analysing the prismatic bar depicted in Fig. 2 with
length of 20 m and square cross section of side 5.0 m
long. The material constants are E=21x10° tf/m? and
v=0.15, and the boundary conditions are the load of
p-=1.0 tf/m?, uniformly distributed at the upper end,
and displacement restriction in direction z at the lower
end and in directions x and y normal to two of the
faces along the bar length, such that rigid body dis-
placement is constrained, but free deformation of the
bar is possible. The hatched surfaces in Fig. 2 indi-
cate the separation between subregions.

In the analysis a pentium Il computer with 300
MHz processor and 64 MBytes of RAM under
Microsoft-FORTRAN 90 compiler (Power Station)
was used. The results for the problem (in terms of
storage room, number of iterations and CPU times)

|5
b

&'=u"-u""', are shown in Table 1. Mesh I contains 2
subregions, 76 boundary elements and 244 nodes
(system order N=732) and mesh II, 4 subregions, 84
elements and 296 nodes (system order N=888).

<tol=107%, where

obtained with stop criterion

V. CONCLUSIONS

As expected, the use of the Lanczos iterative
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technique for treatment of the coupled systems origi-
nated from the bar had a quite good performance,
which can be concluded, though no direct compari-
son what a direct solver could be done, by observing
the relation between the system order and the num-
ber of iterations necessary for reaching the conver-
gence (N/n). By adopting mesh I (N=732 equations)
convergence was obtained with n=24 iterations
(without preconditioner) and with n=20 iterations
(with preconditioner), and for mesh II (N=888
equations) 30 and 25 iterations were needed for ob-
taining convergence with the non-preconditioned and
preconditioned solver respectively. In such cases of
relation N/n the iterative scheme has surely superior
performance to the direct schemes (see results given
by Aradjo and Mansur (1989), Aradjo et al. (1990),
Kane er al. (1991), Mansur er al. (1992)), especially
if a pivotal search must be conducted in order to en-
sure numerical stability of the direct solver. It should
be furthermore mentioned that in the multi-zone strat-
egy presented here the CPU time per iteration is
smaller than in those cases for which systems of
equivalent order are originated from single domain
discretizations, as no manipulation of zero blocks is
carried out in the resulting sparse coupled systems
here.

Concerning storage saving, it should be observed
that if the matrices for meshes I and II were fullv
stored, it would be necessary to have 4.088 MBytes
and 6.016 MBytes storage room instead of the 2.396
and 2.144 MBytes respectively (see Table 1). This
corresponds to storage saving of about 41 % for mesh
I and 64 % for mesh II. It is also worth mentioning
that for mesh 11, which has more subregions than mesh
I, the number of elements and nodes is consequently
bigger, but also the matrix sparsity increases, as is
shown through the significant storage saving pointed
out above, and it should be also pointed out that the
matrix sparsity is also important for increasing the
performance of the iterative scheme.

The numerical results (in terms of displacements
and stresses) for the simple elasticity problem
analysed, which coincided quite well with the ana-
lytical ones for both meshes, are not reported. Finally,
one can also observe that there was no considerable
difference between the performance of the Lanczos
solver with and without precondioner, this fact being
explained by the possibly well-conditioned matrices
resulting in both cases.

NOMENCLATURE
A BE coefficient matrix after introduction of
the boundary conditions
b right-hand side vector
by body force vector

3
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Cik integral free term of the boundary integral

H, G BE coefficient matrices originated from the
traction and displacement fundamental ker-
nels respectively

i, k indexes assuming values 1, 2 and 3

Py fundamental tractions

)/ boundary tractions

r', ¥" residue vectors at the nth iteration associ-
ated with A and A7 respectively

U fundamental displacements

u displacement vector before and unknowns

“ (solution) vector after introducing the

boundary conditions

u" solution at iteration n

x field point

d solution difference between iterations n and
n—1

Y Vo parameters of the Lanczos iterative proce-
dure

r domain boundary

Q problem domain

Pns P, parameters of the Lanczos iterative proce-

dure
source point
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