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ABSTRACT

A stochastic inverse boundary element method is developed. The
stochastic boundary integral equations are combined with the improved
Kalman filtering algorithm to formulate the inverse iterative scheme
and minimize the difference between the initial value and the objec-
tive value. Several numerial examples which show the effectiveness
of this paper, including unknown defect and unknown parameter dis-
tribution of random boundary traction, are presented and discussed.

I. INTRODUCTION

Predicting structural reliability is a key prob-
lem for large scale and complex structures. An effi-
cient method for predicting structural reliability
parameters is attractive to many engineers. Inverse
analysis is one of the more efficient and powerful nu-
merical methods. Unlike the direct analysis method,
it can be used to estimate and predict some unknown
information, such as the inverse finite element method
(Maniatty er al., 1989; Maniatty and Zabaras, 1994)
and the inverse boundary element method (IBEM)
(Zabaras and Morellas, 1989). Up to now, the in-
verse analysis method has been widely used for the
identification of structural parameters and unknown
defects, structure design and structural optimization,
etc. In engineering numerical analysis, the finite el-
ement method has efficiently solved many large-scale
and complex structural problems. However, the in-
verse finite element method requires re-meshing in
iterations for some problems, for instance, for pre-
dicting an interior defect, which will cost more CPU
time. For the linear boundary element method, its

*Correspondence addressee

elements are divided only on the boundary, therefore,
no such interior re-meshing is required. So if the sto-
chastic inverse boundary element method (SIBEM)
is developed for structural reliability analysis, it might
become an efficient and powerful method for engi-
neering reliability prediction. This is the objective
of the paper.

In recent years, many BEM researchers have
focused on the IBEM and its application. Kobayashi
(Nishimura and Kobayashi, 1991) and his co-worker
have developed IBEM for inspection of flaws or de-
fects in structural components. Saigal and his co-
workers (Zeng and Saigal, 1992; Bezerra and Saigal,
1993) presented the boundary integral formulation for
detection of flaws in planar structural members.
Ulrich and Moslehy (1996) have presented a bound-
ary element method based on the Hooke-Jeeves pat-
tern search solution for the determination of internal
cavities. Kobayashi and Nishimura (1994), Tosaka
and Utani (1995) presented unknown defect identifi-
cation in an elastic field by boundary element method
with filtering procedure, which shows the efficiency
of filtering. However, all of the above inverse BEMs
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do not deal with stochastic problems.

On the other hand, the stochastic boundary ele-
ment method (SBEM) is more and more being applied
to structural reliability analysis. For example,
Ettouney (1989) presented a stochastic boundary el-
ement with perturbation for stress analysis. Wen
(Weidong, 1994) presented a 3D stochastic boundary
element method for structural strength reliability. Liu
(1992) presented a probabilistic boundary element
method for structural system safety analysis. Liu
and Yang (1997) developed a stochastic boundary el-
ement method for reliability analysis of general static
and dynamic structural problems.

However, the stochastic inverse boundary ele-
ment method (SIBEM) has not yet been completely
investigated, especially for structural reliability
prediction. Therefore, in this paper, the SIBEM is
presented for structural reliability prediction based
on the stochastic displacement estimation given at
some boundary locations and applied random loading.
With random loading, the investigation starts by
estimating the stochastic distribution of random prop-
erties for assuming the objective value and any dis-
tributions as the initial values. It is known that such
inverse problems formulated by a finite element re-
quire a lot of re-meshing work, which makes the it-
eration procedure computationally expensive and
cumbersome. However, the boundary element
method, which has the property of dimensional
deduction, may effectively solve the problem. Thus,
this paper will further investigate SBEM and
combine it with the Kalman filtering algorithm to for-
mulate the iterative procedure and eliminate the dif-
ference between the initial guess and the objective
value. Three numerical examples, including unknown
defects and unknown parameters of boundary trac-
tion (load), are presented to demonstrate the effec-
tiveness of the reliability prediction method.

II. SBEM FOR RELIABILITY ANALYSIS

Assuming the fundamental stochastic variables
X; (i=1, 2, ..., n) are independent of each other, x;€ set
{X}. Let objective stochastic variables Y,(i=1, 2, ...,
m)e set{Y}, Yi=y/(xy, xa, ..., X,,), €.8., stress objective
stochastic variable 0,=0;(x|, xs, ..., x,,), strain ob-
jective stochastic variable g;=¢g;;(x), x5, ..., x,). ¥, can
be expanded into a Taylor series at a mean space point
00X, o X0,

5

V(X Xg o, X, )2 Y, (X5 XE, o XD

ay,)

+Z(X - X" (n

In the above the second and higher oeder terms

are considered to be small, and therefore are omitted.
If Y, and X,, are stochastic distributions, the mean
value and the variance of ¥; can be written as:

. U ) 4
E[lY)=Y]+ kg,] (uy, - X Z)(E)T,i)* € mean space

€ variance space

@ gY "
VarlY 1= k./;] (aT:)' *varfX )

(2)

where, pix, is the mean value of X;, var[X,] is the vari-
ance of X;. If X[ is given, Y| and (9Y,/0X,;)* may
be solved by SBEM, therefore the stochastic variable
Y, can be determined by Eq. (2).

The standard boundary integral equation can be
written as

Cqu+.[rP,-jujdr=-[r U,-jpjdl" 3

where P;; and Uj; denote fundamental solutions of
traction and displacement (Brebbia and Telles, 1984;
Liu and Antes, 1999).

The above boundary integral equation can be
solved by the usual boundary element method by us-
ing the prescribed boundary conditions. The final
form of Eq. (3) can be expressed in the following dis-
crete matrix form

A6=F (4)

where A is the known coefficient matrix, F is the pre-
scribed vector, and & stands for the unknown trac-
tion and displacements at the boundary.

Due to the stochastic variable X;, Eq. (4) can be
written as

= A - 0A
A=A *+AA AA BX‘ AX
8= "5 |,+AS, AS_BT AX;
- T JF
F=T |-+AF, AF_aX’ AX, (5)

where A , & and F are mean space matrix and
vector, while AA, Ad and AF are deviation space
matrix and vector. Eq. (5) actually is the first order
Taylor expansion. Inserting Eq. (5) into (4), and sepa-
rating the variables yields:

AS=F (6a)

A sA§=AF -AA +3 (6b)
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Equation (6a), solves & , i.e. the Y|'; Eq. (6b)
solves Ad. Note the independent relation of Eq. (5):

90V AXZAS: ich th ici 00,*
{ax,.} AX;=AJ;, from which the coefficient {BX,-}
can be determined. For interior displacement and
stress, their expressions are taken as:

u’-=f Ujpdr—[ P.u.dl

U [ ) Jeo v

¥ interior points

O-Ilj =I Dijmpmdr_f Sijlnumdr
r r

)

where Dy, Sij, are fundamental Kelvin solutions
(Brabbia and Telles, 1984; Liu and Antes, 1999).

Eq. (8] can be expanded into mean and devia-
tion equations respectively.

w'=Hp-Gu
Al =H Ap + AHp -G Au - AGTw (8)
T'=Dp-SW
AT =D Ap +ADF-S Au - ASTw 9)

where W', &' are interior mean displacement and

stress; Au’, Ac' are interior deviations of displace-
ment and stress; H , G and D are the mean funda-
mental Kelvin solution matrices AH; AG, and AD are
the deviation matrices of Kelvin solutions.

III. STRUCTURAL STRENGTH RELIABILITY

Considering failure criteria to be failures of
static strength, the critical state function of structural
strength can be expressed as

Z=g(X)=R(X)-S(X)) XX\, X5, ..., X;) (10)

where S is the effective stress; R is the strength of
material (i.e. the yield function); The structural reli-
ability parameter (or index) f is defined as

B = E[g)\/ varlg] an

Based on Eq. (11), the structural reliability can
be determined by

Rg=(or Pg)=2(p) (12)
where @ is a probabilistic function of stochastic

distribution, from Eq. (12) it is known that the struc-
tural reliability parameter  plays a key role in

reliability analysis, once it is determined, the struc-
tural reliability can be obtained. In this paper, a stan-
dard first-order second-moment method is used to
evaluate

EIR]-E[S]

- / var[R]+ var{S] (13

E[R] and var[R] can be obtained from a proba-
bilistic material manual. E[S] and var[S] are deter-
mined from Eq. (2) and SBEM. (Note: The failure
criterion function (10) is suitable for structures made
of brittle materials, but not for ductile materials.
Therefore, a design safety factor for Eq. (10) should
be introduced so that it can be suitable for more ma-
terials in engineering analysis).

1V. KALMAN FILTERING ALGORITHM
1. Kalman Filtering (Tosaka and Utani, 1995)
The state equation is:
X1 =X+ 0 (14)

where x; is the state vector (which actually is an ini-
tial guess for the original vector ( e.g. signal, image,
defect)), @, is the state transition matrix of the system,
wy is the zero-mean system noise vector.

The observation equation can be written as:

yi=H X +v; (15)

in which, y, is the observed vector (which is deter-
mined by BEM in this paper), H" is the observation
matrix (degradation matrix), v, is the observation
noise vector. Both w, and v, are assumed to possess
the following stochastic characteristics:

Zero — mean noise

E(w)=0, E(a)kw"',)=Qk5k, , E(a)kxT,)=0
Ew)=0, EvT)=R;8, Ev;x")=0

(16)

where Q; is the covariance matrices of system noise,
R, is the observation noise covariance matrices.

The Kalman filter algorithm is developed based
on the Wiener Filter, in which the filter gain G*
(restoration matrix) is taken as the form

Gi=P, HTHP,_ H+R)" (17

where P, _, is the covariant matrix of estimation error.
The Kalman filter scheme can be constructed as:
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X=X, +Gro -HiE )
i . (18)
X =Dpxy

_ The estimated error covariant matrices P, and
P, ., are obtained from Eqgs. (14) and (18):

Py=P, \~G{H{P,_,=(I-GHDP,_,

~ A o (19)
Pr =00 + 0,

For stationary static conditions, the state equa-
tion in this case can be expressed in the following
form in which the unknown parameters to be identi-
fied should be kept constant in each time step:

xk+,=lxk+0 (20)

Hence, the state transition matrix ®; reduces to the
unit matrix I, and the system noise @, may be ignored.
Consequently, the suffix & in this situation does not
indicate the time step, but the iteration number. Note
in this case:
(1) E(oy@")=046,;=0 which leads to Q=[0].
)P, =IP,I" +0, this means the second equation
of Eq. (19) does not make sense, only the first is
effective.
If the Kalman gain is taken as a Project Filter

r=IHIRH{T HER! @1

which does not depend on the covariant matrix P:_ I
it leads to fast convergence. This is the so-called im-
proved Kalman filter.

The covariance matrix of observation noise Ry,
which relates to the distribution of observation noise
vi and x,, can be chosen by experience. Based on
our calculation results, the value of R, only affects
the convergence speed without significantly affect-
ing the accuracy of solution. For example, in this
paper, R, is taken to be

025 0 0
Re=| 0 - 0 (22)
0 0 025

2. Inverse SBEM with Kalman Filtering

It is known that in order to predict an unknown
defect (or a unknown boundary traction) of a
structure, it is necessary to measure some values at
the boundary (e.g. displacement) so that we can

construct the state equation. However, we do not use
the experimental method to measure the displace-
ments at some boundary points. We, instead utilize
the boundary displacements calculated numerically
from forward SBEM, and then use them to form the
objective vector (a vector that will be used to com-
pare the results from the inverse method).

Assume that the matrix function m which stands
for using the forward SBEM to evaluate the bound-
ary displacements at the measuring points, can be
written as

u m = m( x exact

)5 Awy=Am(Ax i) (23)
where ¥, is the mean state vector of exact
defect, Ax,., is the deviation state vector of exact
defect, u,, is the mean displacement at some mea-
sure points, Au,, is the deviation displacement at some
measured points. Eq. (23) is the objective vector of
boundary displacements at measured points.

The observation equation can be derived from
boundary integral Eq. (6). Separating the unknown
displacements and traction reveals the relation con-
cerning the nodal displacement vector and the defect

state vector X, and Ax;

7,=[4,1"-F,, (24)

Au, =[A, 1" <AF, A, T,

which is obtained at a defect state vector x; and Ax;
(i.e. a given estimated defect). Eq. (24) can be fur-
ther written in the form

A A
w,, =m,Ax), Au,  =Amx,, Ax) (25)

where m; = [Xm ]‘] * Fm ’

A’nk = [-‘Xm ]_I * AFm - [AA ]_] '7;11

m

The observation equation can then be expressed by a
linear approach

Y, =Hix, +7V,, Ay, =H;Ax, +Av, (26)
where the observation matrix H} is

_Om, JAm, Jm, OAm, r

ox, ox, '9Ax, 9Ax, 7)

It is very hard to find the exact solution of (27). Thus
we use the finite difference method (FDM) to evalu-
ate its components.

Based on the Kalman filter algorithm, the
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Fig. I The model of structure

scheme of Inverse SBEM is presented as follows:

STEP 1. Input the data concerning the stochastic
geometry, elastic constants and boundary
conditions.

STEP 2. Set up the initial condition for the first guess
of the unknown defect and/or the unknown
boundary traction, (i.e. the initial state
variable)

Xo=X,, AXy=4x, (28)

STEP 3. Computing the stochastic displacements at
measurement points using forward SBEM
from an estimated state vector X, and Ax,
(Eq. (18))

STEP 4. Set up the observation vectors yy, Ay, by Eq.
(26)

STEP 5. Update the mean estimated state vector
X, and deviation estimated state vector Ax,
by

.. N o
X, =X, +G 0, -Hx, )

AP, =AF, _,+GQy, - HIAE, )

STEP 6. Check the convergence:
‘| 7m. k __u—m ” <ég, ’ AFm. k— A—u_m ” <Ae, (29)

where € and A€ are the given convergence tolerances.
If Eq. (29) is not satisfied, go to step 3, repeat the
iteration procedure. If Eq. (29) is satisfied, stop the
iterations, output the mean and deviation estimated
state vectors ¥, and AX,, recover the unknown
stochastic distribution of estimated defect and bound-
ary traction (load) using Eq. (2), and do the struc-
tural reliability parameter calculation and analysis.

V. NUMERICAL RESULTS AND DISCUSSION

Consider a 2D structure with an inner defect.

pd Assumed defect

Exact defect ° /

o boundary node

o intemral point

° © boundary fix

8 ® boundary traction

@

Fig. 2 The model with defect and mesh

Assume a plane stress 2problem vghere the defect can

x-xg)” G-y

a2 + b2

parameters include the location (xg, yo), the length of
the long-axis (a), the length of the short-axis (b) and
the rotation angle (alpha). The material constants are
assumed to be: Young’s modulus £=2.4x10* MPa and
Poisson’s ratio v=0.3. Height H=5.0m, width B=
2.0m. The structure model is shown in Figure 1,
which includes 24 linear elements on the boundary,
8 linear elements on the inner boundary of the un-
known defect. The load is applied at the top side.
As we mentioned before, we use the boundary dis-
placements given by forward SBEM at some mea-
sured points to form the objective vector (a vector
that will be used to compare the results from the in-
verse method). The measured points are chosen to
be the points (10,12,13,14 and16) of the top bound-
ary (see Fig.1). The convergence tolerance € and Ag
are taken as 1.e-6 and 1.e-8.

be expressed as =1. The predicted

1. Structure with Unknown Ellipse Defect

The model with BEM grid is given in Fig. 2.
The computing results are shown in Figs. 3-6. Fig. 3
and Fig. 4 show the convergence procedure of IBEM
and SIBEM, respectively. Fig. 5 and Fig. 6 illustrate
the convergence property with respect to the defect
shape, respectively.

From the above results we can see that both
IBEM and SIBEM are effective for determining the
defects, however SIBEM can be used for the predic-
tion of reliability parameters, whereas IBEM can’t.

2. Reliability Parameter Prediction of Structure
with Unknown Ellipse Defect and Random
Loads

Using SIBEM, it is possible to predict the struc-
tural reliability parameter. Here, we assume the
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model (shown in Fig. 7) with unknown ellipse defect
and random loads. The parameters include the loca-
tion (xo, o), the length of the long- axis (a), the length
of the short-axis (b), the rotating angle (alpha), and
the random boundary loads (including Px, dPx, Py,
dPy) which are applied at the top side of the model.
There are 9 parameters to be predicted. Fig. 8
shows the convergence property with respect to the
defect shape. Fig. 9 shows the identified results of
the parameters. Fig. 10 presents the structural reli-
ability parameter at some internal points (including
No.44, 45, 48, 49, 50, 51) and their prediction
procedure.

The objective vector of the location (xg, yg), the
length of the long-axis (a), the length of the short-
axis (b), the rotating angle (alpha), and the random
boundary loads (including Px, dPx, Py, dPy) is (0.8,
1.5, 0.2, 0.4, 57/4, 0.0, 0.0, -0.2, -0.02). Assumed
initial vector is (1.5, 1.5, 0.1, 0.1, 0.0, 0.5, 0.6, -0.1,
-0.05). After 50 iterations steps, the prediction

o boundary node

o intemral point

© boundary fix

® boundary traction

Qoco o

& g

Fig. 5 Process of IBEM prediction

O0—00 < x

el

o boundary node
o o intemral point
© boundary fix
§ ® boundary traction

Fig. 6 Process of SIBEM prediction
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B %59/
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°
° o boundary node
o o intemral point
© boundary fix
3 ® boundary traction

Fig. 7 The mesh model

vector is (0.80011, 1.50003, 0.19998, 0.4, -2.35619,
0, 0, -0.2, -0.02 ) where -2.35619 is 5n/4. The as-
sumed objective structural reliability parameter 3 at
some internal points (No. 44, 45, 48, 49, 50, 51) are
(2.557345, 5.062733, 5.313857, 5.263923, --,
5.298350), respectively. The structural reliability
parameter, 3, on these points are (2.582521, 5.062647,
5.313863, 5.264038, -9.003421, 5.298374),
respectively. Furthermore, according to Fig. 7 and
Fig. 10, point No. 44 is near the boundary of the
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Fig. 10 Reliability parameter § at some points by SIBEM identi-
fication

defect. Its reliability parameter is lower than that of
other points. Point No. 50 is located inside the defect.
Since it is not located in the body of the structure
component, its reliability parameter is negative

0
—————ger—esoogp—————— x

]

48 Assumed defect
049
45
0.0 00
44
50
,_ow-’/-/-'
Exact defect 51

o boundary node

o intemral point

© boundary fix

@ boundary traction

@ 000 o

o
®

Fig. 11 The crack model with BEM mesh

° e boundary node

o intemral point

© boundary fix

@ boundary traction

@ ocoo o

& o
A\ 4 A4

Fig. 12 Process of SIBEM prediction

(-9.003421), which does not make sense.

3. Reliability Parameter Prediction of Structure
with Unknown Crack Defect and Random Loads

Here, we consider a crack, i.e. a super ellipse
defect with long long-axis (a) and short short-axis (b).
The model is shown in Fig. 11, where the ratio of a:b
is 60. Fig. 12 shows the convergence property with
respect to the defect shape. Fig. 13 shows the identi-
fied results of the parameters. Fig. 14 presents the
structural reliability parameter B at some internal’
points (see last example) and their prediction process.
The objective vector of the location (xq, yo), the length
of the long-axis (a), the length of the short-axis (b),
rotating angle (alpha), and the random boundary load
(including Px, dPx, Py, dPy) is (1.0, 2.0, 0.01, 0.6,
37/4, 0.0, 0.0, -0.2, -0.02). Assumed initial vector is
(1.5, 1.5,0.1, 0.1, 0.0, 0.0, 0.0, -0.1, -0.05). After 50
iteration steps, the prediction vector is (1.00000,
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Fig. 13 Identified result by SIBEM

2.00000, 0.01000, 0.60001, 37/4 , 0.00000, 0.00000,
-0.20000, -0.02000). The assumed objective structural
reliability parameters f at some internal points (No.
44, 45, 48, 49, 50, 51) are (5.341835, 5.268374,
5.262212, 5.308814, 5.397956, 5.342162)
respectively. The predication results of structural re-
liability parameter § on these points are (5.341827,
5.268373, 5.262214, 5.308814, 5.397943, 5.342154).
Note: since point No.50 is located in the defect (not
really body) of the structure component, its reliabil-
ity parameter appears negative. This state makes no
sense. However, the final result becomes good. In
addition, it is found that for unknown flaw prediction,
if the ratio of a/b is very large, the covariance matrix
R should be adjusted. Otherwise, the convergence
speed will be very slow.

VI. CONCLUSION

In this paper, a stochastic inverse boundary ele-
ment method is developed by combining the stochas-
tic BEM with the Kalman filtering algorithm. The
contribution of this paper is that it presents a stochas-
tic Kalman filtering scheme and uses it to predict the
structural reliability parameters and the stochastic
boundary traction (load), which is different from ex-
isting research. The method was applied to solve pla-
nar structural problems with both unknown defect and
unknown random boundary traction. The unknown
defect identification can be carried out simultaneously
with the prediction of unknown random boundary
traction and the structural reliability parameter. Nu-
merical examples support the effectiveness of the
method. As is known, the inverse problem for seek-
ing a defect is not a well-posed problem, and the sta-
bility of solution is therefore usually not guaranteed.
In addition, how the boundary conditions affect the
accuracy of the defect determination when the defect
is far small enough and/or is far away enough from
measured points. This paper does not include these
problems, which are further research the authors will
investigate.

8
2 o 44
o 45
a R
2 49
= 01 .50
8 o -51
g6 r

_8 L

Iterations

Fig. 14 Reliability parameter 3 at some points by SIBEM identi-
fication
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