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ABSTRACT

This study presents a numerical method to describe and predict
the phenomena of three-dimensional nonlinear liquid sloshing prob-
lem of a tuned liquid damper (or TLD) to any kind of forced motion.
The three-dimensional boundary element method with the second-or-
der Taylor series expansion and Lagrangian description is established
and used to compute the position and other quantities of the liquid par-
ticles in the liquid domain and on the free surface. The calculations of
transient solution (or the time history) of the free surface movement
and the base shear force from hydrodynamic pressures of a three-di-
mensional rectangular or cylindrical TLD tank subjected to horizontal
harmonic forced oscillation, as two examples, are included in this pa-
per for demonstration and discussion.

I. INTRODUCTION

Sloshing phenomena inside a liquid tank sub-
jected to external motions have been studied for many
engineering problems, such as nuclear reactors
(Aslam, 1981), huge oil tanks (Velestors, 1984), and
tuned liquid dampers (TLD) (Chen et al., 1995; Chen
and Hwang, 1994). In most of these cases, the move-
ment of the free surface conducts undesired troubles.
But for another case of a tuned liquid damper, the
sloshing effect can give a desired reaction force which
can reduce the vibration of its main structures. In
the present study, our interest is focused on the tuned
liquid damper and its reaction force on the main
structure.

Two kinds of mathematical models, linear and
non-linear models, are frequently used to describe free
surface movement. The linear wave model is applied,
when the wave amplitude is small. However, as the

*Correspondence addressee

amplitude of waves becomes larger and larger, the
simple linear wave theory is no longer valid. We have
to adopt the more complicated non-linear model in
order to obtain reasonable results. The present con-
cern is sloshing phenomena and the reaction force for
a TLD subjected to any kind of forced motion. In
order to achieve better vibration reduction, the waves
inside a TLD should be at or close to the resonance
condition. At this condition, the elevation of the free
surface is no longer small and a non-linear model is
necessary.

It is very difficult to solve the non-linear free
surface problems analytically, and only a few results
have been reported in the research literature. For two-
dimensional steady-state conditions, Faltinsen (1974)
solved nonlinear sloshing in rectangular tanks. Ikeda
and Nakagawa (1997) published their results for the
nonlinear vibrations of a structure coupled with slosh-
ing of a rectangular tank. As for the transient



322 Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

problem, Chwang and Wang (1984) developed an ana-
lytical solution of the hydrodynamic pressure for an
accelerating tank, but their approach was limited by
a small time expansion. In the meantime, many nu-
merical methods, such as finite element methods,
finite difference methods, and boundary element
methods (BEM), have been developed. Among those
numerical methods, the BEM can efficiently reduce
the computational dimensions by one. Such a great
advantage of BEM is helpful to reduce computer
memory storage, computer computation time, and to
make the grid generation easier, especially for three-
dimensional computation. Liu et al. (1992) applied
the BEM and the Taylor Series Expansion to solve
two-dimensional sloshing problems. Furthermore, it
has been extended to solve wave making problems
(Nakayama, 1990), overturning waves (Liu et al.,
1992), breaking waves (Grilli and Subramanya, 1996),
and the interaction between current and a structure
(Bithmann et al., 1998).

In using the BEM, there are two primary issues
of concern. One is the calculation of the velocity or
the velocity potential of flow fields. The other is to
predict the position of the free surface at every time
step. By the assumption of the potential flow, the
BEM can directly solve the unknown variables, if
enough boundary conditions are given correctly. Two
approaches are commonly used to update the free
surface condition in the research literature, the Tay-
lor series expansion (TSE) and the Runge-Kutta
Method. Machane and Canot (1997) suggested that
time stepping based on the Taylor series expansion
was more efficient than the Runge-Kutta Method in
terms of CPU time. Unfortunately, when the higher-
order TSE in time stepping is used, the solution pro-
cedure becomes extremely complicated. However,
if we don’t adopt the higher order TSE method, the
TSE method will still be a very practical method for
three-dimensional sloshing problems.

Recently, many contributions on the non-linear
free surface wave have been obtained by the BEM
for two-dimensional cases. Some authors claim their
methods can be extended to three-dimensional
problems, but unfortunately, only a few examples
have been shown. Actually, the handling of three-
dimensional problems is not as easy as the two-di-
mensional ones. The difficulties are mainly due to
the complicated geometric simulation, the stability,
and increased CPU time (Broeze et al., 1993).
However, the three-dimensional analyses are still very
important in many engineering problems. In this
paper, our interest is concentrated on the numerical
calculation of a three-dimensional sloshing problem.
The isoparametric quadrilateral linear element is used
to model the boundaries of the tank, and the second
order TSE with the Eulerian-Lagrangian method is

Fig. 1| Model of the calculational region

used to track the particles on the free surface. Finally,
the transient solution (or the time history) for a three-
dimensional nonlinear sloshing problem of a tank to
any kind of external forced motion can be calculated.
Two examples, the rectangular and cylindrical TLD’s
to a harmonic forced oscillation, are included for nu-
merical calculation and dicussion.

II. MATHEMATICAL MODELING

The sketch of a liquid tank is shown in Fig. 1.
The flow field satisfies the assumptions of potential
flow: inviscid, incompressible, and irrotational. The
velocity potential is described by the Laplace
equation,

0% 0% %0

Vip=r=~t + L +—L=0, (1)
¢ ox? o9y 9z°

in which ¢(x, v, z, r) is the velocity potential in the
computational domain Q. Let u, v, and w be the flow
velocities in x, y, and z directions, respectively. Then,
by the definition,

%:u,%ﬁ?=v;%§=w- 2

In Fig. 1, there are three types of boundaries on the
tank: a lateral wall boundary I',,, a rigid bottom I'j,
and a free surface boundary I'y. On the free surface,
I', there are two boundary conditions: dynamic and
kinematic conditions. Let R be the position vector
of a particle on the free surface. The kinematic bound-
ary condition on I'yis denoted as

Wz(—aa—f- +F' V)E’=U on rf, (3)

in which U is the velocity vector of the particle, and

D _9d _ 009 009 L 909
D "o Taxox Foyvoy Yooz (4)
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Fig. 2 The calculation domain of boundary integral

represents the time derivative in the Lagrangian
description. Hence, the velocity of free surface par-
ticles is,

DR _
Br V¢ onTy. (5)

Let (&, ¢, n) be the position vector of a particle on
the free surface. Then
_b§ _D¢ _Dn
“=pr VT ST O (6)
The other boundary condition of the free surface, the

dynamic boundary condition, is the Bernoulli
equation:

¢, 1 2 Pa_
_+§|V¢| +g1]+?—0 only, N

in which g is the gravitational acceleration, 1 is the
altitude of free surface, and p is the density of fluid.
The atmospheric pressure p, is taken to be zero. Eq.
(7) can be rearranged by the total time derivative as

[L))(’p——gn+ |V¢‘ on Iy (8)

In this paper, we only consider horizontal forced
vibration, so the normal velocity of the bottom bound-
ary vanishes, i.e.

8¢ =0on T}. 9

Equation (9) is the boundary condition on the bottom
boundary I';,, and n represents the unit normal vector.
In the same way, the lateral wall boundary condition
can be assigned as:

g,? V,,y,z,t),onT,, (10)

where V,(x, v, z, 1) is the outward normal velocity of
the lateral wall boundary.

III. BOUNDARY ELEMENT METHODS

The boundary value problems mentioned in the

% Node 3(1,1)

Node 4(-1,1)

¢

\— Node 2(1,-1)
Node 1(-1,-1)

Fig. 3 The quadrilateral linear element and local orthogonal set
of axes

previous section can be transformed into a boundary
integral equation along the tank boundary
r(rpor,ur,). As shown in Fig. 2, a field point Q
locates at (Xg, Yg, Zp) on the boundary, and a source
point s locates at (xy, y;, z,) inside the domain. De-
noting G(s, Q) as the three-dimensional free-space
Green’s function of the Laplace Equation, we can
write

G, Q)=

706, Q)] an

where r(s, Q) is the distance from the source point to
the field point. We substitute Eq. (11) into Green’s
second identity

| V6 -GV = | 03¢ -c3hur. a2

Moving the source point s toward the boundary, we
have the boundary integral equation

29(S
c($)9(S) + [ 65275 Dy - LG(S,Q)MdF
(13)

where ¢ is a coefficient from the geometry defined as

966, 0)
c(S):—‘[r T (14)

In this study, the isoparametric quadrilateral lin-
ear element showed in Fig. 3 is utilized. For
discretization, the geometrical or physical function
f on the boundary can be expressed as

€. 0= 3 0¢, G, (15)

where {,, and {, are the local element coordinates,
0L\, &) is the linear quadrilateral element shape
function and f; is the relative function value on
the node in each element. Then the derivative of
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function f on the boundary element is defined as

¢y, £») _ 0 (C1, &) .
3¢ —kgl 3, £, i=1,2. (16)

After the boundaries being discretized, Eq. (13) can
be treated by the boundary element method.

IV. LAGRANGIAN DESCRIPTION AND BASE
SHEAR FORCE

In this section, the Lagrangian description is ap-
plied at the free surface only. When the liquid tank
is subjected to a forced ground motion, the free sur-
face position and the velocity potential change with
time. We use the Taylor series expansion with
Lagrangian description to catch the new position of
the free surface and to calculate its relevant bound-
ary properties, when the time marches. Between the
time step ¢ and t+A¢f, in which Ar is a small time
increment, a particle (&, ¢, 7) on the free surface at
time t will move to its new position (&', ¢', 17') at time
t+At as shown in Fig. 4. We trace this particle and its
velocity potential by the Taylor series expansion

£ = §+AtD§ Az’ Dé +0[ADY, i=1,2,3, (I17)

D¢ ArD¢

¢ = ¢+AtD 2 2 + 0[], (18)

where =8, &=¢ and &3=n.

At each time step, we first solve the velocity
potential or its normal derivative from the boundary
integral equation described in the previous section.
Then, we apply the Lagrangian description in suc-
cession to predict the new position of the free sur-
face by Eqs. (17) and (18) to update the velocity
potential at the next time step. In this study, the sec-
ond-order expansion is adopted, and the higher order
terms are dropped.

For calculating the time derivative terms in the
previous Taylor series expansion equations, we must
know the normal and tangential vectors at each node
on the free surface elements. Therefore, a few inter-
mediate steps are needed and described in the
following. First, we have to establish a local orthogo-
nal coordinate of each free surface node. Referring
to Fig. 3, ¥, is a unit tangential vector to the local
element coordinate {; at one node, and 7 is the out-
ward unit normal vector at the same node. Because
s, and n are perpendicular, the orthogonal vector
s, can be obtained by the cross product of ¥, and
n . These three vectors are perpendicular to each
other, then we define sy, s, and n to be the correspond-
ing local orthogonal coordinates. By these

The free surface at ¢ + At

,° #'(&' s n' st + AL)

)

The free surface at ¢

Fig. 4 The particle movement on the free surface from ¢ to r+At

definitions, the tangential derivatives of a function f
can be written as:

o 3 3 . 9
TR A el (19)
o 3 9. 9 o o)

3, 95,307 ¥ as7a§ /s

Hence the derivative terms between global and local
coordinates are related as

aa la?1+s,,a?1+szfa%2, @n

in which N;, §};, and S,; are the components of unit
normal and unit tangential vectors in x, y, and z
directions, respectively. From Egs. (6) and (8), we
have the first-order Lagrangian time derivative of the
position (i.e. velocity components) at every surface
node in global coordinates:

D¢; d¢ 99 . o 99 d¢
HL=U;= =3 =Ni3 + S,,ag +S2'8Tz’ (22)
and

Do_ .1

Dt - gr]+ 2UiUi ’ (23)

in which U, are the velocity components of a free sur-
face particle. Next, the second order time derivatives
of positions and ¢ on the free surface can be written
as

Dzéi _DJ¢ _ az¢ a¢
Dt?  Drox;  orox, UfaT (24)

D2¢_U DU, Dn

D2 iDr 8D (25)

Since ¢ is continuous everywhere in the tank,

5 8(/) in Eq. (24) can be expressed as ¢’

the term
and
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a¢, _ a¢l a¢l a¢l
*aTY—i—NiW"‘S“aT]'f‘Szia_qz’ (26)

where @, on the free surface is calculated from Eq.
(7). Because ¢, in the computational domain satis-
fies the Laplace equation, we can use the same idea
mentioned in the previous section to solve the bound-
ary value problems such as

V29,=0
d=specified, on free surface, 27
99,

W:spec:fied, on lateral wall and bottom

Then the unknown value d¢/dn on the free surface
will be solved. In this kind of problem, it is not nec-
essary to do any more integration for solving d¢,/on,
because the coefficient matrix for Eq. (13) is exactly
the same as that for Eq. (27) in the same time step.
Even for higher time derivatives, such as V?¢,=0,
V2,,=0... etc., the coefficient matrix is still the same
as for the Laplace equation. Therefore, by BEM, the
computational procedure is very time economical.

o
The other terms a—vj in Eq. (24) can be represented
as '

9,
Era

99 ; 09 ; 09 ;
NiW+SIi8T,+Sz"T§2_'

(28)
Further expanding the above equation, we have

d9; 99, 5 09 9 99 5 0¢
on " 0x; =N an +S'faslan +Szfaszan (29)

a¢.,~_a¢..c1:N 5 ¢ 5 99 5 99 30)

o5, =, = Nianas, TS vas as, t3vas;0,
Pi Py y 290, g 090 ¢ 090 3
ds, — oX; Jon os, ids | 05, %0ds,0s5,
. . . 9%
With previous calculation, all the terms except 52
n-
in Egs. (29)~(31) can be evaluated one by one on lo-
2
cal elements. Finally, the term g (12) is computed
n
through the Laplace equation such that
0? 0° 0’ 4
920,20 (32)

on? _aslz as22

Up to now, all the terms in the second-order TSE
method can be carried out successfully.

After the calculation of the free surface
movement, the hydrodynamic pressure on the lateral
wall can be evaluated from Bernoulli’s Equation

L or 2R

Y

F

Fig. 5 Base shear force due to the hydrodynamic pressure

99 | 2

p(—xa ya Z, I)=_p
Then, the base shear force F due to the difference of
hydrodynamic pressures in the x-direction on the ver-
tical wall shown in Fig. 5 can be calculated by

F=f p AT, . (34)
L P

‘ W

In Eq. (34), p, is the x-directional hydrodynamic pres-
sure on the vertical side wall.

V. NUMERICAL EXAMPLES

The first example in this study is a three-dimen-
sional rectangular tank, partially-filled with water,
subjected to x-direction forced motion. Fig. 1 shows
a three-dimensional rectangular tank. In order to
check the accuracy of the numerical result the ana-
lytical solution of the hydrodynamic pressure from
an accelerating rectangular tank, developed by
Chwang and Wang (1984), is adopted for comparison.
The nondimensional pressure is defined as

_p,y,z,1)

P~ pah (35)

where a represents the constant acceleration applied
to the tank. While =0, the distribution of C, on x=0 -
is expressed as

I -1 m 1- he L
CI’ =2 2 ( )2( 2 -COS - )\‘OSka ’ (36)
m=0 k_“h°sinhk,,L
in which
@m-Dr
m _T‘ (n’l—l, 2, 3, )

Figure 6 shows the results of present work and the
analytical solution of C, for L/h=1.0 and a=0.2g. The
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Fig. 6 The hydrodynamic pressure distribution on the left side
wall

agreement between these two results is very good.

Then, a three-dimensional rectangular tank
subjected to horizontal harmonic forced oscillation
will be calculated. The length of the tank is 0.9m,
the width is 0.3m and the still water depth is 0.6m.
By the linear wave theorem (Currie, 1993), the first
natural frequency is

T
w =/ Tgtzmh”Th’ . (37)

Thus the first natural frequency of this tank is
@,=5.761 rad/sec.

Because this tank is subjected to a harmonic forced
oscillation, the lateral boundary conditions of the right
side T, and left side I'; of the tank are

%:V:iwfxosinwfr,

onT,and T, (38)
in which yis the forced frequency and x is the am-
plitude of the tank oscillation. The boundary condi-
tion of the bottom is

99 _
37 =0

In this study, the free surface wave and base
shear force at different forced frequency are most
concerned. There are two different forced frequen-
cies denoted as 5.0 rad/sec and 5.5 rad/sec. In the
computation, the forced displacement amplitude is
0.003636 m, the time increment is 0.001 sec, and the
boundary is meshed into 600 quadrilateral linear ele-
ments (18, 6, and 8 meshes along x, y, and z directions,
respectively).

The time history of the elevation of the free sur-
face at the right side wall of the tank is plotted in

0.10 —
———— 5.0rad/sec
5.5 rad/sec
= 0.05 —
E
E -
=y
2 0.00 —
o
g 4
@
S 005 —
'0.10 T ] T l T |
0.00 2.00 4.00 6.00
Time(sec)
Fig. 7 Free surface height at the right lateral wall of the rectan-
gular tank
150.0
4 ——— 5.0rad/sec
~ 00.0
z 100 5.5 rad/sec
S 50.0
L
& 0.0
(5]
@
@ -50.0
(%]
Y
€ .100.0
-150.0 T I T l T j
0.00 2.00 4.00 6.00
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Fig. 8 The base shear force of the rectangular tank

Fig. 7. The result of the case, w=5.5 rad/sec, is very
consistent with that of the two-dimensional compu-
tation by Liu er al. (1992). In this case, the wave
amplitude at the wall increases almost linearly. This
forced frequency is very close to the first natural fre-
quency of the water tank, thus the resonance phenom-
enon is very significant. By the potential flow
assumptions, the wave height grows linearly and
seems like a divergence condition at resonance in our
calculation, but an artificial experimental Rayleigth
damping term can be added into the dynamic bound-
ary condition (i.e. Eq. (7)) for practical engineering
applications (Nakayama and Washizu, 1981). The
other forced frequency, @w=5.0 rad/sec, is far away
from the resonance frequency, so the amplitude of
the free surface wave is more calming and a “surf
beat” phenomenon appears (Liu ef al., 1992). Fig. 8
shows the time history of base shear forces due to the
hydrodynamic pressure. In the above examples, when
the excited frequency is far enough from the reso-
nant frequency, the amplitude of waves doesn’t grow.
Basically, it means the present numerical method is
stable. However, when the excited frequency is near
the resonant frequency, the growth of wave height is
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Fig. 9 Normalized energy for the rectangular tank

the nature of physical phenomena. The larger base
shear force also occurs when the frequency is close
to the resonance @=5.5 rad/sec. This means that the
tank will provide significant base shear force at
resonance. The normalized energy for each forced
frequency is plotted in Fig. 9. The normalized ki-
netic energy is

1 [ 400

where Ay is the free surface area at rest, and the nor-
malized potential energy is

1
E =
P QAfXO rf

ndr; . (40)

The total energy at @=>5.5 rad/sec is much larger
than that at @=5.0 rad/sec. This result also shows
that a TLD will have good vibration reduction at the
resonance condition. Fig. 10 is a typical sloshing
mode calculated by the present method. There is al-
most no change along the y-direction, because it is
actually a two-dimensional problem.

Figure 11 shows a cylindrical water tank. The
horizontal harmonic forced vibration is also con-
cerned here. The still water depth is 0.48 m, and the
radius is 0.33 m. By the linear wave theorem (Currie,
1993), the natural frequency of a cylindrical water
tank is

A
w=/ Lianha,hy (41)

Z(cm)

Fig. 10 The calculated sloshing shape of the free surface wave in
the rectangular tank

Point A

Fig. 11 The cylindrical tank

A; is the values when the first derivative of the first
order Bessell function (J,'(4;)) is zero. Considering
the first-mode wave motion in this tank, A,=1.841 is
selected and the lowest natural frequency of wave mo-
tion is 5.66rad/sec. From the given forced vibration,
the lateral boundary condition on the side wall of the
tank is

%:V:wfrosina)f{cos( 8, onT,, (42)

and the boundary condition of bottom is

99 _
37—0

Two forced frequencies 5.0 rad/sec and 5.5 rad/sec
are also chosen, the forced displacement amplitude
is 0.003636 m, the time increment is 0.001 sec, and
the boundary is meshed into 320 quadrilateral linear
elements (112 elements on the free surface or bottom,
96 elements on the lateral wall, respectively).
Figure 12 shows the time history of the free sur-
face wave elevation at point A which is indicated in
Fig. 11. The wave amplitude grows almost linearly
for w=5.5 rad/sec and the “surf beat” phenomenon
also appears at @=>5.0 rad/sec. Fig. 13 and Fig. 14
are the plots of time histories of the base shear force
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Fig. 13 The base shear force of the eylindrical tank

Fig. 15 The sloshing shape of the free surface wave in the cylin

drical tank at /=3.5 sec and @=5.5 rud/sec

and the normalized energy. The tank also provides
lager base shear forces and more (otal energy al
resonance. Fig. 15 shows the calculated free-surface
sloshing shape in a cylindrical tank at r=3.5 sec and
w=5.5 rad/sec. Fig. 16 shows the wave contour lines,
from which we can find that the free surface wave
distribution is three-tdimensional and symmetrical
about the central v-z plane. The non-linear behavior
has also been shown by the contour lines in the figure.
Fig. 17 shows the free surface profile along the cen-
tral x-z plane in the cylindrical tank at time =0 sec,
1=1.5 sec. and r1=3.5 sec respectively.

From Eq. (33), the lateral hydrodynamic pres-

y . ; . do
sure is the sum of the following terms: —Py, -
el
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Fig. 14 Normahzed energy for the eylindrical tank
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Fig. 16 The contour of the free surface wave in the cylindrical tank

tuniem

0 » - .
- ’,,(me' and —pgz. Thus the base shear force F can

also be considered as the sum of the three compo-
nents and assigned as £, F>and F;. The result of the
three components in a cylindrical tank is plotted in
Fig. I8, Ivis very interesting that the base shear force
is most dominated by the first term, namely inertial
torce. and, the other terms can be neglected. The base
shear force per unit weight of water (N/ke) at =
5.5rad/sec of the rectangular and cylindrical tanks are
compared and shown in Fig. 19. 1t shows that the
cylindrical wank could also provide significant base
shear force. which means that the cylindrical tank
would also have excellent performance in vibration
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Fig. 17 The free surface wave profile along the central x-z plane
in the cylindrical tank at @=5.5 sec/rad
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Fig. 18 The three components of the base shear force of a cylin-
drical tank at @=5.5 rad/sec (F: total force, Fy: due to
—pae/dt, Fy: due to —p(V¢)’/2, and F3: due 1o —pgz)

reduction. More examples’ calculations and experi-
ences will be required for further comparisons of the
rectangular and cylindrical TLD’s.

VI. CONCLUSION

The numerical method using BEM with TSE and
Lagrangian description for the calculation of the tran-
sient solution (or the time history) of the three-di-
mensional nonlinear water sloshing problem of a TLD
is developed. The comparison of the results between
a three-dimensional rectangular TLD calculated by
the present work and a two-dimensional one calcu-
lated by Chwang and Wang (1984), and by Liu et al.
(1992) show good agreement. The behavior of water
sloshing in a cylindrical tank has also been predicted
successfully. Therefore it can be said that this algo-
rithm is reliable and practical for dealing with the
three- dimensional nonlinear sloshing problems of
TLD’s.

From the examples’ results given in this paper,
a TLD has significant base shear forces at resonance,
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Fig. 19 The unit base shear force per unit weight of water at w=
5.5 rad/sec of the cylindrical tank and rectangular tank

and the inertia force dominates the base shear force
mostly. The results also show that both the rectan-
gular and cylindrical TLD’s could have excellent vi-
bration reduction with regard to their main structures.
The present method can successfully predict both
wave height and base shear forces at resonance con-
ditions for any three-dimensional TLD’s to the har-
monic forced oscillation. It could also be applied to
the three-dimensional nonlinear sloshing problem of
a TLD subject to other kinds of horizontal forced
oscillation, such as horizontal earthquake records.
More calculations, model tests, and engineering ap-
plications should be examined for future study.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the spon-
sorship of this research project by the National Sci-
ence Council of the Republic of China under the Grant
NSC-87-2211-E-002-072.

REFERENCE

1. Abe, K., and Kamio, T., 1994, “Two-Dimen-
sional Nonlinear Sloshing Analysis Using Bound-
ary Element Method,” Proceeding of JSCE, No.
489/1 -27, pp. 111-120 (In Japanese).

2. Aslam, M., 1981, “Finite Element Analysis of
Earthquake-Induced Sloshing in Axisymmetric
Tanks,” International Journal for Numerical
Methods in Engineering, Vol. 17, pp. 159-170.

3. Broeze, J., Van Daalen E.F.G., and Zandbergen,
P.J., 1993, “A Three-Dimensional Panel Method
for Nonlinear Free Surface Waves on Vector
Computer,” Computational Mechanics, Vol. 13,
pp- 12-28.

4. Biihmann, B., Skrourup J., and Cheung, K.F.,
1998, “Run-up on a Structure due to second-or-
der waves and a current in a numerical wave



330

10.

11.

12.

13.

. Faltinsen O., 1974,

Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

tank,” Applied Ocean Research, Vol. 20, pp.
297-308.

. Chen, Y.H., and Hwang, W.S., 1994, “Study of

the Interaction in Anti-Vibrational Liquid Tank
and High-Rise Building”, NSC-83-0410-E002-
052, Report of the National Science Council, R.
O.C. (In Chinese).

. Chen, Y.H., Hwang, W.S_, Chiu, L.T., and Sheu,

S. M., 1995, “Flexibility of TLD to Building by
Simple Experiment and Comparison,” Comput-
ers and Structures, Vol. 57, No. 5, pp. 855-861.

. Chwang, Allen T., and Wang, K.H., 1984, “Non-

linear Impulsive Force on an Accelerating
Container,” Journal of Fluids Engineering, Vol.
106, pp. 233-239.

. Currie, 1.G., 1993, Fundamental Mechanics of

Fluids, McGraw-Hill Inc.

“A Nonlinear Theory of
Sloshing in Rectangular Tanks,” Journal of Ship
Research, Vol. 18, No. 4, pp. 224-241.

Grilli, S.T., and Subramanya, R., 1996, “Numeri-
cal Modeling of Wave Breaking by Fixed or Mov-
ing Boundaries,” Computational Mechanics, Vol.
17, pp. 374-391.

Grilli, S.T., Skourup, J., and Svendsen, I.A., 1989,
“An Efficient Boundary Element Method for Non-
linear Water Waves,” Engineering Analysis with
Boundary Elements, Vol. 6, No. 2, pp. 97-107.
Ikeda T., and Nakagawa N., 1997, “Non-Linear
Vibration of a Structure Caused by Water Slosh-
ing in a Rectangular Tank,” Journal of Sound and
Vibration, Vol. 201, No. 1, pp. 23-41.

Liu, Philip L.-F., Hsu, H.-W., and Lean Meng H.,
1992, “Applications of Boundary Integral Equa-
tion Methods for Two-Dimensional Non-Linear

18.

. Nakayama, T. and Washizu, K., 1981,

Water Wave Problems,” International Journal for
Numerical Methods in Fluids, Vol. 15, pp. 1119-
1141.

. Liu, Z., and Huang, Y., 1994, “A New Method

for Large Amplitude Sloshing Problems,” Jour-
nal of Sound and Vibration, Vol. 175, No. 2, pp.
185-195.

. Machane, R., and Canot, E., 1997, “High-Order

Schemes in Boundary Element Methods for Tran-
sient Non-Linear Free Surface Problems,” Inter-
national Journal for Numerical Methods in
Fluids, Vol. 24, pp. 1049-1072.

. Nakayama, T., 1990, “A Computational Method

for Simulating Transient Motions of An Incom-
pressible Inviscid Fluid with A Free Surface,” In-
ternational Journal for Numerical Methods in
Fluids, Vol. 10, pp. 683-695.

“The
Boundary Element Method Applied to the Analy-
sis of Two-Dimensional Nonlinear Sloshing
Problems,” International Journal for Numerical
Methods in Engineering, Vol. 17, pp. 1631-1646.
Velestos, A.S., 1984, “Seismic Response and De-
sign of Liquid Storage Tanks,” Guidelines for the
Seismic Design of Oil and Gas Pipeline Systems,
ASCE.

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.

Manuscript Received: Dec. 01, 1999
Revision Received: Jan. 29, 2000
and Accepted: Feb. 20, 2000

ER:2RTRENZMK P BEZ JEER

BRKTE 2

EHE(E?

BRE

BT EEAE R TIERR R
P BS AR RSN R TR

mE

FHRE BRI =ML TRIEHEMEE28 (Tuned Liquid Damper * S5
TLD ) ZAKMERZKTEH RN » NESHEES 2 FEARME I (sloshing ) 7T
o KR REAZMEATEE  BEZREHREER (Taylor series
expansion ) 1 Langrangian SRR G EAEE S TLD S ESSE H
VR R RS B BEE) o AR IS A= HEAE T R B A A S B - HEStE
S RRE KT HRENRE - PUBRIGRE & i R P I e T E A WO JES R0 7 o

BAGE : SBFTCHRE IR - B ERATAE S -



