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ABSTRACT

This expository paper is concerned with the direct integral for-
mulations for boundary value problems of the Helmholtz equation.
We discuss unique solvability for the corresponding boundary integral
equations and its relations to the interior eigenvalue problems of the
Laplacian. Based on the integral representations, we study the asymp-
totic behaviors of the solutions to the boundary value problems when
the wave number tends to zero. We arrive at the asymptotic expan-
sions for the solutions, and show that in all the cases, the leading terms
in the expansions are always the corresponding potentials for the
Laplacian. Our integral equation procedures developed here are gen-
eral enough and can be adapted for treating similar low frequency scat-
tering problems.

I. BOUNDARY VALUE PROBLEMS

Let Q be a bounded domain in IR", n=2, 3 with
a smooth boundary [ and Q“:=/R"\Q be its exterior
domain. We begin with the Helmholtz equation

Au+k’u=0 in Q (or Q°), N

where A=V? denotes the standard Laplace operator in
IR", n=2, 3. This equation arises in connection with
wave propagation. In acoustics, k:=w/c denotes the
complex wave number, and u corresponds to the
acoustic pressure field. Here @ and c¢ are the fre-
quency and the speed of sound. In order to avoid
resonance states, we assume that Im k20. We are

*Correspondence addressee

interested in the solution of Eq. (1), when the wave
number k is small, low frequency acoustics. We pre-
sent here some results concerning the low frequency
behavior of the solution of Eq. (1) developed in (Hsiao
and Wendland, 1987) and in recent work (Hsiao and
Wendland). These results are obtained by using
boundary integral equation methods. The solution be-
haviors depend on the specific boundary conditions
to be considered : the Dirichlet boundary condition

ulr=0, (2)
or the Neumann boundary condition:

W=y, 3)
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Here and in the sequel, d/dn always denotes the nor-
mal derivative with respect to the unit outward nor-
mal to I'. The functions ¢ and y are given data. In
acoustic scattering, Eq. (2) and Eq. (3) are the condi-
tions for modeling the situations for soft and hard
scatterers, respectively.

For the Eq. (1) in the exterior domain ¢, one
requires the so—called Sommerfeld radiation
conditions,

u(x)=0(|x|™"""%) and

() iku(e) = o x|, (4)

| x|
where i is the imaginary unit (see, e.g., (Colton and
Kress, 1983). These conditions select the outgoing
waves; they are needed for uniqueness of the exte-
rior Dirichlet and Neumann problems. The pointwise
condition (4) can be replaced by a more appropriate
and weaker version of the radiation condition given
by F.Rellich,

. . e, o P
ngnmJM:R Bﬁ()\)—zku ds =0. (5)

This form is to be used in the variational formulation
of exterior boundary value problems.

In this paper we are confined to the following
four classes of boundary value problems:

The interior Dirichlet problem (IDP), (1) in Q,
(2),

The exterior Dirichlet problem (EDP), (1) in Q°,
(2), 4),

The interior Neumann problem (INP), (1) in Q,
(3),

The exterior Neumann problem (ENP), (1) in Q°,
(3), (4.

In the next section, we consider the boundary poten-
tials associated with Eq. (1) and discuss the reduc-
tions of the these boundary value problems to bound-
ary integral equations. Section 3 contains four basic
boundary integral operators. We introduce the
Calderon projectors and give the basic mapping
properties. The solvabilities of the boundary inte-
gral equations will also be discussed. These are es-
sential and can serve as the mathematical foundations
for the boundary element methods. Our main results
concerning the low frequency behaviors of the solu-
tions to the boundary value problems are presented
in Section 4.

II. BOUNDARY INTEGRAL OPERATORS

To reduce the boundary value problems to

boundary integral equations, we begin with the Green
representation for the solution of Eq. (1)

" oE, (x,y
ur=2 [ Eytc ) Qhods, - [ w2 Das
r y

=4+ (VU0 Wou@)) for allx e {Q (6)
=T : k

ka” Q¢ ,

where the + sign corresponds to the interior and the
exterior domain, respectively. Here, V, and W, are
referred to as the single- and double- layer potentials,
and E;(x, y) is the fundamental solution of the
Helmholtz equation defined by

ﬁﬂg)(k‘ X~y I) in IR?,

Ek(x’ 'Y) = ikl X - \‘|
P e

€ R, )
47[’x—y|

where H{}? denotes the modified Bessel function of
the first kind. We note that for n=2, E;(x,y) has a

branch point for €€ k—0. In the representation for-

mula (6), the traces y* :=u*|; and o*i::g"—:ilr are the

Cauchy data of the solution u on I'. We have de-
noted by v* and v the restriction v from Q and Q°,
respectively. These Cauchy data are related by the
boundary integral equations:

Here V,, K}, K;, D, are the four basic boundary inte-
gral operators defined by

Viot) = [ Eytr, )otds,

K (i) = Jr a,%u(v)&(x V¥, ,

Kiow:= | 3000w vds,

D ey =~ 52| & uE,x, y)ds, .
<)o,

and these are the boundary potentials. The matrices
of boundary integral operators
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1, -
HATK £V,

C,= ,
¥l b, %IiKk

9)

are referred to as the Calderon projectors with re-
spect to the domain Q and Q¢ respectively. The
Calderon projector maps the Cauchy data into itself.
We note that the solution « in the domain Q (or Q°) is
completely determined from the representation Eq.
(6), provided one knows its Cauchy data on the bound-
ary I'. In the classical Holder function spaces, the
boundary integral operators in Eq. (9) have the map-
ping properties as follows.

Theorem 1.

Let ['e C? and O<ax<]1, a fixed constant. Then
the boundary integral operators in Eq. (9) define con-
tinuous mappings in the following spaces,

Vi CHT)—C"* (T,
Ky C*4(T)—C*%(I),
K;: CXT)—>C"¥(I),
D;: CHHT)—=CHTD).

Similar mapping properties are also available in the
Sobolev spaces (see, e.g., Hsiao and Wendland).

Theorem 2.
For Te C?, the following operators are continu-
ous for |s|<1/2:

Vit H™2(T)—H'"(D),
Ki: H'*(D)—H"(ID),

K H'2(D)—H"(D),
Dy: H"(T)—H™"(T").

We remark that for smooth boundary, I'e C™, the
above theorem remains valid for se IR , while for the
Lipschitz domain, Te C*', again |s|<1/2, but K, and
K, are only continuous as the mappings K;: H'>*(I")
—SH'"), and K,:,: H (D) H™'"?*(T) (see, e.g.,
Costabel, 1988).

III. EXCEPTIONAL OR IRREGULAR
FREQUENCIES

From Eq. (8) we see that the Cauchy data of a
solution of Eq. (1) in Q (or Q°) are related to each
other by two boundary integral equations. As is well

known, for regular elliptic boundary value problems
only half of the Cauchy data on I' is given. For the
remaining part, the two equations from Eq. (8) de-
fine an over determined system of boundary integral
equations which may be used for determining the
complete Cauchy data. In general, any combination
of them can serve as a boundary integral equation for
the missing part of the Cauchy data. Hence the re-
duction from a boundary value problem to a bound-
ary integral equation is by no means a unique process.
However, the so-called direct approach for formulat-
ing boundary integral equations becomes rather
simple, if one considers the Dirichlet or the Neumann
problem. Each one of the boundary integral equa-
tions in Eq. (8) can be employed for these problems.

For the interior and exterior Dirichlet problems,
(IDP) and (EDP),

U=@=ulr on T is given.

Here the missing Cauchy datum on T is 0'=g%|r.

Thus, for instance, we may use either the boundary
integral equation of the first kind

V,\.O'(x)=%(p(x)+1(,\.(p(x), xeT, (10)
or boundary integral equation of the second kind
(37 - KPot)=D (), xel (n

for the unknown o in case of (IDP). On the other
hand, for the Neumann Problems, (INP) and (ENP),

G=(p=g—f:|r on I' is given.

Here the missing Cauchy datum on T" is pu=u|r. Then,
for the (INP), the corresponding boundary integral
equations for the unknown y now read

D u(x)= (%1 ~Ky), xeT, (12)

G+ K Ju0) = V), xeT. (13)
We have collected all these formulations in the sec-
ond column in Table 1.

The unique solvability for these boundary inte-
gral equations is important. In particular, for k#0 and
for given @e C'**(T"), Eq. (10) is uniquely solvable
with oe C4T'), except for certain values of ke € which
are the so—called exceptional or irregular frequen-
cies of the boundary integral operator V. For any
irregular frequency ko, the operator V; has a non-
trivial null space ker Vi =span {opj}. The
eigensolutions oy; are related to the eigensolutions
ug; of the interior Dirichlet problem for the Laplacian,
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Table 1 Summary of the boundary integral equations for the Helmholtz equation and the related eigen-

value problems

Eigensolutions ug or u, Eigensolutions Solvability
BVP BIE for BVP and for BIE, oy, 0, or uy, u, Conditions
Exceptional values kg, k, for given @, y
(D) Vio =Gl +K g (Do):
IDP 1 ’ 2 : dity
2) (51 -Kp)o=D,p Augtkjug=0 in Q, Oo=, Ir - O,¢ds =0
) V,\,o:(—%/ +K ) uor=0 on T
EDP 1 -
2) (§I+Kk)0'=—Dkgo Vi o= onT None
(D) D= Gl =Ky (No):
INP T 5 )
(2) (EI+KI\)#=V/~W ALl|+k|LL1=0 in Q ,U|=Ll|lr onTl J‘rﬂll//(ls =0
, ou
(I)Dk,uz—(%I+Kk)y/ Silr=0on T
ENP iy
(2) GI-Kpu==-V,y (Do) Dy o=32 I None
—Auo=k(2)u0 in Q, which differs from Eq. (10) only by a sign in the
right—hand side. Hence, the exceptional values kg are
uor=0on T, (14) the same as for the interior Dirichlet problem, namely

according to

Moreover, the solutions are real-valued and

dim ker V, =dimension of the eigenspace of Eq.
(14).

As is known, the eigenvalue problem (14) admits de-
numerable infinitely many eigenvalues k(z),. They are
all real and have at most finite multiplicity. More-
over, they can be ordered according to size O<k(2),<k(2)2
<... and have +o0 as their only limit point. When kg
is an eigenvalue, Eq. (10) admits solutions in C*T)
if and only if the given boundary values ge C'*%(I")
satisfy the orthogonality conditions

ou
Jr Qo ds = .[r (paﬁ"ds =0 for all ope kerVy,. (15)

Correspondingly, for ge C'**(T), the boundary inte-
gral Eq. (10) has solutions oe C%T') if and only if
(15) is satisfied.

For the exterior Dirichlet problem (IDP), from
(8) again we obtain a boundary integral equation of
the first kind,

VkO'(x)=—%(p(x)+ K, (), xeT, (16)

the eigenvalues of (14). If k#kq, (16) is always
uniquely solvable for oe C*(T'), provided ge C'*%(T).
For k=ky, in contrast to (IDP), (EDP) remains uniquely
solvable. However, (16) now has eigensolutions, and
the right—hand side always satisfies the orthogonal-
ity conditions

_’_’\‘ el (_ %(p(x) + Kkoq)(x))o-o(—\'r)ds'\,

B J POt 700+ K oo0lds, =0

for all ope ker Vi,

since Oy is real valued and the single layer potential
Vi,00(x) vanishes identically for xe Q¢. The latter
implies

a’ilkaooo(A') =-doyw + K[ 0)=0 forxeT.

Accordingly, the representation formula (6) in Q¢ with
wr=¢ and g%h-:O' will generate a unique solution for

any o solving Eq. (16).

The relations between the eigensolutions of the
BIEs and the interior eigenvalue problems of the
Laplacian are given explicitly in column three of
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Table 1. We observe that for the exterior boundary
value problems the exceptional values ko and k| of
the corresponding boundary integral operators depend
on the type of boundary integral equations derived
by the direct formulation. For instance, we see that
for (EDP), kg are the exceptional values for V, whereas
k, are those for (LI + K,:.).

It is worth “mentioning that for the exterior
boundary value problems, the solvability conditions
of the corresponding (BIE) at the exceptional values
are always satisfied due to the special forms of the
corresponding right-hand sides. For the indirect
approach, this is not the case anymore (see, e.g.,
Colton and Kress, 1983). There are various ways
to modify the boundary integral equations so that
some of the exceptional values will not belong to
the spectrum of the boundary integral operator
anymore. In this connection, we refer to (Brakhage
and Werner, 1965; Burton and Miller, 1971) and the
recent work (Chen, 1998; Chen and Kuo, 2000), to
name a few.

IV. LOW FREQUENCY BEHAVIOR

Of particular interest is the case k—0 which cor-
responds to low—frequency behavior. This case
also determines the large—time behavior of the solu-
tion to time—dependent problems if Eq. (1) is obtained
from the wave equation by the Fourier—Laplace
transfor-mation. As will be seen, some of the bound-
ary value problems will exhibit a singular behavior
for k—0.

The singular behavior can be obtained from
the explicit asymptotic expansions of the boundary
integral equations in Table 1. The latter then fol-
lows directly from the series development of the
fundamental solutions and their derivatives. To il-
lustrate the idea, let us consider the fundamental so-
lution Ex(x, y) in Eq. (7) for n=2. We see that for
small kr

E ()= LH k) = E(x, y)= 5-Gog k + 79+ 8,05, ).
(17)
Here
y=—Liog|x—y
E(x:))_ 2ﬂ]0g"x Y |

denotes the fundamental solution for the 2-dimen-
sional Laplace equation,

y0=c0—10g2—i% with ¢=0.5772, Euler’s
constant,

and

S (6, y)= %Hi,')(kr) + ﬁ(log k) + %)
= Llogtn E a, "+ I b, )"},
2r m=1 m=1

(_])I” l l
= by=(p-1-5-- - R

As can be seen from the above expansions, the term
log k appears in Eq. (17) explicitly which shows that
V. is a singular perturbation of V (the corresponding
boundary integral operator V, with E, replaced by E).
We have shown in (Hsiao and Wendland) that the
other boundary integral operators are regular pertur-
bations of the corresponding operators of the
Laplacian.

In the following let us consider the analysis for
the integral equation of the first kind Eq. (10) for
(IDP). From (17), we see that

Vo+w+Skcr=%(p+K(p+Rk(p (18)
with
—— 1 ane
w= 2,r(lobk + yo)fr ods . (19)

Here
Ko= L H%E(x, VPOMs,

is the corresponding double-layer boundary integral
operator for the Laplacian and R,¢:=(K,~K) ¢. The
right hand side of Eq. (18) is bounded. This suggests
that the solution of Egs. (18) and (19) can be decom-
posed in the form of an asymptotic expansion,

o=0+a,k)o,+ 0y,
w=0+ 0,k + 0, (20)

where the leading terms &, @ correspond to bound-
ary densities from the Laplacian and satisfy the sys-
tem (Hsiao and MacCamy, 1973; Hsiao and
Wendland, 1977)

Ve +d=Lp+Ke andJ Gds =0 Q1)
T

with
w=0.

The first perturbation terms G,, @, are independent
of k with the coefficient o;(k)=0(1) as k—0. The re-
mainders Of, wg are of order o(o(k)). To construct
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Table 2 Low Frequency characteristics

BVP Clx; k) R(x; k) n
O((k log k)?) n=2
IDP 0 0(k?) n=3
-® O((k log k) n=2
EDP ; .
—k{Vo‘,(x)+Efr ods} O(k%) -~ n=3
L1 eo ! 1 2 _
- {F ‘EJQ loclx—) ’dy}@fr wds O(Kk* log k) n=2
INP l . | |
—{=+-— dy ~—[ 1 o(k? =3
{kZ 471',‘52’)(—)}‘ ) }’Q}FW(S ( ) "
1 ' 2 -
271/_(logk + yﬂ).‘r wds O((k log k)°) n=2
ENP
_ ik 2 _
an: wds O(k%) n=3

o, and o, we employ Eq. (18) with Egs. (19) and
(20). As k—0 we arrive at

J Gds=1, (22)
]

where we appended the last normalizing condition for
0, in order to obtain the nontrivial solution pair &,,
5)1. However if we insert Eq. (20) into Eq. (19) with

=0, then from [ ods =0, and [ ods=1, we see
Jr

that T
-1

o, (k)= =
! { | +27@,(logk + ¥) ™'

}(J'r Opds — wg)=0(0p) .

Hence, without loss of generality, we may set o (k)
=0 in (20). Now from (18) and (19) with (20) this
leads to the equations for the remainder terms oy,
Wp:

Vo, +wy+5,0,=R,¢-S,0,
j Opds +2nlogk + ¥ 'wp =0, (23)
r

which can be solved by the regular perturbation
techniques.

By substituting the boundary densities into the
representation formula (6), we obtain the asymptotic
behavior of the solutions to the BVPs for small k. In
all the cases, we arrive at the following asymptotic
expression

ux)=x[Vox)- Wu@x)] + C(x; k) + R(x; k), (24)

where the + sign corresponds to the interior and ex-
terior domain and xe Q or Q¢ as in (6). For the
Dirichlet problems, ﬁlr =¢ and for the Neumann
problems, 6” = on I are the given boundary data,
respectively, whereas the missing densities are the
solutions of the corresponding BIEs presented above.
In Formula (24), C(x; k) denotes the lowest order of
perturbation terms in Q or Q¢, whereas R(x; k) de-
notes the remaining boundary potentials. The behav-
ior of both for k—0 is summarized in Table 2 above.
The remainders R(x; k) are of the orders as shown in
the table, uniformly in xe Q for the interior problems
and in compact subsets of Q¢ only, for the exterior
problems. It should be mentioned that not all our re-
sults presented in Table 2 are new. Some similar re-
sults obtained by other methods are also available.
In this connection, we refer in particular to the work
(MacCamy, 1965; 1997).
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