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ABSTRACT

Random coefficients in partial differential equations and bound-
ary conditions pose a computational challenge. The stochastic finite
element formulation is involved because the Tatarski convection like
terms must be captured via stochastic strain-displacement matrices.
Once the stochastic Green’s Function is obtained, standard packages
for boundary element analysis, e.g., BEASY, can be employed. Here,
for random constitutive properties, a stationary iteration scheme is dem-
onstrated via Fourier transform of distributions. The deterministic
Green’s function associated with a uniform medium provides the kernel.
There is no such analog for stochastic finite elements. In a current
bio-engineering stress analysis program a computer algebra
environment, viz. Mathematica, is used to approximate stochastic

Green’s Functions.

I. INTRODUCTION

Constitutive properties of engineering materi-
als cannot be described in exact terms. Fig. 1 shows
a typical two-dimensional percentage-variations of
the shear modulus, 4, of a thin elastic plate with non-
dimension thickness h=.01. These uncertainties in-
fluence the overall performance in design-analysis.
Even for a deterministic case an exact closed-form
solution is intractable due to the complexity of the
geometry or constitutive inhomogeneity. Numerical
techniques such as stochastic boundary element and
stochastic finite element methods have been
developed, as natural extensions of the conventional
boundary element and finite element methods,
respectively, when randomness occurs.

Strategies to consider randomness can be clas-
sified as follows:

(i) random forces: a deterministic system sub-
jected to nondeterministic forces;

(ii) system stochasticity: a nondeterministic
system under deterministic loads;

This paper focuses on the latter. A combination of
the above two cases involves technical as opposed to

conceptual difficulties of formulation and numerical
computation in stochastic mechanics problems of
solid/fluid.

It is now possible to carry out, rather
inexpensively, a large scale thermomechanical bound-
ary element simulation. Techniques of probabilistic
analysis and statistical computation are invoked to
model realistic engineering systems. This paper is
motivated by the following historical milestones.

The perturbation scheme, vide (Nayfeh, 1973),
occasioned the original design of computer algebra
systems, utilized in the early 60’s to carry out steps
of lengthy algebraic expressions. With the develop-
ment of the programming languages particularly
suited to computer algebra, even a second order ex-
pansion can be automated rather easily with a short
code.

A Monte Carlo implementation was demon-
strated to be effective by Astill et al., (1972) to study
the failure of concrete cylinders under impact loading.
Since each sample was separately discretized and in-
dependently computed, the overall statistical results
were acceptable. However, the numerical efficiency
was questionable.
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Fig. 1 Observed random variation for the shear modulus
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Fig. 2 Simulated random variation for the shear modulus

Nakagiri and Hisada (1980). published
perturbation finite element methods 1o solve problems
with “small™ statistical variabilities. Their technique
demands factorization of the reference stiffness ma-
trix only once to compulte statistical moments of any
order.

The pioneering work of Keller and his
associates. vide references (Keller, 1962: 1964; Keller
and Mc¢ Kean, 1973), provides a foundation for esti-
mating the mean stochastic operator. In addition to
analytical work. they elaborated upon the Monte Carlo
stimulation technique. method of statistical moments
and smoothing schemes. Sobczyvk (1985; 1991) in
two books utilized those mathematical formulations
and furnished a basic methodology suitable 1o develop
stochastic finite/boundary elements.

The principal issues of probabilistic computa-
rion related 1o the stochastic finite and boundary ele-
ments share a number of strikingly similar common
grounds. In boundary elements. one needs stochas-
tic Green’s Functions to construct system matrices:
|G and [H] in [G]{2)=|H|{i#]. where [£] and [if] are.
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Fig. 3 Smoothed vandom Held

respectively, stachastic traction and stochastic dis-
placement vectors. Correspondingly. to capture the
effects of material stochasticity. in finite elements
stochasite shape functions. vide reference (Dasgupta
and Yip. 1989). musi be first obtained, Subsequently,
the stochastic strain-displacement relation |I}[ for a
given stochastic constitutive spatial variation ||
should be computed without contaminating static
equilibrium conditions

Based on analytical results. the author in refer-
ence (Dasgupta, 1987) illustrated schemes to estimate
mean, standard deviation and covariance matrix of
responses when the constitutive vartables form a cor-
related stochastic field. Foundation-structure inter-
action problems. in reference (Gyebi and Dasgupta,
1992). where random soil properties should be
considered, initiated the research. The pointwise
observed random field data is approximated by a spa-
tial correlation function, vide Figs. 2 and 3. The con-
tour plot is in Fig. 4. The interpolated function is
used in the numerical simulation of random fields

In general. random coefficients in partial dif-
ferential equations, which govern the responses ol
stochastic thermo-mechanical systems, demand
unconventional computational wools. This paper ad-
dresses system stochasticity originating from non-
deterministic distribution of material properties in
computer algebra environment. In particular. the run-
domness of constitutive variables related o poten-
tia energy is considered in an efficient boundary el-
ement setting.

A concurrent investigation analyzes an advanced
algorithm for self-adjoint problems of mathema-
tical physics as a special case. The required Stochas-
tic Green's Functions are constructed from the
corresponding Green's Functions related to uniform
material properties. Here stationary ileration on the
deterministic operator (after “invertion’) guarantee
the accuracy of the boundary element method for all
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Fig. 4 Comours of smoothed sumulated field

samples. The resulting stochastic Green's Functions
can be easily incorporated in computer codes. e.g..
BEASY, reference (BEASY, 1998). Use of a sym-
bolic program, viz.. Mathemuarica. enhanced the pro-
posed formulation.

1. Green’s Function vis a vis Shape Function

Finite element formulations incur various sec-
ond order and, in many cases. even first order nu-
merical error. For example. mcompressible cases and
tailure in simultaneous patch and zero-locking test
can be cited. Additionally in a stochastic linite ele-
ment formulation the convection like terms, Tollow-
ing Tatarski’s wave consideration, vide references
(Molyneux. 1968: Tatarski. 1961: Whitham, 1974),
must be captured via stochastic strain-displacement
matrices arising out of stochastic shape functions.
The boundary element procedure. assisted by sym-
bolic formulation using computer algebra. circum-
vents such deficiencies,

The relative merit of the stochastic boundary
element formulation via stochastic Green's Function
in comparison with the stochastic linite element
method needs to be examined. An estimation of the
stochastic strain-displacement transformation matrix
[B] via stochastic shape functions in reference
(Dasgupta and Yip. 1989) is computationally
expensive. This is economized in a lixed-mesh fi-
nite element by essentially capturing the secondary
order effects of randomness.

In a Monte Carlo computation. afl samples
should have the same order of error out of [B] to pre-
serve the quality of the siress field. The conventional
ad hoc approximate procedure of using the determin-
istic element-SUBROUTINE. without considering
stochastic shape functions, leads to the approximate

Elasto-plastic Stress Distribution
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Fig. 5 Beta distribution of responses

stochastic stiffness matrix [A7" |=]| [B] [DIBWQ in
JL2

terms of the sample constitutive lield |!5]. On the
other hand, the thybrid) stress equilibrium statement,
vide reference (Dasgupta, 1987), vields [D||B]=[D]|B]

and leads o [N = | [BIIAPUD] "|IDNBKS .
L)

2. Current Application

The stochastic boundary element method is em-
ploved for analyzing biological objects with random
material properties. In his on-going research, the
author is using an “operator expansion” technique 1o
analyze thin elastic plate. refer to (Camp and Gipson,
1990), and shell problems with random moduli. Al-
gebraic formulation is suitable for such cases, par-
ticularly when lengthy governing differential
equations are encountered. For severe [luctuations
of the random field. a collection of one hundred Monte
Carlo boundary element solutions will be curve fit-
ted to construct f-like distributions as shown in Fig.
I,

In this paper we focus on randomness in
material properties: not shown here are the cases of
stochastic boundary geometry. which can be formu-
lated very conventiently by stochastic boundary
elements as well. A number of available methods in
the literature dealing with random vibration can
analyze effects of random loading. In practical
applications. stochastic computation not only fur-
nishes a design tool but also paves the way to de-
velop future computer soft/hardware technology.
Currently. large scale personal computing is viable
in everyday design-analysis using the boundary ele-
ment method.

The highly parallel nature of convolutions of
Green's functions with loading distributions encour-
ages the development of computers with massive
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parallel processing capabilities. At the level of con-
cept development, FORTRAN and C are not suitable
for rapid prototyping. Symbolic computing, also
known as computer algebra, proves to be handy and
practical. Here the major concern is that all such lan-
guages are cryptic and require considerable effort to
produce results. However, the long term research
benefit of learning a symbolic computing language
is extremely valuable.

Material stochasticity gives rise to a second or-
der effect. This demands a better computing envi-
ronment than that of the deterministic counterpart,
where the interest is to capture the dominant first or-
der responses. computer algebra can be employed in
all steps to guarantee a uniform accuracy in evaluat-
ing the statistical moments for skewness and curtosis.
A typical bioengineering result from a probabilistic
analysis of a thin shell to depict a skull is cited in
Fig. 5.

II. DEVIATOR FORM

The stochastic operator 7 is a deviation from the
deterministic datum L’

I=r’+Z-1" (1)

The solution for £’ the operator for a uniform mate-
rial property, is first obtained as G” according to a
standard method. Hence,

[£7]Gg°=6 and [G= 0 (2)

With an initial guess G, a correction term AG"

emerges from:

[@g" "= 116" (3)
which is written in the incremental form:

[+ @~ G +85") = 16" )

so that

=i +1)

G

=G"+A5"” is an improvement on G

(5)

A main restriction in the proposed formulation
is that the term: (Z— L”)A@m contributes only to sec-
ond order effects.

The first order approximation from the expan-
sion of Eq. (4):

[L(z]'G(i) + l(z_ L(J)]‘g(i) + [L('IA'GU) + [(z_ LI))JA"G(I')

=[£1g’ (6)

becomes: [£/1G" + [(Z- LG +[£71A5" = [£16°  (7)
Consequently, the corrector AG" is estimated to be:
AG=- @G- -1 @ 15" (8)

This convolution is accelerated by Fourier transfor-
mation of distributions. Mathematica can carry out
the required closed-form analytical calculations. An
analytical example in one spatial variable is included
in this paper. Application of the results from the
aforementioned iterations for thermo-mechanical
boundary elements is summarized below.

Recall that the deterministic Green’s function
G’ solves the homogeneous continua governed by £°.
In the convolution form the iterated stochastic Green’s
function for the stochastic operator Z, from Eq. (8),
becomes:

AG ) =-Gm- )
- | g alonas - o oas o

This strategy of stationary iteration with G° has
been applied successfully for inhomogeneous con-
tinua in references (Dasgupta, 1989; 1992). In
thermo-mechanical problems the response vector {v }
houses the displacement vector i and the tempera-
ture 7, and is governed by:

LV} = {6} where Z= S b and {\7}={Lz} (10)
| L1 Lo r

The nondeterministic field operator is decom-
posed such that the stochastic part £* is isolated ac-
cording to the following scheme:

- " L, 0
Z=2+ " where £=| ' | and
U
L 7
A (1
Ly Ly

An existing boundary element code, which
solves the steady vibration problems, and the tem-
perature problems separately will have the modules
to generate and use the boundary element system
matrices related to £}, and £3,. The aforementioned
decomposition in Eqgs. (10 and 11) accelerates the sta-
tionary iteration in a stochastic boundary element
formulation as indicated in the bibliography of refer-
ence (Dasgupta, 1992).
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Green’s function for homogeneous media

Fig. 6 Original green’s function

III. AN ANALYTICAL EXAMPLE

The computer algebra program Mathematica
was employed to obtain closed-form expressions pre-
sented in this section. Fourier Transform, an add-on
package, was extensively used. The transformations
of distributions in the weak sense were carried out
analytically without approximation. A canonical one-
dimensional problem of spatial variability highlight-
ing material randomness is illustrated below.

Consider a canonical Helmholtz operator £°:

P

0 l-
=4 12
dx? (12)
The Green’s function G°, such that:
[L'(x0)]G (x)=6(x) (13)

is, vide a standard reference (Stackgold, 1979), in the
singular distribution form, see Fig. 6:

G°() = gsin( x ) (14)

Let us consider a single stochastic variable € associ-
ated with a spatial variability function a(x). The in-
homogeneous (self-adjoint Helmholtz) equation
becomes:

7= (1 + &) 4
L=+ ()7 + 1 (15)

An example of a cosine-spatial variability for a(x)
leads to:

2
Ty =1 - &sin(r)d + (1 + &costr)y L (16)

dx dx?
Using Eq. (14) as the starting function according to
Eq. (9) the first correction term for the Green’s

function, shown in Fig. 7 becomes:

85" =~ Ssin x|+ sin ) (1

o3l

Fig. 7 Second term-(coefficient of €)
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Fig. 8 Third term-(coefficient of &2

Mathematica in an Apple 233MHz machine
took ‘47.5833 Second’ for the result. In the second
iteration the starting value was:

gV = %sin(| x|)- é(sindx D+ sin(| x )) (18)

Now the second deviator from Eqgs. (9) and (18),
shown in Fig. 8 was calculated to be:

AG? = %(1 2] x [cos(x) + 17sin( x |) + 8sin(2| x |)
+9sin(3| x ) (19

Mathematica took ‘98.2667 Second’ (at
233MHz) to implement an analytical code based on
The FourierTransform add-on package.

The Mathematica calculation was carried out to
the third iteration to capture & terms. This step was
initialized with:

-G(Z) - ~g(|) + AEQ) = %sin(| X |) - g(sind X |) + sin(2| X |))
+ ]6T-4(1 2| x |cos(x) + 17sin( x [) + 8sin(2| x [) + 9sin@3| x |)

(20)
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Fig. 9 Fourth term-(coefficient of &%)

The third order improvement for the Green’s
function, which is associated with the & (the n” cor-
rection contains €"), shown in Fig. 9 is obtained as:

AGY = (60[ |cos(x) + 60| x [cos(2x) + 149sin( x |)

2]60

+230sin(2| x |) + 45sin(3| x |) + S4sin@

) @D

X
This computation took ‘240.667 Second’ (at
233MHz). Finally, the three term approximation G
in:

EL( + @a(yhy + 11500 = 860) (22)

becomes:

g(3)(x) —sm(| ‘)——(sm([ |)+sm(2‘ |))

(l2|x|cos(x)+l7sm(| ) + 8sin(2| x [+ 9sin(3| x |))

" 144
*516 0(60} x |cos(x) + 60 | x |cos(2x) + 149sin(|x |)
+230sin(2| x |) + 45sin(3| x |) + S4sin(@| x ) (23)

The results are summarized in Figs. 10 and 11.
IV. CONCLUSIONS

Stochastic computations have been designed to
capture higher order effects for accurate depiction of
covariance features of responses. A natural defini-
tion of ‘stochastic nonlinearity’ emerged where ‘large
variability’ causes the perturbation method to diverge.
Monte Carlo procedure remains as the only choice
for stochastic nonlinear systems, where the material
variability results in substantial standard deviation in
solutions. The stochastic Green’s Function developed
in this paper is useful for the entire spectrum of
randomness, where only the stochastic boundary

Fluctuation of the random field
above the homogeneous mean

Fig. 10 Spatially correlated randon field
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Fig. 11 Effects of stochasticity for green’s function

element method furnishes a consistent solution
procedure.

The stochastic stram displacement trans-
formation, i.e., [B]=[D} [DJ[B] must be used in high
accuracy stochastic finite element computer
programs. The computer code development chore is
quite substantial. The proposed methodology of us-
ing stochastic Green’s Function in a stochastic bound-
ary element is devoid of this additional effort.

Using Mathematica random field and random
responses are constructed by smoothing algebraic
interpolants acting upon discrete field obtained from
random number generator, vide Figs. 2, 3 and 4. The
most challenging task is to obtain a stochastic Green’s
function such that the accuracy does not vary from
sample to sample in a Monte Carlo simulation.
Algebraic, not FORTRAN or C style numeric, com-
puter programs thus become very practical, as dem-
onstrated here. Incompressible formulation with the

Poisson’s ratio v=§ entails lengthy algebraic

expressions. The additional consideration of the sto-
chastic shear modulus 7 does not add significant
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coding chores. Implementation of computer algebra
in stochastic computation can thus be observed to be
a very powerful tool.

The stationary iteration, demonstrated in this
paper with an example, exhibits the usefulness of
computer algebra programs in formulating stochastic
Green’s Functions. The implementation of Fourier
transform in the weak sense of distribution is straight
forward. Especially, in the computer mathematics
environment Mathematica a package FourierTrans-
form can elegantly carry out the required steps.
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NOMENCLATURE

h plate thickness

X,y coordinate axes

[§] stochastic strain-displacement matrix

[D] stochastic constitutive matrix

31, [H] stochastic boundary element matrices

G’ Green’s function for homogeneous media
[K] finite element stiffness matrix

linear operator

stochastic linear operator

linear operator for homogeneous media
matrix transpose indicator

stochastic boundary element displacement

B
=

reek Symbols

probability distribution

Dirac’s delta

increment indicator

stochastic parameter

shear modulus

Poisson’s ratio

integration variables

domain

stochastic boundary element traction
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