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STATIC AND DYNAMIC ANALYSIS OF 2-D FUNCTIONALLY

GRADED ELASTICITY BY USING MESHLESS LOCAL

PETROV-GALERKIN METHOD
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ABSTRACT

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG)
method are presented for static deformations, free and forced vibrations of a function-
ally graded (FG) cantilever beam.  The MLPG method is a truly meshless approach,
as it does not need any background mesh for integration in the weak form.  In this
MLPG method, an orthogonal transformation technique is used to enforce nodal vari-
ables directly in the essential boundary areas, and the test function is chosen to equal
the weight function of the moving least squares approximation.  The cantilever beam,
made of two isotropic constituents, is assumed to be macroscopically isotropic and to
have a power-law variation proportional to the volume fractions of the constituents in
the thickness and the longitudinal directions.  Effective material moduli at a material
point are computed with the Mori-Tanaka homogenization technique.  Computed re-
sults for static, free and forced vibration analyses are found to agree well with their
corresponding finite element solutions.  Different volume fractions of material con-
stituents on the performance and response of FG beams are also investigated.
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I. INTRODUCTION

Functionally graded materials (FGMs) are a new
class of advanced composite materials wherein the
composition of each material constituent varies gradu-
ally with respect to spatial coordinates.  FGMs pos-
sess continuously and smoothly varying material
properties, and this distinguishes FGMs from lami-
nated composite materials in which the abrupt change
in material properties across the interfaces between
layers can result in large interlaminar stresses lead-
ing to delamination.  The materials are made to uti-
lize desirable properties of their individual con-
stituents.  For example, thermal protection plate struc-
tures made of a two-phase ceramic/metal function-
ally graded composite provide heat and corrosion

resistance on the ceramic-rich surface while maintain-
ing structural strength and stiffness provided by the
metal-rich surface.  Moreover, FGMs allow for tai-
loring the volume fractions of two or more constitu-
ents to optimize the performance of structures.  If prop-
erly designed, FGMs can offer various advantages such
as reduction of thermal stresses, minimization of stress
concentration or intensity factors and attenuation of
stress waves.  As such, FGMs have gained widespread
uses in a different range of engineering components
or systems where typical applications are aircraft fu-
selages in the aerospace industry, rocking-motor cas-
ings in the military industry, packaging materials in
the microelectronic industry, engine components in
the automotive industry, human implants in the bio-
medical industry and so on.  A comprehensive review
of design, processing, and modeling as well as appli-
cations of FGMs can be found in books by Suresh
and Mortensen (1998), and by Miyamoto et al. (1999).

Several analytical solutions have been presented
for the analysis of functionally graded (FG) structures.
Delale and Erdogan (1983) derived the crack-tip stress
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fields for an inhomogeneous solid under mechanical
load by assuming the shear modulus varying with an
exponential function.  Noda and Jin (1993) computed
the steady thermal stress intensity factor (TSIF) for
inhomogeneous materials with exponential variations
of thermal properties.  Jin and Noda (1994) also cal-
culated the TSIF under transient thermal loading. Jin
and Batra (1996) used the two-dimensional (2-D)
thermoelasticity theory to study fracture characteris-
tics at a crack tip in an FG plate.  Sankar (2001) pro-
posed an elasticity solution for an FG beam in which
the Young’s modulus is assumed by the exponent
function along the thickness.  Tarn (2001) developed
an exact solution for an FG anisotropic cylinder where
the temperature distribution, deformations and stress
fields are determined with power-law variations of
thermoelastic constants.  Deformations of FG plates
have also been conducted by higher-order plate
theories. Reddy (2000) presented solutions for rect-
angular FG plates based on the third-order shear de-
formation theory (TSDT).  Cheng and Batra (2000)
have related deflections of a simply supported func-
tionally graded polygonal plate given by a TSDT and
the first-order shear deformation theory (FSDT) to
that of an equivalent homogeneous Kirchhoff plate.
Vel and Batra (2002) provided an exact solution for
the three-dimensional thermoelastic deformations of
a simply supported FG plate with a power-law varia-
tion of the volume fractions of the constituents
through the thickness.

Although analytical approaches provide closed-
form solutions, they are limited to simple geometries,
certain types of gradation of material properties (e.g.
exponential or power-law distribution), specific types
of boundary conditions (e.g. simple support) and spe-
cial loading cases (e.g. sinusoidal loading).

In recent years, the meshless method has
emerged as an effective numerical approach to find
solutions of initial-boundary-value problems.  The
feature of this method is that only a set of scattered
nodes is required in the physical domain to approxi-
mate solutions and nodes need not be connected to
form closed polygons.  In contrast to the finite ele-
ment method (FEM), the meshless method can save
the pre-processing work of mesh generation, as no
element is required in the entire model.  Besides, the
computed stresses and strains are smooth without
using any post-processing technique.   More
importantly, the material variation in FGMs can be
captured at the level of the integration points whereas
the conventional FEM treats inhomogeneous materi-
als as numerous homogeneous elements and thereby
a very fine mesh is required in the analysis of FGMs.
A variety of different meshless methods have been
proposed in the past few years such as the Diffuse
Element Method (DEM) (Nayroles et al., 1992), the

Element-Free Galerkin (EFG) method (Belytschko et
al., 1994), the Hp-Clouds (Duarte and Oden, 1996),
the Reproducing Kernel Particle Method (RKPM)
(Liu et al., 1995), the Partition of Unity Finite Ele-
ment Method (PUFEM) (Melenk and Babuska, 1996),
and the Meshless Local Petrov-Galerkin (MLPG)
method (Atluri and Zhu, 1998).  The major differ-
ence among these methods lies in the interpolation
techniques.  We refer the reader to the work by
Belytschko et al. (1996), and Atluri et al. (1999) for
a review about the similarities and differences in vari-
ous meshless methods.

The MLPG method is one of the meshless
schemes.  The main advantage of this method com-
pared with other meshless methods is that no back-
ground mesh is used to evaluate various integrals
appearing in the local weak formulation of a problem.
Therefore, this method is a “truly meshless” approach
in terms of both interpolation of variables and inte-
gration of energy.  The MLPG method has been dem-
onstrated to be quite successful in solving different
branches of initial-boundary-value problems.  The
recent developments in the MLPG method include the
following: Atluri and Zhu (2000) solved elastostatic
problems, Lin and Atluri (2000) introduced the
upwinding scheme to analyze steady state convection-
diffusion problems, and Liu and Gu (2000) coupled
the MLPG method with either the finite element or
the boundary element method to enhance the effi-
ciency of the MLPG method.  Ching and Batra (2001)
augmented the polynomial basis functions with sin-
gular fields to determine deformations and stress
fields near the crack tip for general 2-D mixed-mode
problems.  Gu and Liu (2001a) and Batra and Ching
(2002) used the Newmark family of methods to ana-
lyze 2-D transient elastodynamic problems.  The
bending of a thin plate has been studied by Gu and
Liu (2001b) and Long and Atluri (2002).  By utiliz-
ing the radial basis functions in the MLPG method,
Liu and Gu (2001) developed a local radial point in-
terpolation method (LRPIM) for free vibration analy-
ses of 2-D solids; the shape functions derived by the
LRPIM possess delta function property.  Warlock et
al. (2002) scrutinized deformations of a material com-
pressed in a rough rectangular cavity.  More recently,
Qian et al. (2003a,b) combined the MLPG method
with a higher-order shear and normal deformable
theory to analyze static deformations, free and forced
vibrations of a thick rectangular plate.  They also de-
lineated the effect of different parameters on the qual-
ity of the MLPG solutions.

The objective of this paper is to present a nu-
merical solution for static and dynamic deformations
of FG elastic beams using the MLPG method.  In
Section II, basic governing equations are proposed
and their weak formulations are derived.  Section III
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gives the numerical implementation of the MLPG
method including the moving least squares (MLS)
approximation, the semidiscrete governing equations,
the imposition of essential boundary conditions and
the time integration scheme.  Estimation of effective
material moduli by the Mori-Tanaka method is
described.  Results for static analysis, free and forced
vibration analyses of a FG cantilever beam are re-
ported in Section IV.  Finally, conclusions are sum-
marized in Section V.

II. FORMULATION OF THE PROBLEM

For a 2-D solid occupying the domain Ω bounded
by Γ in the rectangular Cartesian coordinate x={x, y}T,
the governing equations, neglecting body forces, for
the small displacement elastodynamics are given as

    ∇ ⋅ σσ = ρu  in  Ω×[0, t] (1)

where σσ  is the stress tensor which corresponds to the
displacement field u={u, v}T; ∇  is the gradient op-
erator defined by ∇ ={∂/∂x, ∂/∂y}T; ρ is the mass
density, u  the acceleration and t the time.  Eq. (1) is
supplemented with the following initial conditions:

u(x, 0)=u0(x)  in Ω (2a)

u(x, 0)=u0(x)  in Ω (2b)

and boundary conditions:

u=  u  on Γu×[0, t] (3a)

σσn=  t  on Γ t×[0, t] (3b)

where u0(x), u0(x),  u , and  t  denote initial displace-
ments, initial velocities, prescribed displacements and
tractions, respectively, and n is the unit outward nor-
mal to Ω.

Let u={u , v }T be two linearly independent func-
tions defined on Ω.  Multiplication of Eq. (1) express-
ing the balance of linear momentum in the x and y
directions by u  and v  respectively, addition of the
resulting two equations and use of the divergence
theorem and boundary conditions (3b) give

       εε TσσdΩ
Ω

– uTσσndΓ
Γu

– uT t dΓ
Γ t

    + ρuTudΩ
Ω

= 0 (4)

Equation (4) is the weak form associated with Eq.
(1) and (3a).  The constitutive equation at a material
point is

σσ={σxx  σyy  σxy}
T=Dεε (5)

where D, the matrix of elastic constants, is a func-
tion of space coordinates x.  For a 2-D isotropic solid
in the plane stress state, D is given by

   
D = E (x)

1 – v (x)2

1 v (x) 0
v (x) 1 0

0 0 (1 – v (x))/2
(6)

and the strain-displacement relationship is

       

εε =
εxx

εyy

εxy

=

∂u(x)
∂x

∂v(x)
∂y

∂v(x)
∂x + ∂u(x)

∂y

(7)

εε  in Eq. (4) takes the same form as in Eq. (7) with
the displacement components u={u, v}T replaced by
u={u , v }T.

III. IMPLEMENTATION OF THE MLPG
METHOD

1. Brief Description of the MLS Approximation

In the MLPG method, the basis functions φI(x)
of the unknown trial function are found by the mov-
ing least squares (MLS) approximation; see Lancaster
and Sallauska (1981) for details.  For the sake of
completeness, we briefly describe below the MLS
approximation.  Let f(x, t) be a scalar valued func-
tion defined on Sα; f can be identified with one of the
displacements u or v.  The approximation f h(x, h) of
f is assumed by

    f h(x, t) = pT(x)a(x, t) = pJ(x)aJ(x, t)Σ
J = 1

m
(8)

where pT(x, y)=[p1(x), p2(x), ..., pm(x)] is a vector of
the complete monomial basis of order m.  Examples
of pT(x) in a 2-D problem are:

pT(x)={1, x, y} for linear basis, m=3 (9a)

pT(x)={1, x, y, x2, xy, y2} for quadratic basis,

m=6 (9b)

The m unknown coefficients aJ(x, t) are determined by
minimizing a weighted discrete L2 norm defined as:

    J = W(x – x I)[pT(x I)a(x, t) – fI(t)]
2Σ

I = 1

n
 (10)

Here fI  is the fictitious value at time t of the function
f at point x=xI, and n is the number of points in the
neighborhood of x for which the weight functions
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W(x−xI)>0.  We choose the following fourth-order
spline function to be the weight function:

   W(x – x I)

0≤dI≤rI

=

  
1 – 6(

dI
rI

)2 + 8(
dI
rI

)3 – 3(
dI
rI

)4

0
, (11)

dI≥rI

where dI=|x−xI| is the distance between points x and
xI, and rI is the radius of the circle outside of which
W(x−xI) vanishes.  rI is called the support of the
weight function.

Finding the extremum of J(x) in Eq. (10) with
respect to a(x, t) leads to the following system of lin-
ear equation for the determination of a(x, t):

   A(x)a(x, t) = B(x) f (t) (12)

where

    A(x) = W(x – x I)p(x I)pT(x I)Σ
I = 1

n
(13a)

B(x)=[W(x−x1)p(x1), W(x−x2)p(x2), ...,

W(x−xn)p(xn)] (13b)

Solving a(x, t) from Eq. (12) and substituting it into
Eq. (8), we have the following relation for nodal in-
terpolation

    f h(x, t) = φI(x) fI(t)Σ
I = 1

n
(14)

where

    φI(x) = pJ(x)[A– 1(x)B(x)] JIΣ
J = 1

m
(15)

φI(x) is usually called the basis function of the MLS
approximation corresponding to node I.  Note that
φI(xJ) need not equal the Kronecker delta δIJ, and thus
fI (t)≠f h(xI, t).  For the matrix A to be invertible, the
number of n points must at least equal m (e.g. n≥m).
For m=3 or 6, Chati and Mukherjee (2000) have sug-
gested that 15≤n≤30 give acceptable results for 2-D
elastostatic problems.  For an elastodynamic problem,
Batra and Ching (2002) used Gauss weight functions,
m=6 and rI=3.5 times the distance between the point
xI and the third node nearest to the node at xI.  In this
paper, we take

rI=bhI (16)

where hI is the distance from node I to its nearest

neighbor, and b is a scaling parameter.  The choice
of the parameter b does affect the computed results,
and we will elaborate it in section IV.

2. General Semidiscrete Formulation

We assume that N nodes are placed on Ω, and
S1, S2, ..., SN are smooth 2-D closed regions, not nec-
essarily disjoint and of the same shape.  Here, each
of the regions is conveniently taken to be a circle cen-
tered at xI with the radius equal to hI (I=1, 2, ..., N).
For one of these regions, say Sα, let φ1, φ2, ..., φn and
ψ1, ψ2, ..., ψn be linearly independent functions de-
fined on it.  The unknown trial function u and the
test function u  can be written respectively by

    
u =

u(x, t)
v(x, t)

= φJδδJ(t)Σ
J = 1

n
(17a)

    
u =

u(x)
v(x)

= ψIδδIΣ
I = 1

n
(17b)

where φφJ=φJI and ψψ I=ψII; I is a 2×2 identity matrix.
δδJ and  δδ I  are 2×1 arrays.  Note that δδJ are functions
of time t.  Substitution of Eqs. (17a) and (17b) into
(7) gives

       εε = BJδδJΣ
J = 1

n
, εε = BIδδ IΣ

I = 1

n
(18a,b)

where

    

BJ =

∂φJ

∂x 0

0
∂φJ

∂y
∂φJ

∂y
∂φJ

∂x

, BI =

∂ψI

∂x 0

0
∂ψI

∂y
∂ψI

∂y
∂ψI

∂x

(19a,b)

Replacing the domain Ω of integration in Eq. (4) by
Sα, substituting for u, u , ε, and εε  from Eqs. (17) and
(18) for each region, and requiring that the resulting
equations hold for all choices of δδ , we arrive at the
following system of coupled ordinary differential
equations:

       MIJδδJΣ
J = 1

N
+ KIJδδJ = FI ,   I=1, 2, 3, ..., N (20)

Here

    MIJ = ρψI
TφJdΩ

Sα
(21a)

    KIJ = BI
TDBJ dΩ

Sα
– ψI

TNDBJ dΓ
Γ αu

    – ψI
TNDBJdΓ

Γ α0
(21b)
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    FI = ψI
T t dΩ

Γ α t
(21c)

where Γ α0=∂Sα−Γ αu−Γ α t, Γ αu=∂Sα∩Γ u, and Γ α t=
∂Sα∩Γ t.  MIJ, KIJ, and FI are usually called the stiff-
ness matrix, the mass matrix and the load vector
respectively.  In the MLPG formulation, KIJ and MIJ

need not be symmetric.
Various options of the test function leading to

different MLPG formulations have been provided by
Atluri and Shen (2002).  By making the test function
ψI(x) equal to the weight function W(x−xI) of the mov-
ing least squares approximation with rI=hI, the inte-
grals on Γα0 identically vanish, and henceforth evalu-
ation of the stiffness matrix can be simplified.  A nu-
merical integration is required to evaluate the domain
integral on Sα and the line integral on ∂Sα in Eq. (21).
The region Sα, and the boundary Γαu and Γα t on  ∂Sα
are mapped onto a [−1,1]×[−1,1] square domain and
a [−1,1] straight line, respectively, and the Gauss
quadrature rule is utilized to numerically evaluate
these integrals.  Therefore, the MLPG method is a
“truly meshless” scheme because no shadow cells
need to be established for the purpose of integration.

In order to derive initial conditions on δδJ, we
substitute Eq. (17a) into Eq. (2a), multiply both sides
of the resulting equation by ρu  from Eq. (17b), inte-
grate it over Sα and exploit the fact that it must hold
for all choices of  δδ I ; a similar procedure is also ap-
plied to find  δδJ .  We have δδI and  δδJ  for

       MIJδδJ(0) = ρψI
Tu0(x)dS

Sα
(22a)

       MIJδδJ(0) = ρψI
Tu0(x)dS

Sα
(22b)

Eq. (20) can be simplified by setting  δδJ =0 for the
static analysis.  For a free vibration analysis, the load-
ing vector FI=0, δδJ(t) can be written as

       δδJ(t) = eiωt δδ J (23)

Substituting Eq. (23) into Eq. (20) leads to the fol-
lowing eigenvalue equation

        KIJ δδ J = ω2MIJ δδ J (24)

The natural frequency ω and its corresponding
eigenmode       δδ J  can be obtained by solving Eq. (24).

3. Estimation of Effective Elastic Constants in
FGMs

Analytical functions such as the exponent and
power-law functions are commonly used in describ-
ing the continuously varying material properties in

FGMs because these functions facilitate obtaining
exact solutions in the analysis of FG structures.  In
terms of local compositions of material constituents,
however, this approach based on the continuum mod-
els may not physically determine the variation of
material properties in FGMs.  Another approach used
to characterize the material gradation and infer the
effective material  propert ies is  based on the
micromechanical models among which the Hashin-
Shtrikman bounds (Hashin and Shtrikman, 1963), the
self-consistent method (Hill, 1965), the Mori-Tanaka
method (Mori and Tanaka, 1973), and the mean field
approach (Wakashima and Tsukamoto, 1991) are
popular schemes.  Although the local effective mate-
rial properties of FGMs can also be estimated by the
rule of mixtures, this method does not account for
the interaction between phases and thus it only gives
very approximate values of the effective elastic
moduli.  On the other hand, the micromechanical ap-
proach takes account of the interactions and uses a
certain representative volume element (RVE) to esti-
mate the average local stress and strain fields of the
constituents of the composite.  Then, the local aver-
age fields are used to evaluate the effective material
properties.  Vel and Batra (2002) have used both the
Mori-Tanaka and the self-consistent methods to find
an analytical solution for thermoelastic deformations
of a simply supported FG plate.  Compared with the
self-consistent method, it is easier to use the Mori-
Tanaka method because the self-consistent method
requires solving for a quartic equation to obtain the
shear modulus.

In this paper, we adopt the Mori-Tanaka method
to estimate the effective material moduli at a point in
FGM.  The Mori-Tnanka method is derived for re-
gions of the graded microstructure that have a well-
defined continuous matrix and a discontinuous par-
ticle phase.  The method has been found to have the
same expressions as the Hashin-Shtrikman lower
bound bounds when the inclusions are spherical.  For
a two-phase composite, we summarize the Mori-
Tanaka method in the following.  It is assumed that
the matrix phase, denoted by the subscript 1, is rein-
forced by spherical particles of a particulate phase,
denoted by the subscript 2. The local effective bulk
modulus K and the shear modulus G are given by

  K – K1
K2 – K1

=
V2

1 + 3(1 – V2)(K2 – K1)/(3K1 + 4G1)

(25)

  G – G1
G2 – G1

=
V2

1 + (1 – V2)(G2 – G1)/(G1 + f1) (26)

where f1=G1(9K1+8G1)/6(K1+2G1).  K1 and G1 are the



496 Journal of the Chinese Institute of Engineers, Vol. 27, No. 4 (2004)

bulk modulus and the shear modulus, respectively,
and V1 the volume fraction of the matrix phase. K2,
G2 and V2 denote the corresponding material proper-
ties and the volume fraction of the particulate phase.
It should be noted that V1+V2=1, and the Young’s
modulus and the Poisson’s ratio are related to the bulk
and shear moduli by E=9KG/(3K+G) and ν=(3K−2G)/
2(3K+G), respectively.

The mass density ρ at a point is obtained by the
“rule of mixtures”:

ρ=ρ1V1+ρ2V2 (27)

where ρ1 and ρ2 are the densities of matrix and par-
ticulate phases, respectively.

4. Imposition of Essential Boundary Conditions

In the MLPG method, the lack of the Kronecker
delta property of the basis function φi(x) poses diffi-
culty in satisfying the essential boundary conditions.
Several techniques such as the penalty method (e.g.
see Atluri and Zhu, 1998), the orthogonal transfor-
mation method (e.g. see Atluri and Shen, 2002), the
singular value decomposition (SVD) method (e.g. see
Gu and Liu, 2001a) and the Lagrange multiplier
method have been proposed to overcome the above
problem.  Among these methods, the penalty method
is easiest to use.  Whereas the penalty method pro-
vides a simple approach to impose essential bound-
ary conditions, the selection of the penalty param-
eter remains a challenge (Belytschko et al., 2000).
For instance, Qian et al. (2003a) found that the value
of the penalty parameter affects, noticeably, the com-
puted results when the MLPG method is used to ana-
lyze a thick plate with a higher-order shear and nor-
mal deformable theory.  Batra and Ching (2002) also
found that the time used to compute a stable solution
for a transient elastodynamic problem by the explicit
central-difference method also depends on the value
assigned to the penalty parameter.  As compared to
the penalty method, the orthogonal transformation
technique exactly satisfies the essential boundary
conditions, and also eliminates the prescribed degrees
of freedom in Eq. (20) so that the size of the system
of equations is reduced.  The singular decomposition
method can be regarded as a special case of the or-
thogonal transformation technique.  However, the
method can only be applied to a problem in which
the essential boundary conditions are homogeneous.
The Lagrange multiplier method has been commonly
used to impose constraint equations in the finite ele-
ment method, but this method increases the number
of degrees of freedom and yields a non-positive defi-
nite system matrix.  In view of both advantages and
shortcomings for the above schemes, we apply the

orthogonal transformation technique to impose the
boundary conditions in our study.

Let D and I denote respectively the set of de-
grees of freedom where displacements are and are not
prescribed.  The displacement u can be written as

    
u = uD

u I =
φDD φDI

φID φII
δδD

δδ I (28)

Solving the first of these equations for δδD, we get

        
δδ = δδD

δδ I =
(φDD)– 1uD

0 +
– (φDD)– 1φDI

I δδ I  (29)

where 0 and I are null and the identity matrices
respectively.  Substitution from Eq. (30) into Eq. (20)
and the premultiplication of the resulting equation by

    – (ψDD)– 1ψDI

I

T

 give

       M δδ I + K δδ I = F (30)

where

    
M =

– (ψDD)– 1ψDI

I

T

M
– (φDD)– 1φDI

I (31a)

    
K =

– (ψDD)– 1ψDI

I

T

K
– (φDD)– 1φDI

I (31b)

    
F =

– (ψDD)– 1ψDI

I

T

F +
– (ψDD)– 1ψDI

I

T

     
⋅ K

(φDD)– 1uD

0 (31c)

5. The Time Integration Scheme

We use the Newmark family of methods
(Newmark, 1959) to integrate Eq. (30).  The recur-
sive relations for displacements, velocities and
accelerations between time tn and tn+1 are

      δδn + 1
J = δδn

J + ∆tδδn
J +

(∆t)2

2 {(1 – 2β)δδn
J + 2βδδn + 1

J }

(32a)

      δδn + 1
J = δδn

J + ∆t{(1 – γ)δδn
J + γδδn + 1

J } (32b)

      δδn + 1
J = 1

β(∆t)2 {δδn + 1
J – δδn

J} – 1
β(∆t)

δδn
J – 1

2βδδn
J  (32c)
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where  δδn
J,  δδn

J, and  δδn
J denote the displacements, veloci-

ties and accelerations, respectively, at time tn=n∆t and
∆t is the uniform time interval between two time steps.
β and γ are the parameters that control the stability and
the accuracy of the time integration scheme.  The
Newmark family of methods is unconditionally stable if

  γ ≥ 1
2  and   β ≥ 1

4(1
2 + γ) (33)

The methods  are  second-order  accurate  and
nondissipative for γ=1/2 and first-order accurate and
dissipative for γ≠1/2.

IV. RESULTS AND DISCUSSION

A computer code based on the aforestated equa-
tions is developed and used to analyze a cantilever
beam made of a two-phase steel/aluminum FG com-
posite and subjected to a normal traction q(x, t) on
the top surface.  A schematic sketch of the problem
is depicted in Fig. 1(a).  Here we take length L=200
mm, thickness h=20 mm, and width w=5 mm.  As
w<<L, a plane stress state is assumed to prevail in
the beam.  A regular nodal mesh (see Fig. 1(b)) of
729 nodes with 81 and 9 equally spaced in the longi-
tudinal and thickness directions respectively is used.
We use 9×9 and 9 quadrature points to numerically
evaluate the respective domain and boundary integrals
appearing in Eq. (21), and set m=3 for the linear basis.
Material properties of the steel and aluminum (Al)
are:

Steel: Es=210GPa, vs=0.29, ρs=7806 kg/m3

Al: Ea=70GPa, va=0.3, ρa=2707 kg/m3

Here E is the Young’s modulus and ν  the Poisson
ratio. We assume that steel corresponds to constitu-
ent 1 and aluminum to 2 in Eqs. (25), (26) and (27).
The volume fraction of the aluminum phase is as-
sumed to vary in both longitudinal and thickness di-
rections by a power-law-type function as

  VAl = (
y
h) p( x

L)q ,  0≤p<∞, 0≤q<∞ (34)

where p and q are parameters that dictate the volume
fraction profile through the domain of the beam.  The
increase of p and q indicate that the beam is enriched
with more steel.  For example, the FG beam with
p=q=0 corresponds to a pure aluminum beam, while
p, q→∞ to a pure steel beam.  With Eq. (34), varia-
tions of Young’s modulus and mass density for p=0
and various values of q along the longitudinal direc-
tion can be plotted in Figs. 2(a) and 2(b), respectively.
The material properties in these two figures are nor-
malized to those of steel respectively.  It is shown

that the material properties vary from those of steel
at the fixed end to those of aluminum at the free end.

Finite element (FE) analyses are performed to
validate the present numerical solutions.  We used
eight-node quadrilateral elements.  Each element was
modeled as a homogeneous solid wherein its mate-
rial properties were assigned according to the mate-
rial gradation of the FG beam at its centroid.  In the
tables and figures to follow, vertical deflection or
transverse displacement v and natural frequency ω are
non-dimensionalized by

  
v =

10Esh
3

12L4(1 – vs
2)q0

v ,     ω = 10ωh ρs/Es      (35a,b)

Here q0 is the intensity of the normal traction q, and
an overbar signifies a non-dimensional quantity.

The size of the support, rI, of the weight function
is decided by the scaling parameter b in Eq. (16).  A
very small rI will result in a relatively large numerical
error in the accuracy of computed solutions (Atluri and
Zhu, 2000).  On the other hand, rI should also be small
enough to preserve the local character of the MLPG
formulations.  To chose a proper value of the param-
eter b, we conduct a convergence study of b on the
vertical deflections at x=L, y=h/2 for FG beams with
p=0, q=2 and p=0, q=5, respectively.  Results plotted
in Fig. 3 for b with a wide range of value from 2 to 15
reveal that that b≥5 leads to convergent solutions, and
henceforth we choose b=7 in the following analyses

1. Static Analysis

In the static analysis, we consider an FG beam
loaded by a uniformly normal traction q0 on the top
surface.  Fig. 4 shows the non-dimensional vertical
deflections  v  at y=h/2 along the span with the vol-
ume fraction varying in the longitudinal direction

Fig. 1 (a) A schematic sketch of a cantilever beam subjected to a
normal traction; (b) a uniform nodal mesh of 729 nodes
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(i.e. p=0, q=2) and the thickness direction (i.e. p=2,
q=0).  The deflections computed for both the steel
beam and aluminum beam are also included.  The MLPG
results are in good agreement with their correspond-
ing FE solutions.  It is noted that, from the homoge-
neous beam theory, the deflection of the cantilever
beam (i.e. v=q0L4/8EI) is inversely proportional to the
Young’s modulus E for a given loading and geom-
etry configuration.  For the present FG beam, the Young’s
modulus of the steel gradually varies either from the
fixed to the free end or from the bottom to the top
surface until the aluminum is fully enriched.  As ex-
pected in Fig. 4 the deflections of FG beams fall in
between those of their homogeneous counterparts.  The
non-dimensional vertical deflections along the lon-
gitudinal direction with p=2 and different values of q
are exhibited in Fig. 5.  It shows that the increase of
the index q produces a decrease of deflections.  We

further evince the tip deflections, as shown in Fig. 6,
at x=L, y=h/2 with the power-law index q for differ-
ent values of p.  The largest value of p gives the minimum
tip deflection and vice versa.  For a given index p,
the tip deflections change rapidly for small values of
q, and stay almost the same for large values of q.

2. Free Vibration Analysis

Gu and Liu (2001a) have applied the MLPG
method to analyze the free vibration of a cantilever
beam made of homogeneous materials.  The results
of eigenmodes and natural frequencies compared
well with those obtained from the FEM.  For an FG
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cantilever beam, free vibration analyses using the
MLPG method are presented here.  Table 1 lists the
first ten non-dimensional natural frequencies for an
FG beam with p=0 and q=2 as well as for both steel
and aluminum beams.  Excellent agreements are ob-
tained as compared with the FE solutions.  We also
investigate the eigenmodes for various values of p
and q.  The mode shapes of an FG beam are found to
be independent of indices p and q, and the same as
those of a homogeneous beam.  Thus, the plots of the
eigenmodes are omitted so as not to repeat the re-
sults as reported in Gu and Liu (2001a).  Table 2 gives
the MLPG results of the first ten non-dimensional fre-
quencies for different values of p and q.  It can be
seen that the maximum first frequency occurs at p=0
and q=1.23.  This conclusion is more evident in Fig.
7 which shows variations of the first frequency with

q for p=0, 2 and 5 respectively.  We see from Fig. 7,
Tables 1 and 2 that the first frequency of the FG beam
with p=0 and q=1.23, reaching   ω1 =0.1335, is 34%
and 32.3% higher than those of the aluminum and
steel beam respectively.  It can be seen from Table 2
that the second and thereafter frequencies correspond-
ing to p=0 and q=1.23 are not the maximum among
different values of p and q.  p=0 and q=4.70 are the
values for the second maximum bending frequency
of   ω2 =0.6465, which is 10.76% and 6.85% higher
than those of corresponding aluminum and steel
beams.  This conclusion can also be shown in Fig. 8.

3. Forced Vibration Analysis

For both the MLPG and FE solutions in the
forced vibration analysis, we take γ=1/2 and β=1/4

Table 1  Comparison of non-dimensional natural frequencies from the FEM with the MLPG method

Steel FGMs (p=0, q=2) AL
Mode

FEM MLPG FEM MLPG FEM MLPG

1 0.1008 0.1020 0.1306 0.1313 0.0989 0.0997
2 0.6050 0.5951 0.6490 0.6396 0.5932 0.5840

  3* 1.5725 1.5709 1.6084 1.5903 1.5420 1.5402
4 1.5940 1.5758 1.8326 1.8315 1.5627 1.5448
5 2.8976 2.8678 2.8713 2.8425 2.8400 2.8102
6 4.4202 4.3805 4.3453 4.3068 4.3314 4.2909

  7* 4.7144 4.7103 4.7347 4.7311 4.6225 4.6182
8 6.0870 6.0374 5.9589 5.9109 5.9638 5.9122

  9* 7.8460 7.7893 7.6643 7.6074 7.6887 7.6261
10 7.8483 7.8395 7.7131 7.7074 7.6924 7.6854

Note: The mode number denoted by a* indicates an axial vibration, but otherwise is a bending vibration
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in the Newmark family of methods.  This time inte-
gration scheme, also known as the average accelera-
tion method, is unconditionally stable and we set time
step ∆t equal to 2.5×10−4 sec.  First, consider a uni-
formly harmonic normal load q0 sin(ωf t) applied on
the top surface of the beam for a period of 50 ms; ωf

is the driving frequency and taken ωf =300 rad/sec.
Figs. 9 and 10 depict the time histories of tip deflec-
tions at x=L, y=h/2 for a steel beam and an FG beam
with p=0, q=2 respectively.  It can be found in each
figure that the time histories of the deflections ob-
tained by the MLPG method and the FEM match very
well, and the responses excited by the driving fre-
quency ωf are steadily oscillated with the same
amplitudes.  In Fig. 11, we compare the time histo-
ries of the tip deflections for p=0 and different

values of q.  The harmonic responses depend on the
power-law indices p and q, the amplitudes of tip de-
flections decrease with the increase of the index q.
Next, a uniformly normal traction with Heavside time
dependence (i.e. q=q0H(t)) is considered.  The time
histories of tip deflections for an FG beam with p=0,
q=2 are displayed in Fig. 12.  The loading is first ap-
plied on the beam and subsequently released after 10
ms.  Results obtained by the MLPG method agree well
with those obtained by the FEM for duration of both
forced and free vibrations.  One of the appealing prop-
erties of FGMs can be illustrated in Fig. 13, where
the time histories of tip deflections of the steel beam
and FG beams are plotted.  One can observe that the
response of the FG beam with p=0, q=4.7 during the
period of forced vibration (within 25 ms) is of the
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Fig. 7 Variations of the first non-dimensional frequencies of FG
beams with the power-law index q for p=0, 2 and 5
respectively; frequencies are normalized with respect to
that of the FG beam with p=0, q=0
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Fig. 8 Variations of the second non-dimensional frequencies of
FG beams with the power-law index q for p=0, 2 and 5
respectively; frequencies are normalized with respect to
that of the FG beam with p=0, q=0

Table 2  Non-dimensional natural frequencies of FG beams with the power-law indices p and q

p=0 p=2 p=4
Mode

q=0 q=1.23 q=2 q=4 q=4.7 q=0 q=2 q=4 q=0 q=2 q=4

1 0.0997 0.1335 0.1313 0.1230 0.1209 0.0939 0.1091 0.1078 0.0931 0.1059 0.1054
2 0.5840 0.6337 0.6396 0.6465 0.6465 0.5490 0.5990 0.6056 0.5545 0.5935 0.5999

  3* 1.5402 1.5733 1.5903 1.6242 1.6315 1.4634 1.5543 1.5758 1.4756 1.5508 1.5697
4 1.5448 1.8448 1.8315 1.7620 1.7429 1.5287 1.6377 1.6259 1.5453 1.6095 1.6030
5 2.8102 2.8140 2.8425 2.8982 2.9109 2.6810 2.8185 2.8528 2.7046 2.8191 2.8483
6 4.2909 4.2658 4.3068 4.3828 4.4001 4.1199 4.3022 4.3483 4.1601 4.3089 4.3471

  7* 4.6182 4.6751 4.7311 4.8537 4.8778 4.5843 4.6799 4.7274 4.6343 4.6904 4.7182
8 5.9122 5.8565 5.9109 6.0071 6.0288 5.7078 5.9313 5.9883 5.7691 5.9463 5.9918

  9* 7.6261 7.5389 7.6074 7.7240 7.7502 7.3971 7.6568 7.7239 7.4835 7.6820 7.7332
10 7.6854 7.6262 7.7074 7.8618 7.8963 7.6304 7.7573 7.8113 7.7140 7.7901 7.8213

Note: The mode number denoted by a* indicates an axial vibration, otherwise is a bending vibration
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same amplitude as that of the steel beam whereas the
response of the FG beam with p=0 and q=1.23 gives
larger amplitudes than those of the steel and the FG
beam with p=0 and q=4.7.  Meanwhile, one can also
observe that the the FG beam with p=0 and q=4.7
gives the minimum amplitudes among these three
kinds of beams during the period of free vibration
after 25 ms.  It is clear that the dynamic response of
FGMs such as the amplitudes of deflection can be
diminished by suitably adjusting the volume fraction
of the constituents.

V. CONCLUSIONS

MLPG solutions for static deformations, free

vibrations and forced vibrations of an FG cantilever
beam have been presented in this paper.  The FG beam
is made of a two-phase steel/aluminum composite
wherein the effective material moduli at a point are
determined by the Mori-Tanaka method.  The MLPG
method gives results very close to those obtained from
the FEM in each analysis. Static analysis shows that
the deflections of FG beams are bounded from above
by that of an aluminum beam and from below by that
of a steel beam.  In the free vibration analysis,
however, we found that the maximum first frequency
occurs in an FG beam with p=0, q=1.23 rather than
in a homogeneous beam.  Computed results show that
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Fig. 10 Time histories of tip deflections of an FG beam with p=0,
q=2 under a uniformly harmonic normal traction of q0 sin
(300t)
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Fig. 12 Time histories of tip deflections of an FG beams with p=0,
q=2 under a step normal traction of q0 for 10 ms

Fig. 11 Time histories of tip deflections of an FG beams with p=0
and different values of q under a uniformly harmonic nor-
mal traciton of q0 sin(300t)
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Fig. 9 Time histories of tip deflections of a steel beam under a
uniformaly harmonic normal traction of q0 sin(300t)
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the maximum first frequency of this FG beam is 34%
and 32.3% higher than those of the aluminum and
steel beam respectively.  The response of an FG beam
subjected to forced vibration depends on the power-
law indices p and q.  By appropriately tailoring the
volume fractions of constituents in an FG beam, the
amplitudes of deflections can be minimized as com-
pared to its homogeneous counterparts.

Through a series of examples, the MLPG method
has been proven to be effective in the present
investigations.  The MLPG method is a truly meshless
scheme, which requires only a set of nodes for both
interpolation and integration.  Furthermore, the
method dictates the continuous material properties of
FGMs directly to a quadrature point without formu-
lations being modified.  As a result, the prominent
features of the MLPG method make it easy to imple-
ment in the analysis of functionally graded structures.
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