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I. INTRODUCTION

In recent years, many nonlinear problems in physical and engineering science have been solved
numerically using various boundary element approaches (see, e.g., Katsikadelis and Nerantzaki
[1], Ang [2], Selvadurai [3], Chen, Hsiao, Chiu et al. [4], and Dehghan and Mirzaei [5]). One
such problem which is of considerable interest to many researchers deals with heat conduction
in solids with temperature dependent thermal conductivity. In earlier works on boundary element
techniques for solving the nonlinear heat conduction problem, such as Kikuta et al. [6] and Goto
and Suzuki [7], the solids are assumed to be thermally isotropic with material properties (den-
sity, specific heat capacity and thermal conductivity) which are functions of temperature alone.
Extensions to thermally anisotropic solids with material properties that vary with temperature and
spatial coordinates are given by Clements and Budhi [8] and Azis and Clements [9].

In the present article, we present a dual-reciprocity boundary element method for the problem
of calculating the temperature in a nonhomogeneous anisotropic solid with density, specific heat
capacity, and thermal conductivity which are functions of temperature and spatial coordinates.
Specifically, the thermal conductivity coefficients are taken to be of the form considered in Azis
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and Clements [9] (i.e., as given in Eq. (2) in Section II later), but here (unlike in [9]) we do not
require the function describing the spatial variation of the thermal conductivity [i.e., g(x1, x2)] to
satisfy a particular partial differential equation. In [9], the boundary element approach in Goto and
Suzuki [7], which approximates the domain integral arising in the formulation by discretizing the
solution domain into many small cells, is exended to solve the governing nonlinear heat equation.

The boundary element approach presented here follows closely the works in Ang et al. [10]
and Ang [11]. Firstly, guided by the analyses in Azis and Clements [9] and Ang et al. [10], we
convert the governing nonlinear heat equation into a suitable integro-differential equation. The
integro-differential equation involves an unknown function ψ(x1, x2, t) and its first order partial
derivative with respect to time t . It does not contain any partial derivative of ψ with respect to
the spatial coordinate xi and can be accurately solved for numerical values of ψ by modifying
the time-stepping dual-reciprocity boundary element procedure in Ang [11]. As in [11], ∂ψ/∂t

is approximated in terms of a central difference formula, the integral over the boundary of the
solution domain is discretized using discontinuous linear elements and the domain integral is
approximated using the dual-reciprocity method. No meshing of the solution domain is required.
The nonlinear term in the integrand of the integro-differential equation (i.e., the term containing
∂ψ/∂t multiplied to a given function of x1, x2, and ψ) is treated using a predictor–corrector
(iterative) approach similar to that described in Ang and Ang [12].

The task of finding numerical values of ψ at chosen points at consecutive time levels is
eventually reduced to solving systems of linear algebraic equations. Once ψ is determined, the
temperature can be recovered by solving an algebraic equation which expresses ψ as a function
of the temperature and the spatial coordinates x1 and x2. To check its validity and to assess its
accuracy, the numerical procedure presented here is applied to solve some specific problems with
known solutions.

II. THE PROBLEM

With reference to a Cartesian coordinate system Ox1x2x3, consider a thermally nonhomogeneous
anisotropic solid whose geometry does not vary along the x3 axis. On the Ox1x2 plane, the body
occupies the region R bounded by a simple closed curve C.

The temperature in the body is assumed to be independent of x3. According to the classical
theory of heat conduction, if there is no internal heat generation, the thermal behavior of the body
is governed by the partial differential equation

∂

∂xi

(
kij

∂T

∂xj

)
= ρc

∂T

∂t
, (1)

where kij are the thermal conductivity coefficients satisfying the symmetry relation kij = kji

and the strict inequality k2
12 − k11k22 < 0, T (x1, x2, t) is the temperature at the point (x1, x2) at

time t ≥ 0 and ρ and c are, respectively, the density and the specific heat capacity of the body.
The usual Einstenian convention of summing over a repeated index is assumed here for Latin
subscripts running from 1 to 2.

The thermal conductivity coefficients kij for the thermally nonhomogeneous anisotropic solid
are taken to be of the form

kij = λijg(x1, x2)h(T ), (2)

where λij are given positive constants such that λij = λji and λ2
12 −λ11λ22 < 0, g(x1, x2) is a given

function such that g(x1, x2) is positive and is at least twice partially differentiable with respect
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NONLINEAR HEAT EQUATION 773

to x1 and/or x2 in R ∪ C and h(T ) is a given function which is integrable with respect to T . In
general, the density ρ and the specific heat capacity c are suitably given functions which depend
on x1, x2, and T .

The problem of interest here is to find the temperature T (x1, x2, t) by solving (1) together with
(2) in R subject to to the initial-boundary conditions

T (x1, x2, 0) = p(x1, x2) for (x1, x2) ∈ R,

T (x1, x2, t) = u(x1, x2, t) for (x1, x2) ∈ C1 and t > 0,

kijni

∂T

∂xj

= v(x1, x2, t) for (x1, x2) ∈ C2 and t > 0, (3)

where p, u, and v are suitably prescribed functions, C1 and C2 are nonintersecting curves such
that C1 ∪ C2 = C and [n1(x1, x2), n2(x1, x2)] is the unit normal outward vector to R at the point
(x1, x2) on C.

III. TRANSFORMED EQUATIONS

If we apply the Kirchhoff’s transformation

�(x1, x2, t) =
∫

h(T )dT ≡ K(T (x1, x2, t)) (4)

and assume that it can be inverted to give the temperature as T = M(�), then Eq. (1) together
with (2) can be rewritten as

λij

∂

∂xi

(
g(x1, x2)

∂�

∂xj

)
= S(x1, x2, �)

∂�

∂t
, (5)

where

S(x1, x2, �) = ρ(x1, x2, M(�))c(x1, x2, M(�))

h(M(�))
. (6)

Furthermore, if we let

�(x1, x2, t) = 1√
g(x1, x2)

ψ(x1, x2, t), (7)

we find that (5) can be rewritten as

λij

∂2ψ

∂xi∂xj

= B(x1, x2)ψ + D(x1, x2, ψ)
∂ψ

∂t
, (8)

where

B(x1, x2) = 1√
g(x1, x2)

λij

∂2

∂xi∂xj

[√g(x1, x2)],

D(x1, x2, ψ) = 1

g(x1, x2)
S

(
x1, x2,

1√
g(x1, x2)

ψ

)
. (9)
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The initial-boundary conditions in (3) can be rewritten as

ψ(x1, x2, 0) = √
g(x1, x2)K(p(x1, x2)) for (x1, x2) ∈ R,

ψ(x1, x2, t) = √
g(x1, x2)K(u(x1, x2, t))

for (x1, x2) ∈ C1 and t > 0,

q(x1, x2, t) = f (x1, x2, t)ψ(x1, x2, t) + 1√
g(x1, x2)

v(x1, x2, t)

for (x1, x2) ∈ C2 and t > 0, (10)

where

f (x1, x2) = 1

2

1

g(x1, x2)
niλij

∂g

∂xj

q(x1, x2, t) = niλij

∂ψ

∂xj

. (11)

Following closely the approach in Ang et al. [10] and Ang [11], we recast (8) into an
integro-differential equation given by

γ (ξ1, ξ2)ψ(ξ1, ξ2, t)

=
∫∫
R

�(x1, x2, ξ1, ξ2)

[
B(x1, x2)ψ(x1, x2, t)

+D(x1, x2, ψ(x1, x2, t))
∂

∂t
{ψ(x1, x2, t)}

]
dx1dx2

+
∮
C

[	(x1, x2, ξ1, ξ2)ψ(x1, x2, t) − �(x1, x2, ξ1, ξ2)q(x1, x2, t)]ds(x1, x2), (12)

where γ (ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R ∪ C, γ (ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 < γ (ξ1, ξ2) < 1 if
(ξ1, ξ2) ∈ C [γ (ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part of C and

�(x1, x2, ξ1, ξ2) = 1

2π
√

λ11λ22 − λ2
12

Re{ln(x1 − ξ1 + τ [x2 − ξ2])},

	(x1, x2, ξ1, ξ2) = 1

2π
√

λ11λ22 − λ2
12

Re

{
L(x1, x2)

(x1 − ξ1 + τ [x2 − ξ2])
}

,

L(x1, x2) = (λ11 + τλ12)n1(x1, x2) + (λ21 + τλ22)n2(x1, x2),

τ = −λ12 + i
√

λ11λ22 − λ2
12

λ22
(i = √−1). (13)

Note that Re denotes the real part of a complex number.
Section IV describes a dual-reciprocity boundary element approach for finding ψ(x1, x2, t)

numerically from (12) together with (10). Once ψ(x1, x2, t) is determined, the temperature
T (x1, x2, t) may be obtained by inverting the Kirchhoff’s transformation in (4).
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IV. DUAL-RECIPROCITY BOUNDARY ELEMENT METHOD

For the dual-reciprocity boundary element method, we discretize the curve C1 into N1 straight line
elements denoted byC(1),C(2), . . . , C(N1−1) andC(N1) andC2 intoC(N1+1),C(N1+2), . . . , C(N1+N2−1),
and C(N1+N2). Note that C1 and C2 are parts of the boundary C [refer to the boundary conditions in
(3) or (10)]. Thus, the total number of boundary elements is given by N = N1 +N2. The element
C(m) (m = 1, 2, . . . , N) has length �(m) and its starting and ending points are given by (a

(m)

1 , a(m)

2 )

and (b
(m)

1 , b(m)

2 ) respectively.
For an accurate approximation, ψ and q in (12) on the boundary are approximated using dis-

continuous linear boundary elements as outlined in París and Cañas [13]. For the discontinuous
linear boundary elements, two points (η

(m)

1 , η(m)

2 ) and (η
(N+m)

1 , η(N+m)

2 ) on C(m) are chosen as given
by

η
(m)

i = a
(m)

i + r
(
b

(m)

i − a
(m)

i

)
η

(N+m)

i = b
(m)

i − r
(
b

(m)

i − a
(m)

i

)
}

for a given r ∈
(

0,
1

2

)
. (14)

Note that r is a selected constant between 0 and 1/2. It may typically be chosen to be 1/4.
If ψ is given by ψ(m)(t) and ψ(N+m)(t) at (η

(m)

1 , η(m)

2 ), and (η
(N+m)

1 , η(N+m)

2 ) respectively, then
we make the approximation:

ψ(x1, x2, t) � [1 − d(m)(x1, x2)]ψ(m)(t) + d(m)(x1, x2)ψ
(N+m)(t) for (x1, x2) ∈ C(m), (15)

where

d(m)(x1, x2) =
√(

x1 − a
(m)

1

)2 + (
x2 − a

(m)

2

)2 − r�(m)

(1 − 2r)�(m)
. (16)

Similarly, for q, if it is given by q(m)(t) and q(N+m)(t) at (η
(m)

1 , η(m)

2 ) and (η
(N+m)

1 , η(N+m)

2 ),
respectively, then

q(x1, x2, t) � [
1 − d(m)(x1, x2)

]
q(m)(t) + d(m)(x1, x2)q

(N+m)(t) for (x1, x2) ∈ C(m). (17)

With (15) and (17), the integro-differential equation in (12) can be approximately written as

γ (ξ1, ξ2)ψ(ξ1, ξ2, t) =
∫∫
R

�(x1, x2, ξ1, ξ2)

[
B(x1, x2)ψ(x1, x2, t)

+ D(x1, x2, ψ(x1, x2, t))
∂

∂t
{ψ(x1, x2, t)}

]
dx1dx2

+
N∑

m=1

{
ψ(m)(t)�

(m)

1 (ξ1, ξ2) + ψ(N+m)(t)�
(m)

2 (ξ1, ξ2)
}

−
N∑

m=1

{
q(m)(t)�

(m)

3 (ξ1, ξ2) + q(N+m)(t)�
(m)

4 (ξ1, ξ2)
}

, (18)
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where

�
(m)

1 (ξ1, ξ2) =
∫

C(m)

[
1 − d(m)(x1, x2)

]
	(x1, x2, ξ1, ξ2)ds(x1, x2),

�
(m)

2 (ξ1, ξ2) =
∫

C(m)

d(m)(x1, x2)	(x1, x2, ξ1, ξ2)ds(x1, x2),

�
(m)

3 (ξ1, ξ2) =
∫

C(m)

[
1 − d(m)(x1, x2)

]
�(x1, x2, ξ1, ξ2)ds(x1, x2),

�
(m)

4 (ξ1, ξ2) =
∫

C(m)

d(m)(x1, x2)�(x1, x2, ξ1, ξ2)ds(x1, x2). (19)

Exact formulae for calculating the line integrals over C(m) in (19) are given in Ang [11].
To treat the domain integral in (18) using the dual-reciprocity method, we select P well spaced

out points in the interior of the domain R. These interior points are denoted by (η
(2N+1)

1 , η(2N+1)

2 ),
(η

(2N+2)

1 , η
(2N+2)

2 ), . . . , (η(2N+P−1)

1 , η
(2N+P−1)

2 ), and (η
(2N+P)

1 , η(2N+P)

2 ). We define ψ(2N+j)(t) =
ψ(η

(2N+1)

1 , η(2N+1)

2 , t) for j = 1, 2, . . . , P . Following the procedure detailed in Ang et al. [10] and
Ang [11], we then approximate the domain integral using

∫∫
R

�(x1, x2, ξ1, ξ2)

[
B(x1, x2)ψ(x1, x2, t) +D(x1, x2, ψ(x1, x2, t))

∂

∂t
{ψ(x1, x2, t)}

]
dx1dx2

�
2N+P∑
k=1

[
B

(
η

(k)

1 , η(k)

2

)
ψ(k)(t) + D

(
η

(k)

1 , η(k)

2 , ψ(k)(t)
) d

dt
{ψ(k)(t)}

] 2N+P∑
j=1

χ(kj)�(j)(ξ1, ξ2), (20)

where

2N+P∑
k=1

σ (j)
(
η

(k)

1 , η(k)

2

)
χ(km) =

{
1 if j = m

0 if j �= m

for j , m = 1, 2, . . . , 2N + P ,

σ (j)(x1, x2) = 1 + ([
x1 − η

(j)

1 + Re{τ }{x2 − η
(j)

2

}]2 + [
Im{τ }{x2 − η

(j)

2

}]2)
+ ([

x1 − η
(j)

1 + Re{τ }{x2 − η
(j)

2

}]2 + [
Im{τ }{x2 − η

(j)

2

}]2)3/2

for j = 1, 2, . . . , 2N + P ,

�(j)(ξ1, ξ2) = γ (ξ1, ξ2)θ
(j)(ξ1, ξ2) −

∫
C

�(x1, x2, ξ1, ξ2)β
(j)(x1, x2)ds(x1, x2)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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−
∫
C

θ(j)(x1, x2)	(x1, x2, ξ1, ξ2)ds(x1, x2)

for j = 1, 2, . . . , 2N + P ,

(
λ11λ22 − λ2

12

λ22

)
θ(j)(x1, x2) = 1

4

([
x1 − η

(j)

1 + Re{τ }{x2 − η
(j)

2

}]2 + [
Im{τ }{x2 − η

(j)

2

}]2)

+ 1

16

([
x1 − η

(j)

1 + Re{τ }{x2 − η
(j)

2

}]2 + [
Im{τ }{x2 − η

(j)

2

}]2)2

+ 1

25

([
x1 − η

(j)

1 + Re{τ }{x2 − η
(j)

2

}]2+[
Im{τ }{x2 − η

(j)

2

}]2)5/2
,

β(j)(x1, x2) = −
2∑

i=1

2∑
k=1

λikni(x1, x2)
∂θ(j)

∂xk

. (21)

Note that σ (j)(x1, x2) are the radial basis functions used in Ang et al. [10] for anisotropic media.
For λij = δij (Kronecker-delta), we find that τ = i and σ (j)(x1, x2) given above reduces to give
the local interpolating functions suggested by Zhang and Zhu [14].

The functions �(j)(ξ1, ξ2) in (21) are expressed in terms of line integrals over the boundary C

and can easily be computed approximately using

�(j)(ξ1, ξ2) � γ (ξ1, ξ2)θ
(j)(ξ1, ξ2)

−
N∑

m=1

{
β(j)

(
η

(m)

1 , η(m)

2

)
�

(m)

3 (ξ1, ξ2)

− β(j)
(
η

(N+m)

1 , η(N+m)

2

)
�

(m)

4 (ξ1, ξ2)

− θ(j)
(
η

(m)

1 , η(m)

2

)
�

(m)

1 (ξ1, ξ2)

− θ(j)
(
η

(N+m)

1 , η(N+m)

2

)
�

(m)

2 (ξ1, ξ2)
}
. (22)

No discretization of the solution domain into elements is therefore needed in computing the
domain integral in (18).

If we make the approximation

ψ(k)(t) � 1

2

[
ψ(k)

(
t + 1

2
�t

)
+ ψ(k)

(
t − 1

2
�t

)]
,

d

dt
[ψ(k)(t)] � ψ(k)

(
t + 1

2�t
) − ψ(k)

(
t − 1

2�t
)

�t
, (23)
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let (ξ1, ξ2) in (18) be given in turn by (η
(p)

1 , η(p)

2 ) for p = 1, 2, . . . , 2N + P , and use the boundary
conditions in (10), we obtain

(
1

2
α(p)

[
ψ(p)

(
t + 1

2
�t

)
+ ψ(p)

(
t − 1

2
�t

)]
+ (1 − α(p))R

(
η

(p)

1 , η(p)

2 , t
))

γ
(
η

(p)

1 , η(p)

2

)

=
2N+P∑
k=1

[
1

2
B

(
η

(k)

1 , η(k)

2

) {
ψ(k)

(
t + 1

2
�t

)
+ ψ(k)

(
t − 1

2
�t

)}

+ 1

�t
E(k)(t)

{
ψ(k)

(
t + 1

2
�t

)
− ψ(k)

(
t − 1

2
�t

)}]
α(k)µ(kp)

+
2N∑
k=1

(1 − α(k))µ(kp)

(
B

(
η

(k)

1 , η(k)

2

)
R

(
η

(k)

1 , η(k)

2 , t
) + E(k)(t)

d

dt

{
R

(
η

(k)

1 , η(k)

2 , t
)})

+
N1∑

m=1

{
�

(m)

1

(
η

(p)

1 , η(p)

2

)
R

(
η

(m)

1 , η(m)

2 , t
) + �

(m)

2

(
η

(p)

1 , η(p)

2

)
R

(
η

(N+m)

1 , η(N+m)

2 , t
)}

+
N∑

m=N1+1

{
1

2

(
�

(m)

1

(
η

(p)

1 , η(p)

2

) − �
(m)

3

(
η

(p)

1 , η(p)

2

)
f

(
η

(m)

1 , η(m)

2

))

×
[
ψ(m)

(
t + 1

2
�t

)
+ ψ(m)

(
t − 1

2
�t

)]

+ 1

2

(
�

(m)

2

(
η

(p)

1 , η(p)

2

) − �
(m)

4

(
η

(p)

1 , η(p)

2

)
f

(
η

(N+m)

1 , η(N+m)

2

))

×
[
ψ(N+m)

(
t + 1

2
�t

)
+ ψ(N+m)

(
t − 1

2
�t

)]}

−
N1∑

m=1

{
q(m)(t)�

(m)

3

(
η

(p)

1 , η(p)

2

) + q(N+m)(t)�
(m)

4

(
η

(p)

1 , η(p)

2

)}

−
N∑

m=N1+1


�

(m)

3

(
η

(p)

1 , η(p)

2

) 1√
g
(
η

(m)

1 , η(m)

2

)v
(
η

(m)

1 , η(m)

2 , t
)]

+ �
(m)

4

(
η

(p)

1 , η(p)

2

) 1√
g
(
η

(N+m)

1 , η(N+m)

2

)v
(
η

(N+m)

1 , η(N+m)

2 , t
)



for p = 1, 2, . . . , 2N + P , (24)

where

E(k)(t) = D
(
η

(k)

1 , η(k)

2 , ψ(k)(t)
)
,

µ(kp) =
2N+P∑
j=1

χ(kj)�(j)
(
η

(p)

1 , η(p)

2

)
,
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α(k) =
{

0 for 1 ≤ k ≤ N1 or N + 1 ≤ k ≤ N + N1,
1 otherwise,

R(η1, η2, t) = √
g(η1, η2)K(u(η1, η2, t)). (25)

If E(n)(t) and ψ(n)(t − 1
2�t) are assumed known for n = 1, 2, . . . , 2N + P then (24) con-

stitutes a system of 2N + P linear algebraic equations containing 2N + P unknowns given by
q(m)(t) and q(N+m)(t) for m = 1, 2, . . . , N1, ψ(m)(t + 1

2�t) and ψ(N+m)(t + 1
2�t) for m = N1 + 1,

N1 + 2, . . . , N1 + N2, and ψ(p)(t + 1
2�t) for p = 2N + 1, 2N + 2, . . . , 2N + P . (Note that

N1 + N2 = N .) The unknowns can be determined numerically by repeating the steps below until
the numerical values of ψ at the selected points are obtained at the desired time level.

1. From the initial condition given in (10), compute the values ofψ(n)(0) forn = 1, 2, . . . , 2N+
P . Choose a small positive time-step �t . Set the integer J = 0. Go to Step 2.

2. Estimate the values of E(n)(J�t) using the latest known values of ψ(n)(J�t), that is,
E(n)(J�t) � D(η

(n)

1 , η(n)

2 , ψ(n)(J�t)). Go to Step 3.
3. Using the latest known values of E(n)(J�t) and ψ(n)(J�t), let t = (J + 1

2 )�t in (24) to
set up a system of linear algebraic equations and solve for the unknowns q(m)((J + 1

2 )�t)

and q(N+m)((J + 1
2 )�t) for m = 1, 2, . . . , N1, ψ(j)((J + 1)�t) and ψ(N+j)((J + 1)�t) for

j = N1+1, N1+2, . . . , N1+N2, and ψ(p)((J +1)�t) for p = 2N+1, 2N+2, . . . , 2N+P .
Go to Step 4.

4. Use the latest known values of ψ(n)((J + 1)�t) obtained in Step 3 above to compute
ψ(n)((J + 1

2 )�t) = 1
2 [ψ(n)((J + 1)�t) + ψ(n)(J�t)] for n = 1, 2, . . . , 2N + P . Re-

calculate E(n)(J�t) using E(n)(J�t) � D(η
(n)

1 , η(n)

2 , ψ(n)((J + 1
2 )�t)). Check whether the

newly obtained values of E(n)(J�t) agree with the previous values to within a specified
number of significant figures. If the required convergence is not achieved, go to Step 3.
Otherwise, increase the current value of J by 1 and go to Step 2.

V. SPECIFIC NUMERICAL EXAMPLES

To assess the validity and accuracy of the dual-reciprocity boundary element procedure outlined
earlier, it is applied to solve some specific problems here.

Problem 1. The thermal conductivity, density and specific heat capacity of the material are
taken to be given by kij = δij (1 + T ), ρ = 1 and c = 1 + 1

2T respectively. Note that δij

is the Kronecker-delta. The solution domain R is taken to be rectangular in shape, defined by
0 < x1 < 1, 0 < x2 < 1/5. Refer to Fig. 1. The initial-boundary conditions are given by

T (x1, x2, 0) = 0 for (x1, x2) ∈ R,

T (0, x2, t) = 1 for 0 < x2 <
1

5
and t > 0,

T (1, x2, t) = 0 for 0 < x2 <
1

5
and t > 0,
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FIG. 1. A sketch of the solution domain for Problem 1.

kijni

∂T

∂xj

∣∣∣∣
x2=0

= 0 for 0 < x1 < 1 and t > 0,

kijni

∂T

∂xj

∣∣∣∣
x2=1/5

= 0 for 0 < x1 < 1 and t > 0.

For this specific problem, λij = δij , h(T ) = 1 + T and g(x1, x2) = 1. Hence, from (4) and
(7), we may write ψ/

√
g = T + 1

2T
2. Solving for T and taking the positive square root of the

determinant yields T = −1 + √
2ψ/

√
g + 1. It follows that the partial differential equation to

solve is given by

∂2ψ

∂xi∂xi

= 1 + √
(2ψ/

√
g + 1)

2
√

(2ψ/
√

g + 1)

∂ψ

∂t
,

and the initial-boundary conditions are

ψ(x1, x2, 0) = 0 for (x1, x2) ∈ R,

ψ(0, x2, t) = 3

2
for 0 < x2 <

1

5
and t > 0,

ψ(1, x2, t) = 0 for 0 < x2 <
1

5
and t > 0,

q(x1, 0, t) = 0 for 0 < x1 < 1 and t > 0,

q

(
x1,

1

5
, t

)
= 0 for 0 < x1 < 1 and t > 0.

The sides of the rectangular domain are discretized into N equal length boundary elements.
The interior collocation points are given by (m/(M1 + 1), n/[5(M2 + 1)]) for m = 1, 2, . . . , M1

and n = 1, 2, . . . , M2. The parameter r in (14) is chosen to be 1/4 and the time-step �t by
1/(J0 + 1

2 ), where J0 is a selected positive integer. The time-stepping dual-reciprocity boundary
element method (DRBEM) is applied to compute ψ(x1, x2, t) numerically. Specifically, in fol-
lowing the steps outlined in Section IV, we take J = 0, 1, 2, . . . , J0 (consecutively) to compute
numerically the values of ψ at the chosen collocation points at consecutive time levels until we
obtain ψ(n)(1) = 1

2 [ψ(n)((J0 + 1)/(J0 + 1
2 )) + ψ(n)(J0/(J0 + 1

2 ))] for n = 1, 2, . . . , 2N + M1M2.
For each value of J , that is, at each time level, the final numerical values of ψ(n)((J + 1

2 )/(J0 + 1
2 ))

are obtained after iterating 3 times to and fro the last two steps in Section IV. The numerical values
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TABLE I. Numerical values of T at time t = 1 at selected interior points.

(x1, x2) Azis and Clements Goto and Suzuki Present DRBEM

(0.20, 0.10) 0.8398 0.8439 0.8448
(0.40, 0.10) 0.6664 0.6733 0.6738
(0.60, 0.10) 0.4754 0.4832 0.4826
(0.80, 0.10) 0.2589 0.2649 0.2649

of ψ(n)(1) obtained using N = 96 (each element of length 0.125 units), M1 = 9, M2 = 7 (63
interior collocation points) and J0 = 10 (�t = 2/21 � 0.0952) are used to compute the tempera-
ture at the collocation points (0.20, 0.10), (0.40, 0.10), (0.60, 0.10) and (0.80, 0.10) at time t = 1.
The numerical values of the temperature are compared with those given in Azis and Clements [9]
and Goto and Suzuki [7] in Table I. (In Refs. [7] and [9], the temperature is calculated using a
different boundary element approach.) The three sets of numerical values appear to be reasonably
close to one another, but our results here seem to be closer to those given by Goto and Suzuki [7]
than Azis and Clements [9].

Problem 2. In a particular problem considered in Azis and Clements [9], the thermal
conductivity, density and specific heat capacity are taken to be such that

[kij ] =
(

1 + 1

10
x1

)2 [
3 1
1 4

]
and ρc = 9

2T

(
1 + 1

10
x1

)
.

Here λ11 = 3, λ12 = λ21 = 1, λ22 = 4, g(x1, x2) = (1 + 1
10x1)

2, and h(T ) = 1.
With kij and ρc as given above, it may be verified that a particular solution of (1) is given by

T (x1, x2, t) = 1 − 1
4 (x1 + x2)

2

(1 + t)
(
1 + 1

10x1

) .

Proceeding as in Azis and Clements [9], we use the above particular solution to generate boundary
data for T and kijni∂T /∂xj , respectively, on the horizontal and vertical sides of the square domain
0 < x1 < 1, 0 < x2 < 1.

For this particular problem, ψ(x1, x2, t) = (1 + 1
10x1)T (x1, x2, t). We apply the DRBEM to

solve for ψ in the square domain subject to the generated boundary data. The boundary of the
square domain is divided into N elements of equal length and the interior collocation points are
chosen as (m/(M + 1), n/(M + 1)) for m = 1, 2, . . . , M and n = 1, 2, . . . , M . As in the first
problem above, we take the parameter r in (14) to be 1/4.

Two sets of numerical values of T at the point (0.50, 0.50) at selected time instants are com-
pared with the exact solution in Table II. Set A is obtained by using (N , M) = (60, 7) (49 interior
collocation points) and �t = 0.20, whereas Set B by (N , M) = (160, 15) (225 interior collo-
cation points) and �t = 2/30 � 0.06667. At a given time level, both sets of numerical values

TABLE II. Numerical and exact values of T at (0.50, 0.50) at selected time instants.

Time t Set A Set B Azis and Clements Exact

0.10 0.65327 0.64973 0.64907 0.64935
0.30 0.54941 0.54946 0.54914 0.54945
0.50 0.47550 0.47614 0.47587 0.47619
0.70 0.41969 0.42010 – 0.42017
0.90 0.37542 0.37585 – 0.37594
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FIG. 2. A graphical comparison of the numerical and exact T .

are obtained after iterating 5 times to and fro the last two steps in Section IV. Set B gives more
accurate numerical values of T than Set A, that is, the numerical solution shows convergence
towards the exact one when the DRBEM calculation is refined. Numerical values of T obtained
by Azis and Clements [9] by using a very small time-step of 0.001, discretizing the boundary
into 160 boundary elements and subdividing the solution domain into 1600 cells (for treating the
domain integral in their formulation) are also shown in Table II for t = 0.10, 0.30, and 0.50. (No
numerical value of T is given in [9] for t = 0.70 and t = 0.90.) Even though a relatively large
time-step is used here in Set A, the numerical values obtained appear to be quite comparable in
accuracy with those of [9].

Problem 3. In the two particular problems above, the spatial function g in (2) is such that the
coefficient B in the partial differential equation in (8) is zero. For a problem in which B does not
vanish in the solution domain, here we take

[kij ] = T exp(x1)

[
1 1
1 3

]
and ρc = T exp(x1),

so that λ11 = 1, λ12 = λ21 = 1, λ22 = 3, g(x1, x2) = exp(x1), and h(T ) = T .
The solution domain is as in Problem 1 (Fig. 1), that is, 0 < x1 < 1, 0 < x2 < 1/5. The

initial-boundary conditions are taken to be

T (x1, x2, 0) = exp

(
−1

4
x1

)
for (x1, x2) ∈ R,

T (0, x2, t) = exp

(
−1

8
t

)
for 0 < x2 <

1

5
and t > 0,

T (1, x2, t) = exp

(
−1

8
t − 1

4

)
for 0 < x2 <

1

5
and t > 0,

kijni

∂T

∂xj

∣∣∣∣
x2=0

= 0 for 0 < x1 < 1 and t > 0,

kijni

∂T

∂xj

∣∣∣∣
x2=1/5

= 0 for 0 < x1 < 1 and t > 0.
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To apply the DRBEM to solve for ψ = 1
2 exp

(
1
2x1

)
T 2, we discretize the sides of the rectan-

gular region into 180 equal length boundary elements, employ 105 evenly spaced out collocation
points in the interior of the solution domain and choose r in (14) and �t to be 1/4 and 2/41,
respectively.

In Fig. 2, over the time interval 0 ≤ t ≤ 3, we make a graphical comparison of the numerical
values of T (0.50, 0.10, t) with the exact solution given by T = exp(− 1

8 t − 1
4x1). The two graphs

are in reasonably good agreement with each other. The percentage errors for all the numerical
values of T (0.50, 0.10, t) over 0 ≤ t ≤ 3 are less than 0.8%.

VI. CONCLUSION

The task of solving a class of two-dimensional initial-boundary value problems governed by a
generalized nonlinear heat equation for nonhomogeneous anisotropic media is considered. With
the aid of the Kirchhoff’s transformation and an appropriate substitution of variables, the par-
tial differential equation is recast in a form that allows the initial-boundary value problem to be
formulated in terms of an integro-differential equation suitable for the development of a dual-
reciprocity boundary element method. A time-stepping dual-reciprocity boundary element method
is presented for the numerical solution of the initial-boundary value problem. To assess the valid-
ity and accuracy of the dual-reciprocity boundary element method, it is applied to solve a few
specific problems with known solutions. The numerical results obtained agree favorably with the
known solutions indicating that the method can be used to provide reliable and accurate numerical
solutions for the nonlinear heat equation.
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