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Abstract

In this paper, a torsion bar problem is solved by using BEM. It is found that a degenerate scale
problem occurs if the conventional BEM is used. In this case, the influence matrix is rank deficient
and numerical results become unstable. Three regularization techniques, method of adding a rigid
body mode, hypersingular formulation and CHEEF concept, are employed to deal with the rank-
deficiency problem. The existence of degenerate scale is proved for the two-dimensional Laplace
problem. The addition of a rigid body term, c, in the fundamental solution can shift the original
degenerate scale to a new degenerate scale by a factor e−c. A numerical example for circular bar
with keyway under torsion, was demonstrated to show the failure of conventional BEM in case of the
degenerate scale. After employing the three regularization techniques, the accuracy of the proposed
approaches is achieved.

1. Introduction

In the BEM implementation, the rigid body motion or so called constant potential test is always em-
ployed to examine the singular matrices of strongly singular kernels and hypersingular kernels for the
problems without degenerate boundaries. According to this concept, the diagonal terms of a singular
influence matrix can be easily determined. Singular matrix occurs physically and mathematically in
the sense that the nonunique solution for the singular matrix implies an arbitrary rigid body term
for the interior Neumann problem. However, the influence matrix of the weakly singular kernel may
be singular for the Dirichlet problem when the geometry is special. The nonunique solution is not
physically realizable but results from the zero singular value of the influence matrix in the BEM.
From the point of view of linear algebra, the problem also originates from the rank deficiency in the
influence matrices. For example, the nonunique solution of a circle with a unit radius has been noted
by Jaswon and Symm [4]. The special geometry which results in a nonunique solution for a potential
problem is called “degenerate scale”. Christiansen [2] termed it a critical value (C.V.) since it is
mathematically realizable. In real implementation, we need to avoid the number one for the circular
radius using the normalized scale. The numerical difficulties due to nonuniqueness of solutions have
been solved by using the necessary and sufficient boundary integral equation (NSBIE) [3] and bound-
ary contour method [6]. Chen et al. [1] studied the degenerate scale for the simply-connected and
multiply-connected problems by using the degenerate kernels and circulants in a discrete system for
circular and annular cases. Mathematically speaking, the singularity pattern distributed along a ring
boundary resulting in a null-field solution introduces a degenerate scale. SVD technique has been
used to detect the nonunique solution in case of degenerate scale [2].

In this study, we will propose three alternatives, method of adding a rigid body mode, hyper-
singular formulation and CHEEF technique, to overcome the nonunique solution in the numerical
implementation. Method of adding a rigid body mode in the fundamental solution can shift the zero
singular value in the conventional BEM. Instead of using the conventional BEM, the second equa-
tion in the dual BEM, i.e., hypersingular formulation, can avoid the zero singular value. By using
the CHEEF technique, the addition of a constraint by collocating the point outside the domain can
promote the rank of the singular matrix. A numerical example, torsion problem of circular bar with



keyway, will be demonstrated to see the numerical instability for the degenerate scale problem. The
treatment for the suppression of numerical instability will be done.

2. Dual boundary integral formulation and dual BEM for a torsion prob-
lem

The torsion problem of a bar with an arbitrary cross section in Fig.1 can be formulated by the Poisson
equation as follows [5]:

52u∗(x1, x2) = −2, (x1, x2) ∈ D, (1)

where u∗ is the torsion (Prandtl) function, ∇2 is the Laplacian operator and D is the domain. The
boundary condition is

u∗(x1, x2) = 0, (x1, x2) ∈ B, (2)

where B is the boundary. Since Eq.(1) contains the body source term which results in a domain
integral by using the BEM, the problem can be reformulated to

52u(x1, x2) = 0, (x1, x2) ∈ D, (3)

and the homogeneous boundary condition in Eq.(2) is changed to u(x1, x2) =
(x2

1+x2
2)

2
, where the

torsion function u∗ can be obtained from u by superimposing ũ, u = u∗ + ũ and ũ =
(x2

1+x2
2)

2
. This

new model for the torsion problem using Eq.(3) is the Laplace equation subject to the Dirichlet data,

u(x1, x2) =
(x2

1+x2
2)

2
, which is very easy to implement using the DBEM, e.g., the BEPO2D program

can be used in this study. The torque, Mz, can then be determined by

Mz =

∫∫
D

(x1τ23 − x2τ13) dx1 dx2, (4)

where τ23 and τ13 are the shearing stresses determined by τ23 = −κG∂u∗

∂x1
and τ13 = κG∂u∗

∂x2
, G is

the shear modulus and κ denotes the twist angle per unit length. By employing the Green’s second
identity and Eq.(1), the area integral in Eq.(4) can be transformed into a boundary integral and a
domain integral as follows:

Mz = −κG
∮

B

ũ
∂u∗

∂n
dB − κG

∫∫
D

(x2
1 + x2

2) dx1 dx2. (5)

The induced area integral of the second term on the right hand side of the equal sign in Eq.(5) can
be reformulated into a boundary integral again by using the Gauss theorem as follows:

−κG
∫∫

D

(x2
1 + x2

2) dx1 dx2 =
−κG
16

∮
B

∂{(x2
1 + x2

2)
2}

∂n
dB. (6)

The torsion problem can be simulated by using the mathematical model of the Laplace equation as
shown in Eq.(3). Using the Green’s identity, the first equation of the dual boundary regular integral
equations for the domain point x can be derived as follows:

2πu(x) =

∫
B

T (s, x)u(s) dB(s)−
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), (7)

where U(s, x) = ln(r) and T (s, x) = ∂U(s,x)
∂ns

, in which r is the distance between the field point x and
the source point s, and ns is the normal vector for the boundary point s. After taking the normal
derivative of Eq.(7), the second equation of the dual boundary regular integral equations for the
domain point x can be derived:

2π
∂u(x)

∂nx

=

∫
B

M(s, x)u(s)dB(s)−
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), (8)



where L(s, x) = ∂U(s,x)
∂nx

and M(s, x) = ∂2U(s,x)
∂nx∂ns

, in which nx is the normal vector for the field point
x. Eqs. (7) and (8) are coined the dual boundary regular integral equations for the domain point x.
By tracing the field point x to the boundary, the dual boundary singular integral equations for the
boundary point x can be derived:

πu(x) = C.P.V.

∫
B

T (s, x)u(s)dB(s)−R.P.V.

∫
B

U(s, x)
∂u(s)

∂ns

dB(s), (9)

π
∂u(x)

∂nx

= H.P.V.

∫
B

M(s, x)u(s)dB(s)− C.P.V.

∫
B

L(s, x)
∂u(s)

∂ns

dB(s), (10)

where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value, Cauchy principal value and
Hadamard principal value, respectively. After discretizing the boundary into 2N boundary elements,
Eqs. (9) and (10) reduce to [1]

[U ]2N×2N {t}2N×1 = [T ]2N×2N {u}2N×1 , (11)

[L]2N×2N {t}2N×1 = [M ]2N×2N {u}2N×1 , (12)

where {u} and {t} are the boundary data for the primary and the secondary boundary variables,
respectively. To determine the torsion rigidity using Eq.(5), the following boundary integral can be
integrated numerically as follows:∮

B

ũ
∂u∗

∂n
dB =

∮
B

ũ
∂u

∂n
dB −

∮
B

ũ
∂ũ

∂n
dB =

2N∑
j=1

ũj[(
∂u

∂n
)j − (

∂ũ

∂n
)j] lj, (13)

where (∂u
∂n

)j is the normal derivative of u for the jth boundary element, lj is the length of the jth

boundary element and another boundary integral in Eq.(6) can be discretized as follows:∮
B

∂{(x2
1 + x2

2)
2}

∂n
dB = 4

2N∑
j=1

(
∂ũ2

∂n
)j lj. (14)

3. Proof of the existence theorem for the degenerate scale

Theorem:
For any two-dimensional Laplace problem with a simply-connected domain, there exists a degenerate
scale when we solve the problem by using the boundary integral formulation or BEM.
Proof:
For two-dimensional potential problems, there exists a unique solution for ψ1(s) satisfying

u(x) =

∫
B

U(s, x)ψ1(s) dB(s), x ∈ B, (15)

where B is the normal boundary with the enclosing domain D. For simplicity, we can assume a
constant potential field since it is a “simple solution” for the Laplace equation. Eq.(15) reduces to

1 =

∫
B

U(s, x)ψ1(s) dB(s), x ∈ B. (16)

When the degenerate scale Bd occurs, the nonunique solution of Eq.(16) implies that

0 =

∫
Bd

U(s, x)ψ1(s) dB(s), x ∈ Bd, (17)

has a nontrivial solution for ψ1(s), where Bd is the boundary of degenerate scale using the fundamental
solution U(s, x) = ln(r). By expressing the boundary contour in terms of f(x1, x2) = 0 as shown in



Fig.2, we have a new closed boundary curve,f(x1

d
, x2

d
) = 0. By mapping the nondegenerate (normal)

boundary to the degenerate boundary, we have (x1, x2) ⇒ (x1 d, x2 d) = (x1, x2) d, dB(s) ⇒ dB(s d) =
dB(s) d, U(s, x) ⇒ U(s d, x d) = U(s, x) + ln (d), ψ1(s) ⇒ ψ̄1(s d) = ψ1(s). According to mapping
properties, the homogeneous Eq.(17) yields

0 =

∫
Bd

U(s d, x d) ψ̄1(s d) dB(s d). (18)

In order to have a nontrivial solution for Eq.(18), we have

d+ d ln (d) Γ = 0, (19)

after using Eq.(16) and defining

Γ =

∫
B

ψ1(s)dB(s). (20)

According to Eq.(19), the degenerate scale occurs when the expansion ratio, d, satisfies d = e−
1
Γ . The

degenerate scale can be determined using only one normal scale. �

4. Three regularization techniques to deal with a degenerate scale problem

4.1. Method of adding a rigid body mode
Since the [U ] matrix is singular in case of the degenerate scale, the modified fundamental solution can
be added by a rigid body term c,

U∗(s, x) = U(s, x) + c. (21)

The influence matrix [U ] is modified to [U∗], where the component form for the element is

U∗
ij = Uij + c lj. (i, j = 1, · · · 2N) (22)

The zero singular value in [U ] moves to a nonzero value for [U∗]. To demonstrate the effectiveness,
the minimum singular value using the modified fundamental solution will be shown in the numerical
example.
4.2. Hypersingular formulation
Instead of using the Eq.(11) in the conventional BEM, Eq.(12) in the dual BEM is used. To demon-
strate the idea, the singular value for the [L] matrix will be shown to be nonzero no matter what the
expansion ratio is in the following numerical example.
4.3. CHEEF method
Since the [U ] matrix is singular, the rank is deficient. In order to promote the rank, the independent
constraint is required. To resort to the null field equation by collocating the point outside the domain,
we have

{wU} {t} = {wT} {u}, (23)

where {wU} and {wT} are the influence row vectors by collocating the exterior point in the null-field
equation. By combining Eq.(11) with Eq.(23), we have[

[U ]2N×2N

{wU}1×2N

]{
t

}
2N×1

=

[
[T ]2N×2N

{wT}1×2N

]{
u

}
2N×1

. (24)

According to the Eq.(24), we can obtain the reasonable solution by using either the least squares
method or the SVD technique.

5. A numerical example

For the circular bar with keyway under torsion, the analytical solution for the conjugate warping
function is [5]

u(x1, x2) = ax1(1−
b2

x2
1 + x2

2

+
1

2
b2), (x1, x2) ∈ D, (25)



The torsion rigidity, Tr, is
Tr = 2Ga4k2, (26)

where

k2 =
1

24
(sin 4γ + 8 sin 2γ + 12γ)− 1

2
(
b

a
)2(sin 2γ + 2γ) +

4

3
(
b

a
)3(sin γ) +

1

4
(
b

a
)4γ (27)

in which cos γ = b
2a

. Table 1 shows the torsional rigidity by using different approaches. Also, the
degenerate scale is found in Table 1 using Eq.(20). The conventional BEM (UT formulation) can
not obtain the acceptable results for the case of degenerate scale as shown in Table 1. By using the
conventional BEM, the zero singular value occurs in case of the degenerate scale. After adding the
rigid body term in the fundamental solution, the zero singular value moves to another degenerate
scale (1.05e−1) instead of original one (1.05) as shown in Fig.3(a). To investigate how seriously the
rank deficiency behaves, we plot the second minimum singular value versus the scale in Fig.3(b). It
indicates that rank is deficient by one only. By employing the hypersingular equation in the dual
BEM, it is found that the singular value of [L] matrix for any scale is nonzero as shown in Fig.3(c).
In order to avoid hypersingularity, the CHEEF method by collocating one point outside the domain
can promote the rank as shown in Fig.3(d).

6. Conclusions

In this paper, the numerical instability for a torsion problem by using the conventional BEM was
addressed. Instead of direct searching for the degenerate scale by trial and error, a more efficient
technique was proposed to directly obtain the singular case since only one normal scale needs to
be computed. To deal with the numerical instability due to the degenerate scale, three approaches,
method of adding a rigid body mode, hypersingular formulation and CHEEF method, were successfully
applied to remove the zero singular value. Good agreement between the BEM results and the analytical
solutions were obtained if the regularization techniques were used. A numerical example of a circular
bar with keyway was demonstrated to check the validity.
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Table 1 Degenerate scale and torsion rigidity for a circular bar with keyway using different methods. 

Torsion rigidity            Scale 

 Method 
Normal scale  (a=2.0) Degenerate scale  (a=1.05) 

Analytical method 12.6488 0.9609 

Direct BEM (UT) 12.5440  (error=0.83%) 1.8712  (error=94.73%) 

Direct BEM (LM) 0.9530  (error=0.82%) 

Adding rigid body term (c=1.0) 0.9876  (error=2.78%) 

CHEEF technique   (20.0, 20.0) 

Regularization techniques are not 
necessary 

Normal scale 
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Fig.1 Figure sketch of the torsion problem.                     Fig. 2  The normal scale domain D and the degenerate scale domain 
dD .  
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Fig. 3 (a) The first minimum singular value versus scale using the conventional        Fig. 3 (b) The second minimum singular value versus scale using the  

BEM (UT formulation) and method of adding a rigid body term.                    conventional BEM (UT formulation). 
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Fig. 3 (c) The first minimum singular value versus scale by using the               Fig. 3 (d) The first minimum singular value versus scale by using the 

  hypersingular equation (LM formulation).                                    conventional BEM (UT formulation) and CHEEF method. 
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