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Construction of Green’s function using null-field integral
approach for Laplace problems with circular boundaries

Jeng-Tzong Chen1,2, Jia-Nan Ke1 and Huan-Zhen Liao1

Abstract: A null-field approach is employed to derive the Green’s function for
boundary value problems stated for the Laplace equation with circular boundaries.
The kernel function and boundary density are expanded by using the degenerate
kernel and Fourier series, respectively. Series-form Green’s function for interior
and exterior problems of circular boundary are derived and plotted in a good agree-
ment with the closed-form solution. The Poisson integral formula is extended to
an annular case from a circle. Not only an eccentric ring but also a half-plane
problem with an aperture are demonstrated to see the validity of the present ap-
proach. Besides, a half-plane problem with a circular hole subject to Dirichlet and
Robin boundary conditions and a half-plane problem with a circular hole and a
semi-circular inclusion are solved. Good agreement is made after comparing with
the Melnikov’s results.

Keywords: degenerate kernel, Fourier series, Green’s function, null-field approach
and Poisson integral formula.

1 Introduction

Green’s function has been studied and applied in many fields by mathematicians as
well as engineers [Jaswon and Symm (1977); Melnikov (1977); Yang and Tewary
(2008); Yang, Wong and Qu (2008)]. According to the superposition principle, the
problems with distributed loading can be easily solved. The main difference from
the fundamental solution (free-space Green’s function) is that it not only satisfies
the governing equation with a concentrated source but also matches the bound-
ary condition of bounded domain. Poisson integral formula was constructed after
the special Green’s function is obtained. It is well known that the kernel function
in the Poisson integral formula is the normal derivative of the Green’s function
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for the Dirichlet problem of a circle. For deriving the Green’s function, Thomson
[Thomson (1848)] proposed the concept of reciprocal radii to find the image source
to satisfy the homogeneous Dirichlet boundary condition. A Green’s function for
a continuously non-homogeneous saturated media has been presented [Seyrafian,
Gatmiri and Noorzad (2006)]. On the other hand, Chen and Wu [Chen and Wu
(2006)] proposed an alternative way to find the location of image through the de-
generate kernel. For a complicated domain, the closed-form Green’s function as
well as series form is not easy to obtain. Analytical Green’s functions have been
presented for only a few configurations in two-dimensional applications and require
complex variable theory. Numerical Green’s function has received attention from
BEM researchers by Telles et al. [Telles, Castor and Guimaraes (1995); Guimaraes
and Telles (2000); Ang and Telles (2004); Melnikov (2001)]. Melnikov used the
method of modified potential (MMP) to calculate the Green’s function of eccentric
ring and half-plane problems with a circular boundary. Boley [Boley (1956)] ana-
lytically constructed the Green’s function by using the successive approximation.
Adewale [Adewale (2006)] proposed an analytical solution for an annular plate
subjected to a concentrated load which also belongs to the Green’s function.

In this paper, we focus on the null-field approach to determine the Green’s function
for problems with circular boundaries. Green’s functions for annular, eccentric
case and half-plane problems with a circular hole or an aperture and a semi-circular
inclusion are found semi-analytically. Analytical and semi-analytical solutions for
the annular case are checked by each other. The results of eccentric case and half-
plane problems with a circular hole or an aperture and a semi-circular inclusion are
compared with those by Melnikov.

2 Derivation of the Green’s function for Laplace problems with circular bound-
aries

2.1 Problem statement and null-field integral approach to construct the Green’s
function

For a two-dimensional problem with circular boundaries as shown in Fig. 1, the
Green’s function satifies

∇2G(x,ξ ) = δ (x−ξ ), x ∈ D, (1)

where D is the domain and δ (x− ξ ) denotes the Dirac-delta function of source at
ξ . For simplicity, this problem is subject to the Dirichlet boundary condition

G(x,ξ ) = 0, x ∈ B, (2)
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Figure 1: Green’s function for a Laplace problem with circular boundaries

where B is the boundary. In order to employ the Green’s third identity [Rashed
(2004)] as follows∫∫
D

[u(x)∇2v(x)− v(x)∇2u(x)]dD(x) =
∫
B

[(u(x)
∂v(x)

∂n
− v(x)

∂u(x)
∂n

]dB(x), (3)

we need two systems, u(x) and v(x). We choose u(x) as G(x,ξ ) and set v(x) as the
fundamental solution U(x,s) such that

∇2U(x,s) = 2πδ (x− s). (4)

Then, we can obtain the fundamental solution as follows

U(s,x) = lnr, (5)

where r is the distance between s and x (r ≡ |x− s|).
After exchanging with the variables x and s, we have

2πG(x,ξ ) =
∫
B

T (s,x)G(s,ξ )dB(s)−
∫
B

U(s,x)
∂G(s,ξ )

∂ns
dB(s)+U(ξ ,x), (6)

where T (s,x) is defined by

T (s,x)≡ ∂U(s,x)
∂ns

, (7)
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in which ns denotes the outward normal vector at the source point s. To solve
the above equation, we utilize the null-field integral equation to derive the Green’s
function. To solve the unknown boundary density ∂G/∂ns, the field point x is
located outside the domain to yield the null-field integral equation as shown below:

0 =
∫

B
T (s,x)G(s,ξ )dB(s)−

∫
B

U(s,x)
∂G(s,ξ )

∂ns
dB(s)+U(ξ ,x), x ∈ Dc (8)

where Dc is the complementary domain. By using the degenerate kernels, the BIE
for the “boundary point” can be easily derived through the null-field integral equa-
tion by exactly collocating x on B in Eq. (8) [Chen, Shen and Chen (2006)].

2.2 Expansion of kernel function and boundary density

Based on the separable property, the kernel function U(s,x) can be expanded into
series form by separating the field point x(ρ,φ) and source point s(R,θ) in the
polar coordinates:

U (s,x) =


U i(R,θ ;ρ,φ) = lnR−

∞
∑

m=1

1
m

(
ρ

R

)m
cosm(θ −φ), R≥ ρ

Ue(R,θ ;ρ,φ) = lnρ−
∞
∑

m=1

1
m

(
R
ρ

)m
cosm(θ −φ), ρ > R

(9)

It is noted that the leading term and the denominator in the above expansion in-
volve the larger argument to ensure the log singularity and the series convergence,
respectively. According to the definition of T (s,x)in Eq. (7), we have

T (s,x) =


T i(R,θ ;ρ,φ) = 1

R +
∞
∑

m=1
( ρm

Rm+1 )cosm(θ −φ), R > ρ

T e(R,θ ;ρ,φ) =−
∞
∑

m=1
(Rm−1

ρm )cosm(θ −φ), ρ > R
(10)

The unknown boundary densities can be represented by using the Fouries series as
shown below:

G(sk,ξ ) = ak
0 +

∞

∑
n=1

(ak
n cosnθk +bk

n sinnθk), sk ∈ Bk, k = 1,2, · · · ,N, (11)

∂G(sk,ξ )
∂ns

= pk
0 +

∞

∑
n=1

(pk
n cosnθk +qk

n sinnθk), , sk ∈ Bk, k = 1,2, · · · ,N, (12)

where N is the number of circular boundaries. In real computation, the finite num-
ber of M terms for expansion of kernel and boundary density are adopted.
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Figure 2: (a): Problem statement of Green’s function for annular case; (b): Green’s
function for the annular case (analytical solution, M=50); (c): Green’s function for
the annular case (semi-analytical solution, M=50)

3 Series representation for the Green’s function of annular case

For the annular case as shown in Fig. 2(a) subject to the Dirichlet boundary con-
dition, the unknown Fourier series can be analytically derived. By collocating x on
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(b+,φ) and (a−,φ), the null-field equations yield

0 = (1−2πbp0−2πap̄0) lnb

−
∞

∑
m=1

1
m
{[bπ pm +aπ(

a
b
)m p̄m +(

Rs

b
)m cosmθs]cosmφ

+[bπqm +aπ(
a
b
)mq̄m +(

Rs

b
)m sinmθs]sinmφ},x→ (b+,φ) (13)

0 = (lnRs−2πb lnbp0−2πa lna p̄0)

−
∞

∑
m=1

1
m
{[bπ(

a
b
)m pm +aπ p̄m +(

a
Rs

)m cosmθs]cosmφ

+[bπ(
a
b
)mqm +aπ q̄m +(

a
Rs

)m sinmθs]sinmφ},x→ (a−,φ) (14)

where a and b are the inner and outer radii, respectively. For the Dirichlet case, the
explicit form for the unkown Fourier series can be obtained as

{
p0

p̄0

}
=

{
lna−lnRs

2πb(lna−lnb)
lnb−lnRs

2πa(lnb−lna)

}
(15)

{
pm

p̄m

}
=


bm−1 cosmθs[bm( Rs

b )m−am( a
Rs

)m]
(b2m−a2m)π

bm cosmθs[bm( a
Rs

)m−am( Rs
b )m]

a(b2m−a2m)π

 (16)

{
qm

q̄m

}
=


bm−1 sinmθs[bm( Rs

b )m−am( a
Rs

)m]
(b2m−a2m)π

bm sinmθs[bm( a
Rs

)m−am( Rs
b )m]

a(b2m−a2m)π

 (17)

where pm, qm, p̄m and q̄m are the Fourier coefficients of boundary densities for
normal flux as shown below:

t(s) =
∞

∑
m=0

(p̄m cosmθ + q̄m sinmθ), s ∈ inner boundary (18)

t(s) =
∞

∑
m=0

(pm cosmθ +qm sinmθ), s ∈ outer boundary (19)
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By substituting all the boundary densities into the integral representation for the
domain point, we have the series-form Green’s function as shown below:

G(x,ξ ) =−(b lnb p0 +a lnρ p̄0)

+
∞

∑
m=1

1
2m
{[b(

ρ

b
)m pm +a(

a
ρ

)m p̄m]cosmφ

+[b(
ρ

b
)mqm +a(

a
ρ

)mq̄m]sinmφ}+ ln |x−ξ |
2π

, a≤ ρ ≤ b (20)

If we expand the ln |x−ξ | function, we have

G(x,ξ ) =−(b lnbp0 +a lnρ p̄0−
lnρ

2π
)

+
∞

∑
m=1

1
2m
{[b(

ρ

b
)m pm +a(

a
ρ

)m p̄m− (
Rs

ρ
)m cosmθs

π
]cosmφ

+[b(
ρ

b
)mqm +a(

a
ρ

)mq̄m− (
Rs

ρ
)m sinmθξ

π
]sinmφ}, Rs ≤ ρ ≤ b (21)

G(x,ξ ) =−(b lnb p0 +a lnρ p̄0−
lnRs

2π
)

+
∞

∑
m=1

1
2m
{[b(

ρ

b
)m pm +a(

a
ρ

)m p̄m− (
ρ

Rs
)m cosmθs

π
]cosmφ

+[b(
ρ

b
)mqm +a(

a
ρ

)mq̄m− (
ρ

Rs
)m sinmθξ

π
]sinmφ}, a≤ ρ ≤ Rs (22)

Also, two limiting cases are our concern. One is the interior case of a to zero and
the other is the exterior case of b to infinity. Now we move to solve the solution
w(x) for the following partial differential equation

∇2w(x) = 0, x ∈ D, (23)

subject to the following Dirichlet boundary condition

w(x) = f (x), x ∈ inner boundary B1 (24)

w(x) = g(x), x ∈ outer boundary B2 (25)

To extend the Poisson integral formula to an annular case for Eq. (20) subject to
BCs of Eqs. (24) and (25), we have

2πw(x) =
∫

B1+B2

∂G(s,x)
∂ns

w(s)dB(s) (26)
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where G(s,x) is the derived Green’s function of Eq. (20). Equation (26) indicates
the representation for the solution in terms of general Poisson integral formula.

Although the series-form Green’s function for an annular case is derived analyti-
cally in the section, general Green’s functions can be solved semi-analytically as
shown in the following section.

4 Linear algebraic equation

By moving the null-field point x j to the jth circular boundary in the limiting sense
for Eq. (8), we have the linear algebraic equation

[U]{t}= [T]{u}+{b}, (27)

where {b} is the vector due to the source of Green’s function, [U] and [T] are
the influence matrices with a dimension of (N + 1)(2M + 1) by (N + 1)(2M + 1),
{u} and {t} denote the column vectors of Fourier coefficients with a dimension of
(N +1)(2M+1) by 1 in which [U], [T], {u}, {t} and {b} can be defined as follows:

[U] =


U00 U01 · · · U0N

U10 U11 · · · U1N
...

...
. . .

...
UN0 UN1 · · · UNN

 , [T] =


T00 T01 · · · T0N

T10 T11 · · · T1N
...

...
. . .

...
TN0 TN1 · · · TNN

 , (28)

{u}=



u0

u1

u2
...

uN


, {t}=



t0

t1

t2
...

tN


, {b}=



b0

b1

b2
...

bN


(29)

where the vectors {uk} and {tk} are in the form of
{

ak
0 ak

1 bk
1 · · · ak

M bk
M

}T

and
{

pk
0 pk

1 qk
1 · · · pk

M qk
M

}
}T respectively; the first subscript “ j” ( j = 0, 1,

2, ..., N) in
[
U jk
]

and
[
T jk
]

denotes the index of the jth circle where the collocation
point is located and the second subscript “k” (k = 0, 1, 2, · · · , N) denotes the index
of the kth circle where boundary data {uk} or {tk} are specified, N is the number of
circular holes in the domain and M indicates the truncated terms of Fourier series.
The coefficient matrix of the linear algebraic system is partitioned into blocks, and
each off-diagonal block corresponds to the influence matrices between two different
circular cavities. The diagonal blocks are the influence matrices due to itself in
each individual hole. After uniformly collocating the point along the kth circular
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boundary, the submatrix can be written as

[
U jk
]
=



U0c
jk (φ1) U1c

jk (φ1) U1s
jk (φ1)

U0c
jk (φ2) U1c

jk (φ2) U1s
jk (φ2)

U0c
jk (φ3) U1c

jk (φ3) U1s
jk (φ3)

...
...

...
U0c

jk (φ2M) U1c
jk (φ2M) U1s

jk (φ2M)
U0c

jk (φ2M+1) U1c
jk (φ2M+1) U1s

jk (φ2M+1)

· · · UMc
jk (φ1) UMs

jk (φ1)
· · · UMc

jk (φ2) UMs
jk (φ2)

· · · UMc
jk (φ3) UMs

jk (φ3)
. . .

...
...

· · · UMc
jk (φ2M) UMs

jk (φ2M)
· · · UMc

jk (φ2M+1) UMs
jk (φ2M+1)


(30)

[
T jk
]
=



T 0c
jk (φ1) T 1c

jk (φ1) T 1s
jk (φ1)

T 0c
jk (φ2) T 1c

jk (φ2) T 1s
jk (φ2)

T 0c
jk (φ3) T 1c

jk (φ3) T 1s
jk (φ3)

...
...

...
T 0c

jk (φ2M) T 1c
jk (φ2M) T 1s

jk (φ2M)
T 0c

jk (φ2M+1) T 1c
jk (φ2M+1) T 1s

jk (φ2M+1)

· · · T Mc
jk (φ1) T Ms

jk (φ1)
· · · T Mc

jk (φ2) T Ms
jk (φ2)

· · · T Mc
jk (φ3) T Ms

jk (φ3)
. . .

...
...

· · · T Mc
jk (φ2M) T Ms

jk (φ2M)
· · · T Mc

jk (φ2M+1) T Ms
jk (φ2M+1)


(31)

{
b j
}

=



ln
∣∣x(ρ j,φ1)−ξ

∣∣
ln
∣∣x(ρ j,φ2)−ξ

∣∣
ln
∣∣x(ρ j,φ3)−ξ

∣∣
...

ln
∣∣x(ρ j,φ2M+1)−ξ

∣∣


(32)
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where the influence coefficients are explicitly expressed as

Unc
jk (φm) =

∫
Bk

U(sk,xm) cos(nθk) Rkdθk, (33)

Uns
jk (φm) =

∫
Bk

U(sk,xm) sin(nθk) Rkdθk, (34)

T nc
jk (φm) =

∫
Bk

T (sk,xm) cos(nθk) Rkdθk, (35)

T ns
jk (φm) =

∫
Bk

T (sk,xm) sin(nθk) Rkdθk, (36)

where n = 0, 1, 2, · · · , M, m = 1, 2, · · · , 2M + 1, and φm is the polar angle of
the collocating point xm along the boundary. By rearranging the known and un-
known sets, the unknown Fourier coefficients are determined. Equation (8) can be
calculated by employing the relations of trigonometric function and the orthogonal
property in the real computation. Only the finite number of M terms are used in the
Fourier expansion of boundary densities and kernels. After obtaining the unknown
Fourier coefficients, we can obtain the interior potential by employing Eq. (6).

5 Derivation of the Green’s function with several circular holes and inclu-
sions

For the problems with inclusions, we can decompose into subsystems of matrix and
inclusion after taking free body on the interface. The two systems of matrix and
inclusion yield[
UM]{tM}=

[
T M]{uM} (37)[

U I]{tI}=
[
T I]{uI}+{b} (38)

where the superscripts “M” and “I” denote the systems of matrix and inclusion,
respectively. Two constrains of continuity for the displacement and equilibrium of
force are shown below:{

uM}=
{

uI} on Bk, (39)

[−λ2]
{

tM}= [λ1]
{

tI} on Bk, (40)

where λ1 and λ2 represent the material conductivity of inclusion and matrix, re-
spectively.

By assembling the matrices in Eqs. (37), (38), (39) and (40), we have
T M −UM 0 0
0 0 T I −U I

I 0 −I 0
0 −λ2 0 −λ1




uM

tM

uI

tI

=


0

U(ξ ,x)−U(ξ ′,x)
0
0

 (41)
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The unknown coefficients in the algebraic system can be determined. Then, we can
solve the potential by Eq. (6). The half-plane problem is imbedded to a full-plane
problem through the image method. By employing the anti-symmetric property,
the boundary condition of half-plane can be satisfied through the image approach.
In the real implementation, the full-plane problem is solved, first.

6 Illustrative examples and discussions

Case 1: annular case (analytical and semi-analytical solutions).

The influence matrix is singular for the Dirichlet problem as the radius b is one.
No matter what the null-field point collocated (a− and b+) due to the property of
degenerate kernel in Eq. (9), one column of the influence matrix [U ] is a zero
vector. For more detail, please find our recent work [Chen and Shen (2007)] for
eccentric Laplace problems. Another one by Liu and Lean can be consulted [Liu
and Lean (1990)]. To avoid the degenerate scale, we design the radii of inner and
outer boundaries are 4 and 10. The source of the Green’s function is located on
ξ = (0,7.5). For the annular Green’s function, both the analytical solution and the
semi-analytical results are shown in Figs. 2(b) and 2(c). The analytical solution
is obtained by truncating Fourier series of fifty terms in real implementation. One
hundred and one collocation points along the inner and outer boundaries are used
in the semi-analytical approach. Good agreement is made to verify the validity of
the program using the semi-analytical procedure.

Case 2: eccentric ring (a semi-analytical solution).

Figure 3(a) depicts the Green’s function of the eccentric ring. The source point is
located at ξ = (0,0.75). Figures 3(b) and 3(c) show the potential distribution by
using the present method and Melnikov’s approach, respectively. The two radii of
inner and outer circles are a=0.4 and b=1.0. The two centers of the inner and outer
circles are (-0.4, 0) and (0,0), respectively. It is noted that outer radius of one is
a degenerate scale and needs special treatment as described in detail by Chen and
Shen. Comparison of the present results with those MCP and MMP methods is
shown in Table 1. Good agreement is made.

Case 3: a half plane with an aperture (a semi-analytical solution).

Figure 4(a) depicts the Green’s function for the half plane with a hole. The source
point is located at ξ = (2,1). The center and radius of the aperture are (0,3) and
a=1.0. Figures 4(b) and 4(c) show the potential distribution by using the present
method and Melnikov’s approach, respectively. Good agreement is made.

Case 4: a half-plane problem with a circular boundary subject to the Robin bound-
ary condition.
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Table
1:

C
om

parison
of

the
num

ericalresults

F
ield

point,y
M

C
P

M
M

P
P

resent
M

ethod
P

artitioning
num

ber,k
[M

elnikov
and

M
elnikov

(2001)]
F

ourier
term

,M
10

20
50

10
20

50
10

20
50

0
0.000280

0.000128
0.000067

0.000107
0.000049

0.000032
0.000000

0.000000
0.000000

0.2
0.010667

0.010712
0.010781

0.010700
0.010779

0.010798
0.010832

0.010832
0.010832

0.4
0.062359

0.062411
0.062443

0.062407
0.062435

0.062448
0.062458

0.062462
0.062462

0.6
0.177534

0.177574
0.177585

0.177583
0.177590

0.177593
0.177597

0.177596
0.177596

0.8
0.317893

0.317902
0.317911

0.317907
0.317913
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Figure 3: (a): Problem statement of Green’s function for the eccentric ring; (b):
Melnikov’s method [Melnikov and Melnikov (2001)]; (c): Present method (M=50)

A half-plane problem with an aperture is considered. The governing equation and
boundary condition are shown in Fig. 5(a). The center and radius of the aperture
are (2,2) and a=1.0, respectively. The Robin condition is t =−2u imposed on the
aperture. The concentrated source is located at (0,3.5). Figures 5(b) and 5(c) show
the potential distribution by using the present method and Melnikov’s approach,
respectively. Good agreement is obtained.

Case 5: a half plane problem with a hole and an inclusion.

A half-plane problem with a circular hole and a half-circular inclusion are consid-
ered as composed of two regions D1 = {0 < r < 1, 0 < ϕ < π} and D2 = {1 < r <
∞, 0 < ϕ < π} filled in with different materials (λ = λ2/λ1 = 0.1). The governing
equation and boundary condition are shown in Fig. 6(a). The center and radius of
the aperture are (r,ϕ;1.4,π/3) and a2 = 0.4, respectively. The concentrated source
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Figure 4: (a): Problem statement of Green’s function for the half-plane with an
aperture; (b): Melnikov’s method [Melnikov and Melnikov (2001)]; (c): Present
method (M=50)

is located at (r,ϕ;0.5,π/3). Figures 6(b) and 6(c) show the potential distribution by
using the present method and Melnikov’s approach, respectively. Good agreement
is also made.

7 Concluding remarks

For the Green’s function with circular boundaries, we have proposed a semi-analytical
approach to construct the Green’s function by using degenerate kernels and Fourier
series. The series-form Green’s function for annular Dirichlet problem is derived
which can extend the Poisson integral formula from a circle to an annular case.
Several examples, including the annular, eccentric cases and half plane problems
with circular holes and inclusions, were demonstrated to check the validity of the
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Figure 5: (a): Problem statement of Green’s function for the half-plane problem
with the Robin boundary condition; (b): Contour plot by using the Melnikov’s
approach [Melnikov and Melnikov (2006)]; (c): Contour plot by using the null-
field integral equation approach (M=50)

present formulation. Our advantages are five folds: (1) mesh-free generation (2)
well-posed model (3) principal value free (4) elimination of boundary-layer effect
(5) exponential convergence. A general-purpose program to construct the Greem’s
fuction for Laplace problems with circular boundaries of arbitrary number, radius
and location was implemented. Extension to construct the Green’s functions for
Laplace problems with circular boundaries is straightforward without any difficulty.
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