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ABSTRACT 

In this paper, the two classical elasticity problems, Lamé problem and stress concentration factor, are 
revisited by using the null-field integral equation.  The null-field integral formulation is utilized in con-
junction with degenerate kernel and Fourier series.  To fully utilize the circular geometry, the funda-
mental solutions and the boundary densities are expanded by using degenerate kernels and Fourier series, 
respectively.  In the two classical problems of elasticity, the null-field BIE is employed to derive the ex-
act solutions.  The Kelvin solution is first separated to degenerate kernel in this paper.  After employing 
the null-field BIE, not only the stress but also the displacement field are obtained at the same time.  In a 
similar way, Lamé problem is solved without any difficulty. 

Keywords : Degenerate kernel, Null-field integral equation, Stress concentration factor, Lamé prob-
lem. 

1.  INTRODUCTION 

Engineering problems are always simulated by using 
the mathematical models, e.g., the steady state heat 
conduction problem [1], electrostatic potential [2] and 
torsion bar problems [3] are simulated by the Laplace 
equation; membrane vibration [4], acoustics [5] and 
water wave problems [6] are governed by the Helm-
holtz equation; plate vibration [7] and Stokes’ flow [8] 
are formulated by the biharmonic equation.  In order 
to solve boundary value problems, researchers and en-
gineers have paid more attention on the development of 
boundary integral equation method (BIEM), boundary 
element method (BEM) and meshless method than do-
main type methods, finite element method (FEM) and 
finite difference method (FDM).  Among various nu-
merical methods, BEM is one of the most popular nu-
merical approaches for solving boundary value prob-
lems.  Although BEM has been involved as an alterna-
tive numerical method for solving engineering prob-
lems, some critical issues exist, e.g. singular and hy-
persingular integrals, boundary-layer effect, ill-posed 

system and mesh generation.  
Unlike the conventional BEM and BIEM, Waterman 

[9] introduced first the so-called T-matrix method for 
electromagnetic scattering problems.  Various names, 
null-field approach or extended boundary condition 
method (EBCM), have been coined from researchers of 
different fields.  The null-field approach or T-matrix 
method was used widely for obtaining numerical solu-
tions of acoustics [10], elastodynamics [11] and hydro-
dynamics [12].  Boström [13] introduced a new 
method of treating the scattering of transient fields by a 
bounded obstacle in the three-dimensional space.  He 
defined new sets of time-dependent basis functions, and 
used these to expand the free space Green’s function 
and the incoming and scattered fields.  The method is 
a generalization to the time domain of the null-field 
approach first given by Waterman [9].  A crucial ad-
vantage of the null-field approach or T-matrix method 
consists in the fact that the influence matrix can be 
computed easily.  Although many works for acoustic, 
elastodynamic and hydrodynamic problems have been 
done, only a few articles on elastostatics can be found 
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[14].  The idea of changing the singularity distribution 
from real boundary to fictitious boundary (fictitious 
BEM) or putting the observation point outside the do-
main (null-field approach) can remove the singular and 
hypersingular integrals.  However, they may result in 
an ill-posed matrix. 

In the Fredholm integral equations, the degenerate 
kernel (or so-called separate kernel) plays an important 
role in mathematical analysis.  Addition theorem may 
be better termed subtraction theorem to connect the 
degenerate kernel of two-point function of difference 
type in BEM implementation.  However, its applica-
tions in practical problems seem to have taken a back 
seat to other methods.  This degenerate kernel can be 
seen as one kind of approximation for fundamental so-
lution, i.e., the kernel function is expressed as finite 
sums of products by two linearly independent functions.  
The concept of generating “optimal” degenerate kernels 
has been proposed by Sloan et al. [15].  They also 
proved it to be equivalent to the iterated Petrov- 
Galerkin approximation.  Later, Kress [16] proved that 
the integral equations of the second kind in conjunction 
with degenerate kernels have the convergence rate of 
exponential order instead of the linear algebraic order 
of conventional BEM.  Recently, Chen et al. have 
successfully applied null-field integral equations in 
conjunction with degenerate kernel and Fourier series 
to solve Laplace [17], Helmholtz [18], biharmonic [19] 
and biHelmholtz [20] problems with circular holes.  
They claimed five advantages, (1) free of calculating 
principal values, (2) exponential convergence, (3) 
elimination of boundary-layer effect, (4) meshless, and 
(5) well-posed system, using the null-field approach.  
Following the success, they extended this approach to 
deal with inclusion problems [21].  In the approach, 
the calculation of principal value is avoided and the 
collocation exactly on the real boundary using the null- 
field formulation is achieved.  They also found the 
rate of convergence of their approach is in the exponen-
tial order.  Although they used the concept of null- 
field integral equation, we can locate the observer point 
exactly on the boundary in numerical implementation 
free of facing singularity thanks to the introduction of 
degenerate kernels. 

It is well known that the degenerate scale occurs in 
the BEM or BIEM.  For the Laplace problem, the 
mechanism of the degenerate scale was addressed by 
using the degenerate kernels.  Also, the numerical 
work (using the boundary element method) and ana-
lytical study (using the method of stress function) for 
the degenerate scale in plane elasticity has been done.  
For more details on the degenerate scale in plane elas-
ticity, readers may consult with the references [22,23]. 

In this paper, we develop a systematic approach to 
deal with elasticity problems with circular boundaries.  
The null-field integral formulation is utilized in con-
junction with degenerate kernel and Fourier series.  
First, the Kelvin solution is expanded to the degenerate 
kernel.  To fully utilize the circular geometry, the fun-
damental solutions and the boundary densities are ex-
panded by using degenerate kernels and Fourier series, 
respectively.  This approach is seen as a semi-    

analytical method, since the error stems from the trun-
cation of Fourier series in the implementation.  The 
advantages, free of calculating principal value, mesh-
less and well-posed system are expected.  For the cir-
cular and annular problems, the analytical solution can 
be obtained by using the present method.  Finally, the 
two classical problems, one is an infinite plate with a 
circular hole subject to remote tension (stress concen-
tration factor problem) and another is an annular cylin-
der subject to uniform pressures (Lamé problem), were 
given to see the validity of the present approach. 

2.  METHOD OF SOLUTION 

2.1  Problem Statements 

The two classical problems in the Timoshenko and 
Goodier’s book [24] are revisted.  One is an infinite 
plate with a circular hole subject to remote tension 
(stress concentration factor problem) and another is an 
annular cylinder subject to uniform pressures (Lamé 
problem) as shown in Figs. 1 and 2, respectively.  The 
medium is considered as an isotropic, elastic and ho-
mogenous body.  The governing equation is 

 2

~ ~
( ) ( ( )) ( ) 0 ,  ,G u x G u x xλ + ∇ ∇ ⋅ + ∇ = ∈ Ω  (1) 

where u(x) is the displacement, Ω is the domain of in-
terest, ∇2 is the Laplacian operator, and λ and G are the 
Lamé constants for the isotropic elasticity. 

2.2  Dual integral Formulation 

The direct formulation of boundary integral equation 
method stems from the reciprocal work theorem.  We 
have the Somigliana’s identity [25], 
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where Uij(x, s) and Tij(x, s) are the Kelvin free-space 
Green’s function of the ith direction response for dis-
placement and traction, respectively, due to a concen-
trated load in the jth direction at the point s, and Ωc 
denotes the complementary domain.  Equations (2) 
and (3) can be changed to 
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The explicit form of Uki(s, x), or so-called Kelvin solu-
tion, is 



Journal of Mechanics, Vol. 26, No. 3, September 2010 115 

 
 
 
 
 
 
 
 
 

Fig. 1 An infinite plate with a circular hole subject to 
remote tension 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 An annular cylinder subject to uniform 
pressures 
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where v is the Poisson ratio, yi = si − xi and i = 1, 2 and k 
= 1, 2 for the plane elasticity.  Now, in order to obtain 
an additional independent equation, we apply the trac-
tion operator [26] to Eqs. (4) and (5).Then, we have 
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Equations (4) and (7) are coined the dual boundary in-
tegral equations for the domain point and Eqs. (5) and 
(8) are called the dual null-field integral equations.  
When the field point x is collocated on the real bound-
ary, the dual singular boundary integral equations for 
the boundary point (x ∈ B) can be obtained as follows: 
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where R.P.V. is the Riemann principal value, C.P.V. is 
the Cauchy principal value, and cij is equal to δij − Bij in 
which Bij depends on the solid angle of the corner at the 
boundary and on the Poisson ratio of the material of the 
body.  At a smooth boundary, Bij reduces to δij / 2.  By 
applying the traction operator to Eq. (9), we have 
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where H.P.V. denotes the Hadamard principal value.  
A detailed discussion for the dual boundary integral 
equations can be found in the original article by Hong 
and Chen [26] and a review article of Chen and Hong 
[27].  It is noted that the conventional null-field inte-
gral equations are not singular since s and x never coin-
cide.  If the kernel functions in Eqs. (4), (5), (7) and (8) 
are substituted by using the appropriate degenerate 
(separable) kernels, we have 
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It is worth noting that kernels in Eqs. (11) ~ (12) and 
Eqs. (13) ~ (14) should be properly chosen to be the 
separable form.  According to Eqs. (11) ~ (14), the 
integral equations for the domain point or for the null- 
field point can include the collocation point on the real 
boundary since the appropriate degenerate kernels are 
used as will be elaborated on later.  Besides, the 
boundary integral equation is derived by using the 
bump contour approach in the conventional boundary 
element method.  Therefore, the free term cij appears.  
Here, we used the degenerate kernel instead of the 
closed-form fundamental solution.  We do not need to 
calculate the principal value by using the bump contour 
approach.  Therefore, cij disappears in our formulation 
when the collocation points are exactly located on the 
boundary.  For the non-smooth boundary, the degener-
ate kernel may be not available in the literature.  In 
other words, we may derive degenerate kernel by our-
selves when the boundary is non-smooth. 

2.3 Expansions of the Fundamental Solution and 
Boundary Density 

To fully utilize the property of circular geometry, the 
mathematical tools, separable kernel (or so-called de-
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generate kernel) and Fourier series, are utilized for an 
analytical study. 

2.3.1 Degenerate (Separable) Kernel for the 
Fundamental Solution 

In order to derive the degenerate kernel, the polar 
coordinate is utilized here.  Therefore, the source and 
collocation points are expressed as (R, θ) and (ρ, φ), 
respectively, in the polar coordinate.  The position 
vector of source point is zs = s1 + s2i = Reiθ.  Similarly, 
the collocation point is zx = x1 + x2i = ρeiφ.  The former 
term (lnr) in the bracket of Eq. (6) is the fundamental 
solution of Laplace equation and the degenerate kernel 
can be found in [17]. 

In order to expand the term (yi yk / r2) in Eq. (6) into 
separable form, we have 
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where yi = xi − si.  For the exterior case (R < ρ), Eq. 
(15) can be expanded as follows: 
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After comparing Eq. (15) with Eq. (16), we obtain 
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Then, we have 
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Similarly, we can obtain the separable form of terms of 
yi yk / r2 for the interior case (R > ρ) as shown below: 
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According to Eqs. (19) ~ (21) and (22) ~ (24), the de-
generate kernel for the fundamental solution Uki(s, x), is 
obtained as 
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and the three kernels (Tki(s, x), Lki(s, x) and Mki(s, x)) 
can be obtained according to their definitions by using 
the traction operator in [26].  To the authors’ best 
knowledge, the degenerate kernel for elasticity was not 
found in the literature before. 

2.3.2 Fourier Series Expansion for Boundary Densities 
of Displacement and Traction 

We apply the Fourier series expansion to approxi-
mate the boundary displacement uk and traction tk on 
the jth circular boundary, 
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s B k

∞ ∞

= =

= + θ + θ

∈ =

∑ ∑  
(28)

 

0, , ,
1 1

( ) cos sin  ,

            ,  1, 2 ,

j j j
k j jk n k n k

n n

j

t s p p n q n

s B k

∞ ∞

= =

= + θ + θ

∈ =

∑ ∑  
(29)

 

where ,
j

n ka , ,
j

n kb , ,
j

n kp  and ,
j

n kq  (k = 1, 2) are the 
Fourier coefficients and θj is the polar angle.  In the 
real computation, only finite number of terms, M, is 
used for the Fourier series. 

3.  ILLUSTRATIVE EXAMPLES 

The first example for verifying our formulation is an 
infinite plate with a circular hole subject to remote ten-
sion.  Figure 1 shows an infinite plate with a circular 

hole subject to a uniform tension of magnitude S in the 
x direction.  The radius of the hole is a.  The problem 
can be decomposed into two parts by using the 
superposition technique as shown in Figs. 3(a) and 3(b).  
One is an infinite plate subject to a uniform tension and 
another is an infinite plate with a hole.  On the bound-
ary of the hole, it needs to satisfy the boundary condi-
tions of free traction, t1 = 0 and t2 = 0, for the super-
posing total solution.  According to the definition of 
traction, we obtain 

 1 11 1 12 2 cost n n S∞ = σ ⋅ + σ ⋅ = − θ  (30) 

 2 21 1 22 2 0t n n∞ = σ ⋅ + σ ⋅ =  (31) 

From the boundary conditions of free traction, the trac-
tion on the circular boundary in Fig. 3(b) is 

 1 cosht S= θ  (32) 

 2 0ht =  (33) 

By using Eq. (25), we have 

11

11 0,1 ,1 ,1
1 1

21 0,2 ,2 ,2
1 1

0 ( , )( cos ) ( )
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   ( , ) cos sin  ( ) ,
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N N

I h h h
n n

B
n n

N N
I h h h

n n
B

n n

U s x S dB s

T s x a a n b n dB s

T s x a a n b n dB s

= =

= =

= θ

⎛ ⎞
− + θ + θ⎜ ⎟

⎝ ⎠
⎛ ⎞

− + θ + θ⎜ ⎟
⎝ ⎠

∫
∑ ∑∫
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  (34) 
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Fig. 3(a) An infinite plate subject to a uniform tension 

 
 
 
 
 
 
 
 

Fig. 3(b)  An infinite plate with a hole 
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  (35) 

for the problem of an infinite plate with a hole in Fig. 
3(b).  The kernels, 11( , )IU s x , 12 ( , )IU s x , 11 ( , )IT s x , 

12 ( , )IT s x , 21( , )IT s x  and 22 ( , )IT s x  can be substituted by 
using the separable forms in Eqs. (25) ~ (27).  
Through the procedure of comparing with the coeffi-
cients, we obtain 

 

1,1

0,1 0,2 1,2 ,1 ,1

1,2

1,1 ,1 ,2

(1 )  ,

0   ( 2,  3,  ) ,
(1 2 )  ,

2
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h

h h h h h
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h

h h h
n n

Saa
G

a a a a a n
Sab

G
b b b n

− ν
=

= = = = = =

− ν
= −

= = = =

 

(36)

 

After determining the Fourier coefficients of boundary 
densities, the deformation fields are obtained by sub-
stituting the coefficients in Eq. (36) into Eq. (11).  The 
representations of displacement fields are 

 

1 11

11

21

( ) ( , )( cos ) ( )

(1 )            ( , ) cos  ( )
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h E
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(37)

 

and 

2 12
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22

( ) ( , )( cos ) ( )

(1 )            ( , ) cos  ( )
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2

h E
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B
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∫

∫

∫

 

(38)

 

After substituting the degenerate kernels, the deforma-
tion fields are obtained as follows: 

 

2 2 2

1 2

(1 ) ( ) cos 1 cos3  ,
4

h S a S a au x
G G

⎛ ⎞− ν
= φ + − φ⎜ ⎟ρ ρ ρ⎝ ⎠

 (39) 

 

2 2 2
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(1 2 ) ( ) sin 1 sin 3  .
2 4

h S a S a au x
G G

⎛ ⎞− ν
= − φ + − φ⎜ ⎟ρ ρ ρ⎝ ⎠

 

  (40) 

For the other part solution in Fig. 3(a), it is simulated 
by using a circular plate with the radius b.  When the 
radius b approaches infinity, it is seen as an infinite 
plate.  Based on this concept, we obtain the Fourier 
coefficients as shown below: 

 

0,1 0,2

1,1 1,2

1,1 ,1 ,2

1,2 ,1 ,2

 ,

(1 ) ,  0  ( 2,  3, ) ,

,  0  ( 2,  3,  ) .
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Sba a a n
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Sbb b b n
G

∞ ∞

∞ ∞

∞ ∞ ∞

∞ ∞ ∞

= =

= −

− ν
= = = =

ν
= − = = =

 

(41)

 

After determining the Fourier coefficients of boundary 
densities, the deformation fields are obtained by sub-
stituting the coefficients in Eq. (41) into Eq. (11).  The 
coefficients, 0,1a∞ , and 0,2a∞  are the rigid-body terms, 
and are set to zeros for simplicity.  The representations 
of deformation fields are 

1 1,1
(1 ) ( ) cos sin  ,

2
Su x b

G b
∞ ∞− ν ρ ρ

= φ + φ  (42) 

2 1,1( ) sin cos  .
2
Su x b
G b

∞ ∞ν ρ ρ
= − φ − φ  (43) 

Although there is a free coefficient ( 1,1b∞ ), it can be ne-
glected for the near field since the outer radius b is in-
finity.  After determining the deformation fields for an 
infinite plate subject to a uniform tension and an infi-
nite plate with a hole, the total deformation fields are 

2 2 2

1 2

(1 ) (1 )cos 1  cos3 cos  ,
4 2

S a S a a Su
G G G

⎛ ⎞− ν − ν ρ
= φ + − φ + φ⎜ ⎟ρ ρ ρ⎝ ⎠

  (44) 

2 2 2

2 2

(1 2 ) sin 1  sin 3 sin  .
2 4 2

S a S a a Su
G G G

⎛ ⎞− ν ν ρ
= − φ + − φ − φ⎜ ⎟ρ ρ ρ⎝ ⎠

 

  (45) 

Based on the displacement fields, the stresses are easily 
obtained as 

SS 

 1 2,  t t∞ ∞  

1 2 ,h ht t  
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4 2 2 2 2 2

11 4

2 3 cos 2 (3 2 )cos 4  
,

a a a S⎡ ⎤ρ − ρ φ + − ρ φ⎣ ⎦σ =
ρ

 

  (46) 

2 2 2 2

22 4

cos 2 (3 2 )cos 4  
 .

2

a a S⎡ ⎤ρ φ + − ρ φ⎣ ⎦σ =
ρ

 (47) 

2 2 2 2

12 4

(6 4 )cos 2  
 sin 2

2

a a S⎡ ⎤−ρ + − ρ φ⎣ ⎦σ = φ
ρ

 (48) 

By using the tensor transformation [24], the stresses in 
the polar coordinate can be represented as 

 
2 2 2 2 2

4

( ) ( 3 )cos 2  
 ,

2rr

a a S⎡ ⎤ρ − ρ + ρ − φ⎣ ⎦σ =
ρ

 (49) 

 
2 2 2 4 4

4

( ) ( 3 ) cos 2  
 .
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a a S
θθ

⎡ ⎤ρ ρ + − ρ + φ⎣ ⎦σ =
ρ

 (50) 

 
4 2 2 4

4

( 2 3 ) sin 2
2r

a a S
θ

ρ + ρ −
σ = φ

ρ
 (51) 

When ρ = a, Eqs. (49) ~ (51) are reduced to 

 0 ,rrσ =  (52) 

 2 cos 2  ,S Sθθσ = − φ  (53) 

 0 .rθσ =  (54) 

The hoop stress distribution in Eq. (53) is the same as 
that of Timoshenko and Goodier’s book [24].  When φ 
is equal to π/2 or 3π/2, the hoop stress (σθθ) reaches the 
maximum of 3S.  However, it is not found for the dis-
placement fields in the Timoshenko and Goodier’s book 
[24].  Only the Airy stress function and stress were 
obtained in their book.  If we would like to have the 
displacement fields, it is necessary to calculate the 
strain through the Hooke’s law.  Then, the displace-
ment fields can be determined from the stress-strain 
relationship and integration of strain.  The compatibil-
ity condition should be considered and the derivation is 
time-consuming.  In the proposed approach, not only 
the stress but also the displacement fields can be di-
rectly obtained at the same time.  In Fig. 4(a), it is 
obvious to observe that the plate is elongated uniformly 
in the x-axis direction since a uniform tension is given.  
The parameters of the material are given as G = 1N/m2 
and v = 0.3.  The deformation in Fig. 4(b) occurs due 
to the boundary traction.  Figure 4(c) shows the sketch 
of total deformation.  Here, the magnitude S of the 
tension is one N/m2, and the radius of the hole is one 
meter.  It can be found that the circular hole is dis-
torted.  The same result can be obtained by using the 
LM hypersingular formulation of Eq. (14) as well as by 
using the UT singular formation of Eq. (13).  Two al-
ternatives are provided in the proposed formulation. 

The second example is an annular cylinder subject to 
uniform pressures (the Lamé problem).  In this 

 
Fig. 4(a) Deformation of an infinite plate subject to a 

uniform tension 

 
Fig. 4(b)  Deformation of an infinite plate with a hole 

 
Fig. 4(c) Deformation of an infinite plate with a 

circular hole subject to remote tension 

example, the problem subject to uniform pressures on 
the inner and outer surfaces is considered.  Let a and b 
denote the inner and outer radii of the annular cylinder 
as shown in Fig. 2 where Pi and Pe are the uniform in-
ternal and external pressures, respectively.  Then the 
boundary conditions are shown below: 

 ( )   and  ( )  .rr r a i rr r b eP P= =σ = − σ = −  (55) 

This problem was first solved by Lamé [28].  There-
fore, it is also called the Lamé problem.  According to 
the definition of the traction, the boundary conditions of 
tractions are 

 1 11 1 12 2 coset n n P= σ ⋅ + σ ⋅ = − θ  (56) 

 2 21 1 22 2 sin  ,et n n P= σ ⋅ + σ ⋅ = − θ  (57) 

on the outer boundary B1 and 

 1 11 1 12 2 cosit n n P= σ ⋅ + σ ⋅ = θ  (58) 

 2 21 2 22 2 sin  ,it n n P= σ ⋅ + σ ⋅ = θ  (59) 

on the inner boundary B2.  The unknown boundary 
densities of displacement can be represented by using 
the Fourier series as 
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on B1 and 
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u c c n d n
= =

= + θ + θ∑ ∑  (62) 

 2 0
1 1

cos sin  ,
N N

n n
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u c c n d n
= =

= + θ + θ∑ ∑  (63) 

on B2.  By using the null-field integral equation and 
Fourier series in Eq. (13), we obtain the Fourier coeffi-
cients as shown below: 

( )

( )

0 0

0 0

1 1 1 1

2 2 2

1 1 2 2

2 2 2

1 1 2 2

 ,
 ,

 ,

(1 2 ) 2 (1 )
 ,

2( ) 

2 (1 ) (1 2 )
 ,

2( ) 
0  ( 2,  3,  ) .

e i

e i

n n n n n n n n

a c arbitrary
a c arbitrary
b d a c arbitrary

b a b P a P
a b

a b G

a b P b a P
c d

a b G
a a b b c c d d n

= =
= =
= = − = − =

⎡ ⎤+ − ν − − ν⎣ ⎦= =
−

⎡ ⎤− ν − + − ν⎣ ⎦= =
−

= = = = = = = = =

 

  (64) 

After determining Fourier coefficients in Eq. (64), the 
deformation fields of Eq. (11) yield 

2
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In Eqs. (65) and (66), the coefficients (a1 and c1) are 
found in Eq. (64) and b1 and 0a  are arbitrary constants.  
The three terms (b1 ρ/b cosφ, a0 and 0a ) can be seen as 
rigid body terms of rotation and translation.  The 
stresses are obtained as shown below: 

2 2 2 2 2
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i i
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θθ
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σ ρ φ =
− ρ

< ρ < ≤ φ ≤ π

 
(68) 

( ,  ) 0 ,   ,  0 2  .r a bθσ ρ φ = < ρ < ≤ φ ≤ π  (69)
 

For the special case of zero outer pressure Pe = 0, Eqs. 
(67) and (68) are reduced to 

2 2

2 2 2( ,  ) 1  ,   ,  0 2  ,
( )

i
rr

a P b a b
b a

⎛ ⎞
σ ρ φ = − < ρ < ≤ φ ≤ π⎜ ⎟− ρ⎝ ⎠

 

  (70) 

2 2

2 2 2( ,  ) 1  ,   ,  0 2  .
( )

ia P b a b
b aθθ

⎛ ⎞
σ ρ φ = + < ρ < ≤ φ ≤ π⎜ ⎟− ρ⎝ ⎠

 

  (71) 

These stress distributions are the same as those of Ti-
moshenko and Goodier’s solution [24].  As mentioned 
in the Example 1, only the Airy stress function is found 
in their book.  For the proposed approach, the dis-
placement fields and stress can be obtained at the same 
time.  The inner and outer radii are given 1m and 5m, 
respectively.  The uniform pressures are set as Pe = 
1N/m2 and Pi = 2N/m2.  The sketch of the deformation 
is shown in Fig. 5.  Also, another alternative of the LM 
hypersingular formulation of Eq. (14) can be utilized to 
obtain the same result in the proposed approach.  Here, 
we have proposed an alternative way to directly derive 
the exact solution of displacement and stress at the same 
time instead of using semi-inverse method.  The two 
examples have been successfully used to verify the cor-
rectness of the degenerate kernels and the validity of our 
approach.  For the problem with arbitrary number, dif-
ferent size and various locations of circular holes and/or 
inclusions in engineering practice, the results of torsion 
problems was published in [29].  However, the exten-
sion of the present approach to complex problems con-
taining multiple holes and/or inclusions in plane elastic-
ity deserves further study. 

4.  CONCLUDING REMARKS 

For the elasticity problems with circular boundaries, 
we have proposed an analytical method by using the 

 

Fig. 5 Deformation of an annular cylinder subject to 
uniform pressures 

undeformed

deformed 
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null-field integral formulation in conjunction with de-
generate kernels and Fourier series.  The Kelvin solu-
tion was first expanded to degenerate kernel in this pa-
per.  Free of calculating principal value meshless is 
our gain.  Besides, displacement as well as stress re-
sponses were both obtained at the same time.  For the 
circular and annular cases, the analytical solutions for 
two illustrative examples, the stress concentration fac-
tor problem and the Lamé problem, were demonstrated 
to see the validity of the analytical formulation.  Good 
agreements were made after comparing the results with 
those of Timoshenko and Goodier’s textbook. 
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