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Following the success of null-field integral equation to solve the BVP of the Laplace equa-
tion, this paper employs the addition theorem and superposition technique to revisit the
Green’s function of Laplace problems with circular boundaries. The Green’s function is
decomposed into two parts, one is the fundamental solution and the other is an infinite
plane of circular boundaries subject to the specified boundary conditions derived from
the addition theorem. After superimposing the two solutions, the governing equation
and boundary condition are both satisfied. Some examples are demonstrated to see the
validity of the present method.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematicians as well as engineers have studied Green’s functions in many fields (Jaswon and Symm, 1977; Melnikov,
1977). Green’s functions are useful building blocks for attacking more realistic problems. But only a few simple regions allow
a closed-form Green’s function for the Laplace equation. For example, one aperture or circular sector in the half-plane, infi-
nite strip, semi-strip or infinite wedge are mapped by elementary analytic functions, thereby enabling closed-form expres-
sions for their Green’s functions. A closed-form Green’s function for the Laplace equation can be obtained by conformal
mapping in this manner only in some simple cases. Numerical computation of Green’s function has received attention from
BEM researchers by Telles et al. (1995); Guimaraes and Telles (2000); Ang and Telles (2004)). Melnikov (1982, 1995); Mel-
nikov and Melnikov (2001) utilized the method of modified potentials (MMP) to solve boundary value problems from var-
ious areas of computational mechanics. Later, Melnikov and Melnikov (2006) studied computing Green’s functions and
matrices of Green’s type for mixed boundary value problems (BVP) posed on 2-D regions of irregular configuration. For
the image method, Thomson (Thomson, 1848) proposed the concept of reciprocal radii to find the image source to satisfy
the homogeneous Dirichlet boundary condition. Chen and Wu (2006a,b) proposed another way to find the location of image
using the degenerate kernel. Chen and Ke (2008a,b) have constructed the Green’s function of multiply-connected domains by
using the null-field integral equation derived from Green’s third identity.

In this paper, the Green’s function is decomposed into two parts, one is the fundamental solution and the other is an infi-
nite plane of circular boundaries subject to the specified boundary conditions, derived from the addition theorem. After
superimposing the two solutions, the governing equation and boundary conditions are both satisfied. The main difference
between the present paper and Chen and Ke (2008a,b) is that we do not directly employ Green’s third identity to derive
. All rights reserved.
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the Green’s function. Following the success of null-field integral equation approach for a typical boundary value problem
(BVP) with Fourier boundary densities as shown in Fig. 1, it can be easily extended to derive the Green’s function by intro-
ducing the superposition technique and addition theorem in the present paper. The present approach offers a few attractive
 

 

( , )G x ξ   

(Dirichlet) 
( , )

x

G x

n

ξ∂
∂

 

( , )
( , ) 0

x

G x
G x

n

ξ
ξ ∂

+
∂

 

(Robin) 

⊗  
Source 

D  

0B  
1B  iB  

2B  

(Neumann) 

ξ  

=

Fig. 1a. Green’s function for the Laplace problem with Fourier boundary densities of the Dirichlet, Neumann and Robin types.
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Fig. 1c. An infinite plane with circular boundary subject to the specified boundary conditions.
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Fig. 1b. The fundamental solution for the Green’s function.
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Fig. 2a. Green’s function for the annular ring.
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Fig. 2b. Potential contour by using the BIE approach (M = 50).
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features. First, the integrals involved are made simple by avoiding the senses of Cauchy and Hadamard principal values. Sec-
ondly, boundary-layer effect disappears since we introduce the addition theorem for the interior and exterior regions,
respectively. Finally, this method can be seen as one kind of meshless method for circular boundary since no boundary ele-
ment discretization is required. Finally, some illustrative examples, annular, eccentric and half-plane cases are demonstrated
to see the validity of the present method.
2. Present approach for constructing the Green’s function

Considering the problem with N randomly distributed circular cavities and/or inclusions bounded in the domain D and
enclosed with the boundaries, Bi (i = 0,1,2, . . . ,N) as shown in Fig. 1a, we define
B ¼
[N
i¼0

Bi ð1Þ
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Fig. 2c. Potential contour by using the present method (M = 50).
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Fig. 3a. Green’s function for an infinite plane with an aperture.
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In mathematical physics, Green’s function problems subjected to the boundary conditions and concentrated source
satisfies
r2Gðx; nÞ ¼ dðx� nÞ; x 2 D ð2Þ
where G(x,n) is the Green’s function and can be seen as the potential,r2 indicates the Laplacian operator. The boundary con-
ditions of the problem are shown in Fig. 1a. Instead of using the Green’s third identity in Chen and Ke (2008a,b), the problem
is decomposed into two parts. One is the fundamental solution and the other is an infinite plane of circular boundaries sub-
ject to the specified boundary conditions, which are shown in Figs. 1b and 1c, respectively. For simplicity, we use the Dirich-
let boundary condition (G(h) = 0) to demonstrate our formulation. The fundamental solution is governed by
r2G1ðx; nÞ ¼ dðx� nÞ; ð3Þ
where G1(x,n) is the fundamental solution for the Laplace problem and the superscript 1 denotes the first-part solution.
Based on the addition theorem, the fundamental solution can be separated into the series form in Chen and Shen (2007).
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Fig. 3b. Potential contour by using the image method.
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Fig. 3c. Potential contour by using the present method (M = 50).
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To fully use the objectivity of the frame indifference, the origin of the observer system can be adaptively located on each
center of the corresponding cycle.

The boundary condition along the ith circular boundary is expressed as
G1
i ðx; nÞ ¼

ln Ri �
P1

m¼1

1
m

qi
Ri

� �m
cos mðhi � /Þ;Ri P qi;

ln qi �
P1

m¼1

1
m

Ri
qi

� �m
cos mðhi � /Þ;qi > Ri;

8>><
>>:

x 2 Bi ð4Þ
where the superscript 1 of G(x,n) denotes the first-part BC on Bi boundary due to the fundamental solution, Ri and hi are the
distance and the polar angle between the source point and the ith center of the corresponding circle, respectively, and qi is
the radius of the ith cycle and Bi is the ith circular boundary. In order to satisfy the boundary condition, the second-part is a



Fig. 3d. Stress distribution along the circular hole (a = 1.0 and n = (1.25,0)).

Fig. 3e. Stress distribution along the interface (a = 1.0 and n = (150,0)).
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typical problem subject to the specified boundary condition (G2
i ðx; nÞ ¼ �G1

i ðx; nÞ) which can be expressed in terms of Fourier
series after using the addition theorem.

The governing equation is shown below:
r2G2ðx; nÞ ¼ 0; x 2 D ð5Þ
where the superscript 2 denotes the second-part solution. This part can be seen as a typical BVP with circular boundaries and
can be easily solved by using the null-field formulation (Chen and Shen, 2007) as shown in Fig. 1c. After superimposing the
two solutions, the boundary condition automatically satisfies the Dirichlet boundary condition. Thus, the boundary condition
in the second-part problem is shown below:
G2
i ðx; nÞ ¼ �G1

i ðx; nÞ ¼
� ln Ri þ

P1
m¼1

1
m

qi
Ri

� �m
cos mðhi � /Þ;Ri P qi;

� ln qi þ
P1

m¼1

1
m

Ri
qi

� �m
cos mðhi � /Þ;qi > Ri;

8>><
>>:

x 2 Bi ð6Þ
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Fig. 4a. Green’s function for the eccentric ring.

Fig. 4b. Potential contour by using the Melnikov’s method (Melnikov and Melnikov, 2001).
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where the superscript 2 of G(x,n) denotes the second-part BC. By using the present approach, the problem can be solved in
two stages. One is the fundamental solution (Fig. 1b) and the other is the typical BVP (Fig. 1c). After superimposing the two
solutions, the Green’s function can be obtained easily.
3. Numerical examples

Case1: An annular case (analytical solution)

Fig. 2a depicts the Green’s function of the annular ring. The source point is located at n = (7.5,0). The two radii of inner and
outer circles are a = 4.0 and b = 10.0. The center of the inner and outer circles is (0,0). The analytical solution is obtained as



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4c. Potential contour by using the present method (M = 50).
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Gðx; nÞ ¼

GIðx; nÞ ¼ 1
2p ln Rn � 1

2p
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q
Rn

� �m
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where the symbol Rn denotes the distance between the source point and the origin and the Fourier coefficients are shown
below:
a0

am

bm

8><
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9>=
>;
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ln Rn�ln b
2paðln a�ln bÞ

� am�1R�m
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Figs. 2b,2c show the potential distribution by using the BIE approach and the present method, respectively.



 
3

( , ) 0G x ξ =

(2,1)ξ

1a =

2 ( , ) ( )G x xξ ξ∇ -

x

y

( , ) 0G x ξ =

⊗
= δ

Fig. 5a. Green’s function for the half-plane with the Dirichlet boundary condition.

Fig. 5b. Potential contour by using the Melnikov’s method (Melnikov and Melnikov, 2001).
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Case 2: An infinite plane with an aperture (analytical solution)

Fig. 3a depicts the Green’s function for an infinite plane with an aperture. The source point is located at n = (1.25,0). The
center and radius of the aperture are (0,0) and a = 1.0, respectively. By using the present formulation, the analytical solution
is shown below:
Gðx; nÞ ¼

GIðx; nÞ ¼ 1
2p ln Rn � 1
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q
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Figs. 3b and 3c show the potential distribution by using the image method and the present method, respectively. Good
agreement is made. The stress distribution is shown in Figs. 3d and 3e.
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Fig. 5c. Potential contour by using the present method (M = 50).
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Fig. 6c. Potential contour by using the present method (M = 50).
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After comparing with the two figures, we obtain the stress concentration factor of 2. When the location of the source
point moving to far away, the problem can be seen as a remote shear problem with a circular hole where the concentration
factor is also 2 (Chen and Wu, 2006a,b). The local maximums occur at the angles of p

2 and 3p
2 .

Case 3: An eccentric ring (semi-analytical solution)

Fig. 4a depicts the Green’s function of the eccentric ring. The source point is located at n = (0,0.75). The two radii of inner
and outer circles are a = 0.4 and b = 1.0. The two centers of the inner and outer circles are (�0.4,0) and (0,0), respectively.
Figs. 4b and 4c show the potential distribution by using the Melnikov’s approach (Melnikov and Melnikov, 2001) and the
present method, respectively. We can also obtain the consistent data by using our method as well as the Green’s function
G(x,n) obtained by MMP method.

Case 4: A half plane with an aperture (semi-analytical solution)

Fig. 5a depicts the Green’s function for the half plane with a hole. The source point is located at n = (2,1). The center and
radius of the aperture are (0,3) and a = 1.0. Figs. 5b and 5c show the potential distribution by using the Melnikov’s approach
and the present method, respectively. Good agreement is made.



Fig. 7b. Stress distribution along the interface.

Fig. 7c. Parseval’s sum for GM with a = 1.0 and n = (1.1,0).
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Case 5: A half-plane problem with a circular boundary subject to the Robin boundary condition (semi-analytical solution)

A half-plane problem with an aperture is considered. The governing equation and boundary condition are shown in
Fig. 6a. The center and radius of the aperture are (2,2) and a = 1.0, respectively. The concentrated source is located at
(0,3.5). The Robin boundary condition @Gðx;nÞ

@nx
¼ �2Gðx; nÞ is imposed on the aperture. Fig. 6b and 6c show the potential distri-

bution by using the Melnikov’s approach and the present method, respectively. Good agreement is obtained.

Case 6: An infinite plane problem with a circular inclusion (analytical solution)

An infinite plane problem with a circular inclusion is considered. The governing equation and boundary condition are
shown in Fig. 7a. The center and radius of the inclusion are (0,0) and a = 1.0, respectively. The concentrated source is located
at (1.1,0). Fig. 7b shows the stress distribution along the interface. After comparing the result of the present approach with
that of the Wang and Sudak (2007), good agreement is obtained. After using the Parseval’s theorem to test the convergence
rate, Figs. 7c and 7d are obtained.



Fig. 7d. Parseval’s sum for @GM

@n with a = 1.0 and n = (1.1,0).
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4. Conclusions

For the Green’s function with circular boundaries, we have proposed an indirect approach to construct the Green’s func-
tion by using the addition theorem and superposition technique. Several examples, including three analytical solutions
(an annular case, an infinite plane with an aperture and an infinite plane with a circular inclusion) and three semi-analytical solu-
tions (an eccentric ring, a half plane with an aperture and a half-plane problem with a circular boundary subject to the Robin
boundary condition) were demonstrated to check the validity of the present formulation. The present method has more phys-
ical sense (taking free body) to solve the Green’s function for the Laplace problems with circular boundaries. Our advantages
are five folds: (1) mesh-free generation (2) well-posed model (3) principal-value free (4) elimination of boundary-layer effect
(5) exponential convergence.
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