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Abstract

In this article, the dual multiple reciprocity method is employed to solve the natural frequencies and natural modes for a rod. The
conventional approach using dual MRM is not qualified as a systematic method because of the following two reasons: (1) it needs to
distinguish the spurious eigenvalue only after the corresponding eigenmode is obtained; (2) the possible indeterminancy of eigenvector may
be encountered when the constraint equations chosen are highly dependent such that the rank of the leading coefficient matrix is insufficient.
To construct a systematic way, we propose to consider all constraint equations together instead of using the singular or hypersingular
equation alone as the conventional MRM uses. The singular value decomposition method is, then, used to solve the eigenproblem after
combining the singular and hypersingular equations. This method can avoid the spurious eigenvalue problem and the possible indetermi-
nancy of boundary eigenvectors at the same time. Three numerical examples are given to verify the validity of the present method.q 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The vibration of structures is extremely important in
applied engineering. The free vibration problem is the
most fundamental problem in studying vibration as the
eigenfrequency of the homogeneous differential equation
system is the characteristic frequency (natural frequency)
of the structure and one should avoid having an excitation
source with this characteristic frequency acting on the struc-
ture to result in resonance. Furthermore, the natural modes
obtained from the free vibration problem actually represent
the solution basis of the forced vibration problem, (i.e., the
solution of the forced vibration problem) (nonhomogeneous
differential equation) can be constructed by the summation
of the products of the natural modes (basis functions) and
projections (generalized Fourier coefficients). For the
reason stated earlier, the free vibration problem is usually
taken as the first step to tackle the wonder world of vibra-
tion. The free vibration problem is often modelled as a
Helmholtz equation in the frequency domain. To solve the
Helmholtz equation numerically, either the finite element
method or the boundary element method can be available.

To solve a Helmholtz equation using the boundary
element approach, the complex-valued fundamental solu-
tion has been employed to solve eigenproblems [1,2]. This
is a natural choice as the operator is the Helmholtz equation.
However, two difficulties may be encountered using such
approach: (1) computation in the domain of a complex
number needs much efforts comparing with that in the
domain of a real number; (2) the wave number is embedded
in the fundamental solution so that one has to calculate the
influence matrix every time at different wave number. As a
result of these two reasons, the boundary element method is
sometimes not recommended to solve such an eigen-
problem.

To avoid computation in the domain of a complex
number, the multiple reciprocity method (MRM) has been
employed to solve the Helmholtz problem in the real
domain [3–5]. In this algorithm, the Helmholtz equation
is treated as a Poisson equation with an external source;
therefore, the fundamental solution of the Laplace equation
is considered. However, the domain integral is present as a
result of the integration of the external source. MRM can
transform this domain integral into boundary integrals itera-
tively such that the domain cell is not needed when the
remainder terms of the domain integral can be neglected.
Moreover, the MRM separates the wave number from the
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influence matrix calculation such that one needs not to
recompute the influence matrix at different wave number.
In the literature, the conventional singular integral equation
(UT equation) was used only in MRM [3]. Chen et al. [6]
found that the conventional MRM using the singular inte-
gral equation results in spurious eigenvalues by providing 1-
D rod example. In addition, boundary eigenvectors may not
be found when the rank of the leading coefficient matrix is
insufficient. To filter out the spurious eigenvalues, they
proposed to construct the second set of equations, the hyper-
singular integral equation (LM equation). By using the idea
that the corresponding spurious eigenmode obtained by UT
equation cannot satisfy LM equation and vice versa, they
successfully filtered out the spurious eigenvalues. As to
avoid the possible indeterminancy of boundary eigenvector,
when the rank of the leading coefficient matrix obtained
from UT or LM equation is insufficient, they proposed to
replace some constraint equations in the original equation
set (UT or LM) by those in the complementary equation set
(LM or UT equation). Their leading efforts did not only
explore the drawbacks of MRM but also propose the dual
MRM to deal with them. In brief words, only dual MRM
(UT 1 LM equations) can provide enough constraint equa-
tions. The dual BEM structure, which uses the singular inte-
gral and hypersingular integral equations together, has been
well recognized as the key of providing enough constraint
equations in boundary value problem with a degenerate
boundary [7–9].

Kamiya et al. [10] found that the kernels in MRM are no
more than real parts of the kernels in the complex-valued
formulation for the two-dimensional case. Yeih et al. [11]
proved that MRM can be constructed such that it is fully
equivalent to the complex-valued formulation by adding a
complex constant into the zeroth fundamental solution for
the Laplace operator when the radiation condition is satis-
fied. Furthermore, they clearly explained why the spurious
eigenvalue problem is encountered in the conventional dual
MRM.

In this article, the problem of determining natural
frequencies and natural modes using the MRM is revisited.
We propose a new methodology to modify Chen’s work [6].
A brief review of the dual MRM is first introduced for read-
ers’ convenience. Then, the difficulties encountered in
Chen’s method are also stated. To solve the eigenproblem
more efficiently, the singular value decomposition method
(SVD) is adopted. The SVD method can avoid the spurious
eigenvalue problem at the stage of eigenvalue searching and
find the boundary eigenvector more efficiently in the sense
of the least square error; therefore, it qualifies as a
systematic solution method. Three examples have been
solved using the dual MRM, and the results demonstrate
the validity of the current research. As the proposed method
is independent of dimension, we begin our study from one
dimensional problems because their analytical solutions are
available. This work is a prelude of higher dimensional
problems.

2. Problem statement and analytical derivations

For simplicity, we consider a one-dimensional rod vibra-
tion problem with the following governing equation:

d2u�x�
dx2 1 lu�x� � 0; 0 # x # 1; �1�

wherel and u(x) denote the eigenvalue and eigenmode,
respectively. Without loss of generality, it is assumed that
the rod has a unit length.

Three benchmark examples are considered as follows [6]:

Case 1:u(0) � 0, u(1) � 0 (Dirichlet B.C.),
Case 2:t(0) � 0, t(1) � 0 (Neumann B.C.),
Case 3:u(0) � 0, t(1) � 0 (Mixed B.C.),

where

t�x0� � du�x�
dx

ux�x0
:

Consider an auxilliary system with a fundamental solu-
tion satisfying

d2U�x; s�
dx2 � d�x 2 s�; 2∞ , x , ∞; �2�

whereU(x,s) is a fundamental solution expressed as

U�x; s� � 1
2

ux 2 su � U�0��x; s�: �3�

In the earlier expression,U(0)(x, s) is called the zeroth-
order fundamental solution.

By employing Green’s third identity, we haveZ1

0
72U�0��x; s�u�x�dx�

Z1

0
U�0��x; s�72u�x�dx

1 u�x� dU�0��x; s�
dx

2
du�x�

dx
U�0��x; s�

" #
ux�1
x�0:

�4�

By transforming the domain integral term into boundary
integral terms, the primary and secondary fields foru(s) and
t(s) can be expressed as

u�s� �
(

u�x�T�0��x; s�2 t�x�U�0��x; s�

1
XN
j�0

"
b�j�T�j11��x; s�2

db�j�

dx
U�j11��x; s�

#)
u
x� 1

x� 0

1 RN11;

�5�

t�s� �
(

u�x�M�0��x; s�2 t�x�L�0��x; s�

1
XN
j�0

"
b�j�M�j11��x; s�2

db�j�

dx
L�j11��x; s�

#)
ux�1
x�0 1 R0N11;

�6�
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whereR0N11 is the derivative ofRN11 with respect tos, and
the explicit forms for the kernel functions are shown in
Table 1 and defined as

T�j11��x; s� � 2{ U�j11��x; s�}
2x

; �7�

L�j11��x; s� � 2{ U�j11��x; s�}
2s

; �8�

M�j11��x; s� � 22{ U�j11��x; s�}
2x2s

�9�

Eqs. (5) and (6) comprise the dual equations for MRM.
By moving the field point close to the boundary, the dual

BEM can be derived as follows:

T0 ~u 2 U0~t �
XN
i�1

�Ti�l� ~u 2 Ui�l�~t�; �10�

M0 ~u 2 L0~t �
XN
i�1

�Mi�l� ~u 2 Li�l�~t�; �11�

where ~u and ~t are the column vectors of the boundary data.
Substituting the values of the kernel functions shown in
Table 1 into Eqs. (10) and (11), we have

1=2 21=2

21=2 1=2

" #
u�0�
u�1�

( )
2

0 21=2

1=2 0

" #
t�0�
t�1�

( )

�
0

X∞
j�0

1
2
�2l�j11

�2j 1 2�!
X∞
j�0

1
2
�2l�j11

�2j 1 2�! 0

26666664

37777775
u�0�
u�1�

( )

2

0
X∞
j�0

1
2
�2l�j11

�2j 1 3�!

2
X∞
j�0

1
2
�2l�j11

�2j 1 3�! 0

26666664

37777775
t�0�
t�1�

( )
�12�

and

0 0

0 0

" #
u�0�
u�1�

( )
2

21
2

1
2

1
2

21
2

26664
37775 t�0�

t�1�

( )

�
0 2

X∞
j�0

1
2
�2l�j11

�2j 1 1�!
X∞
j�0

1
2
�2l�j11

�2j 1 1�! 0

26666664

37777775
u�0�
u�1�

( )

2

0 2
X∞
j�0

1
2
�2l�j11

�2j 1 2�!

2
X∞
j�0

1
2
�2l�j11

�2j 1 2�! 0

26666664

37777775
t�0�
t�1�

( )
:

�13�

After summing the infinite series in Eqs. (12) and
(13), the three terms can be summed into a closed-form
function:

1 1
X∞
j�0

�2l�j11

�2j 1 3�! �
sin

��
l
p��
l
p ; �14�

1 1
X∞
j�0

�2l�j11

�2j 1 2�! � cos
��
l
p

; �15�

X∞
j�0

�2l�j11

�2j 1 1�! � 2
��
l
p

sin
��
l
p

: �16�

Eqs. (10) and (11) then can be rewritten as

1=2 21=2

21=2 1=2

" #
u�0�
u�1�

( )
2

0
21
2

1
2

0

26664
37775 t�0�

t�1�

( )

�
0

cos
��
l
p

2 1
2

cos
��
l
p

2 1
2

0

26664
37775 u�0�

u�1�

( )

2

0

sin
��
l
p��
l
p 2 1

2

2

sin
��
l
p��
l
p 2 1

2
0

2666666664

3777777775
t�0�
t�1�

( )
:

�17�
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Table 1
Explicit forms for the kernel functions (r � ux 2 su)

Kernel x. s x , s

U�j11��x; s� 1
2

r �2j13�

�2j 1 3�! �j $ 21� 2
1
2

r �2j13�

�2j 1 3�! �j $ 21�

T�j11��x; s� 1
2

r �2j12�

�2j 1 2�! �j $ 21� 2
1
2

r �2j12�

�2j 1 2�! �j $ 21�

L�j11��x; s� 2
1
2

r �2j12�

�2j 1 2�! �j $ 21� 1
2

r �2j12�

�2j 1 2�! �j $ 21�

M�j11��x; s� 2
1
2

r �2j11�

�2j 1 1�! �j $ 0� 1
2

r �2j11�

�2j 1 1�! �j $ 0�

0 �j � 21� 0 �j � 21�
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Table 2
Eigensolutions for the Dirichlet problem (case 1)

Case 1 Dirichlet problem
u�0� � 0; u�1� � 0

Constraint equations
0

21
2

1 1
XN
j�0

�2l�j11

�2j 1 3�!

0@ 1A
1
2

1 1
XN
j�0

�2l�j11

�2j 1 3�!

0@ 1A 0

1
2

21
2

1 1
XN
j�0

�2l�j11

�2j 1 2�!

0@ 1A
21
2

1 1
XN
j�0

�2l�j11

�2j 1 2�!

0@ 1A 1
2

266666666666666666666664

377777777777777777777775

t�0�
t�1�

( )
�

0

0

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;

�1�
�2�
�3�
�4�

Selections of equations UT(eqs.(1)&(2)) LM(eqs.(1)&(2)) eqs.(1)&(3) eqs.(2)&(4) eqs.(1)&(4) eqs.(2)&(3)

True True True True True Spurious True Spurious

Eigenequations
sin

��
l
p��
l
p � 0 sin

��
l
p � 0

sin
��
l
p��
l
p � 0

sin
��
l
p��
l
p � 0

sin
��
l
p���
l

p � 0 cos
���
l

p � 0
sin

��
l
p���
l

p � 0 cos
��
l
p � 0

Eigenvalues�l� �np�2 �np�2 �np�2 �np�2 �np�2 np
2

� �2

�np�2 np
2

� �2

Boundary eigenvector
{ t�0�; t�1�}

a;bf ga 1; 21� �nf g 1; 21� �nf g 1; 21� �nf g 1; 21� �nf g 1; 0f g 1; 21� �nf g 0; 1f g

Rank 0 1 1 1 1 1 1 1

a wherea andb are arbitrary constants.

Table 3
Eigensolutions for the Neumann problem (case 2)

Case 2 Neumann problem
t�0� � 0; t�1� � 0

Constraint equations 1
2

21
2

1 1
XN
j�0

2l� �j11

2j 1 2
ÿ �

!

0@ 1A
21
2

1 1
XN
j�0

2l� �j11

2j 1 2
ÿ �

!

0@ 1A 1
2

0
1
2

XN
j�0

2l� �j11

2j 1 1
ÿ �

!

21
2

XN
j�0

2l� �j11

2j 1 1
ÿ �

!
0

26666666666666666666664

37777777777777777777775

u 0� �
u 1� �

( )
�

0

0

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;

1� �
2� �
3� �
4� �

Selections of equations UT.(eqs.(1)&(2)) LM(eqs.(1)&(2)) eqs.(1)&(3) eqs.(2)&(4) eqs.(1)&(4) eqs.(2)&(3)

True True True True True Spurious True Spurious

Eigenequations sin
��
l
p � 0

��
l
p

sin
��
l
p � 0

��
l
p

sin
��
l
p � 0

��
l
p

sin
��
l
p � 0

��
l
p

sin
��
l
p � 0 cos

��
l
p � 0

��
l
p

sin
��
l
p � 0 cos

��
l
p � 0

Eigenvalues�l� �np�2 �np�2 �np�2 �np�2 �np�2 np
2

� �2

�np�2 np
2

� �2

Boundary eigenvector
u�0�; u�1�f g

1; 21� �nf g a;bf ga 1; 21� �nf g 1; 21� �nf g 1; 21� �nf g 0;1f g 1; 21� �nf g 1;0f g

rank 1 0 1 1 1 1 1 1

a wherea andb are arbitrary constants.
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and

0 0

0 0

" #
u�0�
u�1�

( )
2

21=2 1=2

1=2 21=2

" #
t�0�
t�1�

( )

�
0 2

��
l
p

sin
��
l
p

2��
l
p

sin
��
l
p

2
0

26664
37775 u�0�

u�1�

( )

2

0 2
cos

��
l
p

2 1
2

2
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��
l
p

2 1
2

0

26664
37775 t�0�

t�1�

( )
:

�18�

3. Difficulties encountered using the singular or
hypersingular integral equations alone

After substituting the boundary conditions of cases (1),
(2) and (3) into Eqs. (12) and (13), the eigenequations,
eigenvalues and boundary eigenvector can be obtained as
shown in Tables 2–4.

After obtaining the boundary eigenvector, the representa-
tion for the displacement field can be expressed as follows:

u�s� � �H1�s� H2�s� H3�s� H4�s��

u�0�
u�1�
t�0�
t�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
;

0 # s # 1;

�19�

where

H1�s� ;
1
2

cos
��
l
p

s
� �

; �20�

H2�s� ;
1
2

cos
��
l
p �1 2 s�
� �

; �21�

H3�s� ;
sin

��
l
p

s
� �
2
��
l
p ; �22�

H4�s� ; 2
sin

��
l
p �1 2 s�
� �

2
��
l
p : �23�

Even when eigenvalues can be determined for case (1)
and case (2) using the UT or LM equation, the selections of
independent equations with rank of 1 to determine the
boundary mode are not unique as shown in Tables 2 and
3. It is found that the UT equation cannot be used alone to
determine the eigenmodes for case (1) with the Dirichelet
data shown in Table 2; however, the LM equation also
cannot be used alone to determine the eigenmodes for

case (2) with the Neumann data shown in Table 3. Chen
et al. [6] proposed use of the complementary equation in the
dual BEM framework to determine the boundary mode
when the UT (in case (1)) or LM (in case (2)) equation
fails to determine the boundary mode. UT and LM equations
make the rank of the leading coefficient matrix equal to 1;
thus, the boundary eigenvector can be determined.
However, this method is inconvenient as many different
combinations of equations must be tried manually in order
to find the combination which can obtain the boundary
mode.

It can be found from Table 4 that spurious eigenvalues
exist in the case of the mixed boundary condition. Chen et
al. [6] proposed combining UT and LM equations together
to filter out the spurious eigenvalues. As UT and LM equa-
tions are both constraint equations that the boundary data
should satisfy, it is easy to filter out spurious eigenvalues by
examining if the boundary eigenmodes obtained using the
UT equation can satisfy the constraint equations of the LM
equation and vice versa. It is found that the only ‘‘eigen-
mode’’ satisfying both the UT and LM equation at the spur-
ious eigenvalue is the trivial eigenmode, so it is concluded
that this eigenvalue should be spurious.

Chen’s method, although successful in filtering out spur-
ious eigenvalues, requires that the boundary eigenmode at
the spurious eigenvalues be solved first, which means that
their method cannot filter out the spurious eigenvalues in the
stage of eigenvalue searching. Let us summarize the diffi-
culties encountered in Chen’s method [6]: (1) the boundary
eigenmode at the true eigenvalues may possibly be undeter-
mined; (2) the spurious eigenvalue needs to be filtered out
only at the stage when the corresponding spurious eigen-
mode is obtained.

It is quite interesting to ask ourselves a question: can one
filter out the spurious eigenvalues in the stage of eigenvalue
searching and determine the boundary eugenmodes at the
true eigenvalues more systemmatically and efficiently? The
answer is yes, as will be shown in the following section.

4. Determination of the eigenproblem using the SVD
method

After substituting the homogeneous boundary conditions
for both the UT and LM integral equations into three exam-
ples (Case 1:u(0)� 0, u(1)� 0, Case 2:t(0)� 0, t(1)� 0,
Case 3:u(0)� 0, t(1)� 0), the eigenproblem in general can
be expressed as

�A�l��2×2x2×1 � 0; �24�
whereA (l ) is the leading coefficient matrix function ofl ,
andx is the boundary eigenvector. Whenl is equal to the
eigenvalue, the determinant ofA is zero, which means that
the rank ofA must be at most equal to one in order to have a
nontrivial solution. We should remember that we have in
total four equations (UT1 LM equations). Therefore, the
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boundary eigenvectors should satisfy all four equations even
though we obtain the eigenvalues from the two selected
equations independently. It has been mentioned earlier
that the spurious boundary eigenvectors corresponding to
the spurious eigenvalues cannot satisfy the remaining eigen-
equations. This means that the only eigensolution corre-
sponding to the spurious eigenvalues is a null vector as
the leading coefficient matrix after combining the UT and
LM equations has a rank of 2. In another words, a selection
of two equations which has a rank of 2 is possible. However,
when we select a special group of equations, the rank of the
system of equations may be reduced by one order, which
may mislead us and cause us to believe that it is a true
eigenvalue.

To determine the boundary eigenvectorx, a standard
procedure is to let one element in the vector ofx be equal
to one and reduce the equation to

� �A�1×1 �x1×1 � b1×1: �25�
Then, the remaining components in the boundary eigenvec-
tor can be determined. However, the previously-mentioned
algorithm is correct only when the rank of the leading coef-
ficient matrix,A, is equal to 1. When the rank of the leading
coefficient matrix is less than 1, the algorithm fails.

In the rod case with the Dirichlet boundary conditions
u(0) � u(1) � 0, it is found that the rank of the leading
coefficient matrix in the UT equation is equal to zero. In a
similar way, for the case oft(0) � t(1) � 0, it is found that
the rank of the leading coefficient matrix in the LM equation
is equal to zero. This means that the system of equations for
case (1) appearing in the UT equation is highly dependent,
so that the boundary eigenvector can be chosen arbitrarily.
In general, the true boundary eigenvector should satisfy all
four equations. Therefore, we have more equations than
unknowns in this framework if UT and LM equations are
both considered.

As mentioned earlier, the conventional method for find-
ing the eigenvalues and corresponding boundary eigenvec-
tors may encounter two difficulties: the spurious eigenvalue
problem and the indeterminancy of boundary eigenvectors.
Here, we propose use of the singular value decomposition
method (SVD) to eliminate these two difficulties at the same
time. A brief introduction to SVD is given now.

Consider a linear algebra problem with more equations
than unknowns:

�A�m×nxn×1 � bm×1; m . n; �26�
where m is the number of equations,n is the number of
unknowns andA is the leading matrix, which can be decom-
posed into

�A�m×n � Um×mSm×nV*
n×n: �27�

Here,U is a left unitary matrix constructed by the left singu-
lar vectors,S is a diagonal matrix which has singular values
s1;s2;…;sn allocated in a diagonal line as

S �

s1
… 0

..

.
]

..

.

0 … sn

..

.
]

..

.

0 … 0

2666666666664

3777777777775
; m . n; �28�

in whichs1 $ s2
… $ sn, andV* is the complex conjugate

transpose of a right unitary matrix constructed by the right
singular vectors. As we can see in Eq. (27), there exist at
mostn nonzero singular values. This means that we can find
at mostn linear independent equations in the system of
equations. If we havel zero singular values�0 # l # n�;
this means that the rank of the system of equations is
equal ton 2 l. However, the singular value may be very
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Fig. 1. Direct search of eigenvalues using SVD for the rod case (Dirichlet B.C.:u(0) � u(1) � 0, n � 20).



close to zero numerically, resulting in rank deficiency. For a
general eigenproblem as shown in this article, the eigen-
values will cause the rank to ben 2 1 (that is, 1).

Determining the eigenvalues of the system of equations
has now been transformed into finding the values ofl which
make the rank of the leading coefficient matrix to be 1. This
means that whenm� 4,n� 2 andb2×1 � 0, the eigenvalues
will makes� 1, such that the minimum singular value must
be zero or very close to zero.

Let us take the rod as an example; the results obtained
using the direct search method based on the SVD method
are plotted in Figs. 1–3. It is seen that the true eigenvalues
cause the minimum singular value to be much lower than
the otherl values. The more the eigenvalue approaches the
true value, the more the minimum singular value approaches
zero, in which case the rank of the matrix will be reduced to

1. However, this is not true for the spurious case. Therefore,
the rank of the matrix is equal to 2 at the spurious eigenva-
lue, so the spurious eigenvalue can be easily distinguished
and filtered out without need of any information from the
boundary modes.

To find the boundary eigenvector associated with the
eigenvalue, we can set one of the elements in the boundary
eigenvector to be one and then reduce the equations into the
form of Eq. (25), whereb is now a nontrivial vector,m� 4
and n � 1. Then, the pseudo-inverse matrix,A1 of A, is
expressed as

A1
n×m � Vn×nS

1
n×mU*m×m; �29�

whereS1 is constructed by taking the transpose ofS and
then replacing the diagonal singular value terms with its
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Fig. 2. Direct search of eigenvalues using SVD for the rod case (Neumann B.C.:t(0) � t(1) � 0, n � 20).

Fig. 3. Direct search of eigenvalues using SVD for the rod case (Mixed B.C.:u(0) � t(1) � 0, n � 20).



inverse, expressed as

S1 �

1
s1

… 0 … 0

..

.
]

..

.
]

..

.

0 … 1
sn

… 0

266666664

377777775m . n: �30�

The previously-mentioned SVD method has been proved
to be equivalent to the least square error solution in deter-
mining the unknown vector when the number of equations is
larger than that of unknowns [12]. After introducing the
SVD method, we do not need to worry about how to pick
a specific group of equations such that the rank of the

leading coefficient is sufficient to solve for the eigen-
vector. However, we can take all four equations into
account, which apparently causes the rank of the lead-
ing coefficient matrix to be equal to one. Thus, the
eigenvector can be easily found in the sense of the
least square error. The eigenmodes determined using the
SVD method are the same as those obtained in Chen’s
work [6] as the boundary eigenvectors are almost the
same; therefore, only the first two mode shapes for the rod
obtained using the SVD method are illustrated in Figs. 4–6.
It can be confirmed that the SVD method can deal with the
spurious eigenvalue problem and eliminate possible inde-
terminancy of the boundary eigenvector at the same time.
For further details concerning the SVD method, please refer
to Gloub’s book [13].
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Fig. 4. The first two eigenmodes determined using the SVD method (Dirichlet B.C.:u(0) � u(1) � 0, n � 20).

Fig. 5. The first two eigenmodes determined using the SVD method (Neumann B.C.:t(0) � t(1) � 0, n � 20).



5. Conclusions

In this article, we have used the dual equations for MRM
to find the natural frequencies and modes of a rod. The SVD
technique has been employed to distinguish whether the
eigenvalue is true or not in the stage of eigenvalue search-
ing. Also, the SVD method has been used to determine the
true eigenvalues and the boundary eigenvectors at the same
time, which can avoid calculating the spurious boundary
eigenvector. Three examples with different boundary condi-
tions have been used to show the validity of the present
method.
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