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Abstract

In this paper, the window function, e is applied to regularize the divergent problem which occurs in the Laplace
equation with overspecified boundary conditions in an infinite strip region. To deal with this ill-posed problem, the
corner of the L-curve is chosen as the compromise point to determine the optimal « of the Gaussian window, e=*’, so
that the high wave-number (k) content can be suppressed instead of engineering judgement using the concept of a cutoff
wave-number. From the examples shown, it is found that a reasonable solution of the unknown boundary potential can
be reconstructed, and that both high wave-number content and divergent results can be avoided by using the proposed
regularization technique. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

Inverse problems are presently becoming more important in many fields of science and engi-
neering [1,2]. The Laplace equation of an infinite strip with overspecified boundary conditions
(B.C.s) can be treated as an inverse problem [3]. Sometimes, unreasonable results occur in the
inverse analysis due to the measured and contaminated errors or the limited accuracy of the
computer in the input B.C. [4]. Mathematically speaking, the inverse problem is ill-posed since the
solution is very sensitive to the given data. This phenomenon will become more serious when the
depth of the strip is greater. This paper focuses on a treatment for divergence of solution due to
noise on the overspecified B.C.s. The depth of the strip is assumed to be known. Such a divergent
problem could be avoided by using a cutoff wave-number or regularization methods. The former
method utilizes a rectangular window to eliminate all the high wave-number contents which are
larger than the cutoff wave-number as used in SHAKE program [5]. Nevertheless, how a suitable
cutoff wave-number is chosen depends on engineering judgement in engineering practice. For
example, Silva suggested a cutoff frequency of 15 Hz to eliminate the tendency to develop un-
realistically large accelerations at depth [6]. Nevertheless, the side lobe of the rectangular window
is large. To find an optimum window with a general rule is a key step in solving such a problem.
The regularization techniques have been successfully applied to solve direct and inverse problems.
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For example, three regularization techniques, Cesaro sum, quasi-static decomposition and Stokes’
transformation, have been applied to direct problems by Chen and Hong [7-13] when the ana-
lytical solution is not expressed in the best way. The three methods can obtain the solution more
precisely. One of the regularization techmques the Cesaro window, has been successfully apphed
to deconvolution analysis of site response in earthquake engineering by Chen et al. [4] in con-
junction with the L-curve concept.

In this paper, we shall employ one of the regularization methods, the window function, e
[3], to circumvent the ill-posed problem. In other words, an optimum Gaussian window, e~
with an appropriate a, will be introduced. The window function, e - can redistribute the
amplitude of the wave-number content for the system kernel; therefore, an ill-posed problem
can be transformed into a well-posed one by choosing an appropriate number for «. The ap-
propriate number is determined according to a compromise between regularization errors (due
to data smoothing) and perturbation errors (due to noise disturbance) [14]. The corner of the L-
curve determines the optimal value of « which will be employed to provide the compromise
point and will be elaborated on later. Also, comparison of the ill-posed problem for the wave
equation, Laplace equation and heat conduction equation with overspecified B.C.s will be
discussed. The index of ill-posedness for the Laplace equation is larger than that for the other
two because its transfer function diverges more seriously as the wave-number becomes large.
Therefore, the inverse problem of the Laplace equation will diverge more seriously. This is the
reason why we treat the Laplace equation in this paper. Finally, examples contaminated with
artificial noises for both direct and inverse problems will be shown to illustrate the validity of
the proposed technique.
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Fig. 1. Direct problems for the Laplace equation in an infinite strip.
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2. Formulation of the Laplace equation with over-specified boundary conditions

In general, the direct and inverse problems for the Laplace equation of an infinite strip can be
illustrated as shown in Figs. 1 and 2, respectively. For the direct problems, in Fig. 1(a) and (b),
the known boundary potential ¢,,(x) and boundary flux ¢,,(x) in the space domain (x domain) or
&, (k) and ¥i,(k) in the wave-number domain (k domain) are prescribed over different boundaries
(v = 0,y = 1), respectively. For inverse problems, in Fig. 2(a) and (b), the known boundary po-
tential ¢, (x) and boundary flux ¢,,(x) in the x domain or &;,(k) and ¥;,(k) in the k domain are
overspecified on the same boundary (y =0,y = I), but the flux and potential on the remaining
boundary are both unknown.

By using the Fourier transform, we can construct the analytical solution for the Laplace
equation in terms of integral form as follows.

(1) Direct problem: From Fig. 1(a), the unknown potential solution can be represented as

o]

1 .
uw) = 57 [ [T + T2k ) Pl ok, 1)
where &;,(k) and ¥j,(k) are the known boundary potential (y = 0) and boundary flux (y = /) in
the & domain, k is the wave-number, T;Z(k, y) and T} (k,y) are the transfer functions of direct
problems in the £ domain, as expressed by

cosh k(y — 1)

Td?(kay) = W, (2)
" _ sinh(ky)
T3 (k,y) = % cosh (kI)’ (3)

in which / is the thickness of the strip. Therefore, the unknown potential on the boundary (y = /)
is

u(z,1) = din(z) Uy(2,1) = pin(z) =0
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Fig. 2. Inverse problems for the Laplace equation in an infinite strip.
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where ¢, (x) is the unknown boundary potential (y = /).
From Fig. 1(b), the unknown potential (y = 0) can be represented as

1 7 ikx
) = 5z [ (T2 + T2 0P| 0k, )
where Tj; (k,y) and T} (k,y) are the transfer functions of direct problems in the ¥ domain as ex-
pressed by

4 (k,y) = SO ]
Takoy) = o (k1)’ (6)
o __sinh k(y — 1)
Tatk,y) = k cosh(kl) (7)
Therefore, the unknown potential on the boundary (y = 0) is
- T, sinh(=k1) o ] i
u(x?o) - ¢0ut(x) - ﬂ/ l:COSh(kl) ¢ln(k) +k COSh(kI) Wm(k) € dk {8)

It is found that the transfer functions in Egs. (2), (3), (6) and (7) for direct problems are bounded
as k grows to infinity.
(2) Inverse problem: From Fig. 2(a), the unknown potential (y = 0) can be represented as

[e

1 i
) =57 [ [T900)@alh) + T2 ) Pk ok ©
where T}‘f (k,y) and T (k,y) are the transfer functions in the ¥ domain for inverse problems as
expressed by

T? (k,y) = cosh k(y — 1), (10)
mww=ﬁi%:ﬁ. (11)

Therefore, the unknown potential on the boundary (y = 0) is

- |
mifﬁmmuwﬁ. (12)

1 oG
u(x,0) = ¢, (x) = ﬂ/ {cosh(kl)(bin(k) +
From Fig. 2(b), the unknown potential (y = /) can be represented as

o

e ) = 37 [ (TG00 + T2 () Palb)] ak, (13)

—00

where T,.f(k, y) and T (k, y) are transfer functions in the £ domain for inverse problems and can be
expressed as

T (k,y) = cosh (ky), (14)
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T2(k,y) = S8 (15)

Therefore, the unknown potential on the boundary, y = /, is

sm};@ ¥, (k) | dk. (16)

mw—%m~§/hmw%m+

-~00

It is found that the transfer functions in Egs. (10), (11), (14) and (15) for the inverse problems are
unbounded as k grows to infinity.

In the above direct and inverse problems, eight transfer functions have been obtained. The
explicit forms are summarized below:

" __cosh k(y — 1)
Thky) =252, (17
" __ sinh ky
Tky) = o, (18)
" __cosh ky
Thlky) =2 (19)
" __sinh k(y = 1)
sz(k’y) - kCOSh kl ) (20)
T (k,y) = cosh k(y — 1), (21)
inh k(y —/
TP(k,y) = K0 2D, 2)
Ty (k,y) = cosh ky, (23)
inh
Toky) = S (24)
From Egs. (17) and (21), we have
TP (k, )T (k,0) = 1. (25)
From Egs. (18) and (22), we have
OT) (k,0)dT? (k,0
(k00T 0) 26)
dy oy
From Egs. (19) and (23), we have
Hp (k,0)T2 (k, 1) = 1. (27)
From Egs. (20) and (24), we have
oT) (k,1)oT? (k, 1
dz( ) i ( ) =1 (28)

Oy dy
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Fig. 3. Transfer functions of convolution and deconvolution for the Laplace equation, wave equation and heat con-

duction.
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Eqgs. (25)-(28) reveal that transfer functions for direct and inverse problems are inverse to each

other. For simplicity, if the potential flux, ¢;,(x), is zero, then the solution of direct problems can
be reduced to

Boutt) = 5= [ Talh) 0 (29)

where T,(k) = 1/ cosh(k/), and the unknown boundary potential in the k¥ domain for the direct
problem can be represented as

Bou(k) = Tu(K) ), (30)
in which
(k) = Tk, D) = Tk 0) = o a1

When the known potential @,,(k) in one boundary is given, and the known flux ¥j,(k) in the
remaining boundary is zero, the unknown potential ®,,(k) can be calculated according to
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Fig. 4. Gaussian window function and Cesaro window function.
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Eq. (30). This procedure is usually called the “direct process,” and T, (k) is the transfer function of
convolution for the Laplace equation. On the other hand, the transfer function for the inverse
problem can be defined as

Pou (k)
. = = kl). 32
i) = G = ok (32)
When &;,(k) is given in one boundary, and W;,(k) is zero in the same boundary, Dou(k) can be
represented as

Poui (k) = Ti(k) Pin(k) (33)

= cosh(k!) @, (k). (34)

Eq. (33) can be called the “inverse process,” and dou(x) can be obtained by inverse discrete
Fourier transform as represented by

¢out(x) = i ¢OUI(kn)eiknx7 (35)

where k, is nth wave-number in the Fourier domain. In practical calculations, only the finite
length of the summation is used; therefore, Eq. (35) is changed to
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Fig. 6. The known and unknown boundary potentials and their Fourier spectra in the convolution analysis for case 2.
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¢out(x) = Z (pout(kn)eik”x; (36)

n=—N

where N is total number in the discrete Fourier transform.

Comparing Eq. (31) with Eq. (32), it can be seen that T,(k) is the inverse of Tj(k). A typical
relationship of their amplitude versus wave-number is shown in Fig. 3(a). The amplitude of the
transfer function for the direct problem decreases rapidly as the wave-number increases. On the
other hand, the amplitude of the transfer function for the inverse problem becomes larger as the
wave-number becomes higher. Comparing with the wave equation [4] and heat conduction, as
shown in Fig. 3(b) and (c), we can find the same trend. Since the transfer function of the con-
volution analysis is bounded, no serious errors will occur when the input data is contaminated
with noise. However, the transfer function for the inverse problem has very high amplitude in the
range where the wave-number is larger. This means that the transfer function can amplify any
high wave-number noise of the contaminated input data in the deconvolution analysis.

In engineering practice, records (including the boundary potential and boundary flux) on a
boundary may not be available. Therefore, deconvolution analysis must be used to calculate the

3% random error by Monte Carlo simulation.
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Fig. 7. The random errors in the convolution and deconvolution analysis.
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potential on the boundary where it is not easy to measure. The problem of high wave-number
amplification can not be avoided in the analysis. Therefore, noise errors should be suppressed by
using a regularization technique. Section 3 will introduce a regularization method to overcome
the difficulty of high wave-number amplification in the deconvolution analysis.

3. Regularization technique with Gaussian window

For the above mentioned ill-posed problem, regularization techniques are often employed to
transform the original problem into a well-posed one. The problem will be dealt with in the &k
domain. Therefore, we will propose a regularization technique based on the window function,
e to regularize the ill-posed problem in the & domain. In the mathematical modelling for a
physical problem, the series representation or integral representation for the solution is often
assumed, and the governing equation in another domain can be equivalently obtained. In order to
represent the solution more accurately when the input data has some noise errors, a regularization
technique can be used to reproduce the unknown solution more precisely. This is the reason why
the window function, e~*', is related to the reproducing kernel and Cesaro window [4].

2.00 a0
n=2048 n=2048
1l zpme0zm Ra™ 18 (wave—number)
200 3
1.00 L
-~
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r - 3
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.00
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o ~2.00 -1.00 1.00 abe T TR T b (Y 1400
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wg » Kos= §8 (wave—msmber)
200
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@ L
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(o) The b v (%) Fourier spsotrum of the doundary

Fig. 8. The contaminated known and unknown boundary potentials and their Fourier spectra in the convolution
analysis for case 1.
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The Gaussian window, e~*’, can be represented as a weight function which can suppress the
amplitude of a high wave-number. To understand the effect of the weights for different values of «
(0.1,0.5,1,2), their values are shown in Fig. 4(a). It is interesting to find the same trend as we find
with the Cesaro orders 1, 5, 10, 20, 100 as shown in Fig. 4(b) [4]. It is seen that the window
function e=**, and the Cesaro mean have the same physical meaning as a window function. The
larger « is, the more seriously the high wave-number content will be suppressed. Therefore, if the
window function is applied to deconvolution analysis in the ¥ domain, the amplitude of the high
wave-number content can be suppressed, and the solution will be insensitive to high-wave number
input errors. Applying the window function, e=*', to the deconvolution analysis, Eq. (36) can be
replaced by

n=N
out Z € “h ¢Ollt(k )e "X (37)
n=—N
where ¢ ,(x) is a regularized solution instead of the unregulanzed solution ¢, (x) in Eq. (36).
The inverse Fourier transform of the window function, e~ is

1

Wy(x) = —==e~</% (38)
2+/an
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Fig. 9. The contaminated known and unknown boundary potentials and their Fourier spectra in the convolution
analysis for case 2.
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By using the convolution product, the regularized solution can be represented as

¢&m=/MQﬂWMﬂM

where W,(x — 7) is a reproducing kernel, and

Id)Zut(x) - ¢out(x)' =

k)

C\/&(%-Fl)

in which c is a constant larger than zero, and
B 87,,(5) = Bou(x).

This is the reason why we choose the Gaussian window [3].

4. The L-curve and its applications

715

(39)

Most numerical methods for treating ill-posed problems seek to overcome problems associated
with an ill-conditioned system by replacing the problem with a “nearby” well-conditioned
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Fig. 10. The known and unknown boundary potentials and their Fourier spectra in the deconvolution analysis for case 1.
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problem, whose solution approximates the required solution and, in addition, is a more satis-
factory solution than is the ordinary solution. The latter goal is achieved by incorporating ad-
ditional information about the sought after solution, and often the computed solution should be
smooth. Such methods are called regularization methods, and they always include a so called
regularization parameter, which controls the degree of smoothing. Now, the a of the window
function, e, is chosen as the parameter of smoothness. A very convenient way of displaying the
judgement of the optimal parameter is the L-curve, which was first presented by Hanson [14]. In
the L-curve concept, the x-axis is the solution norm, and the y-axis is the residual norm. The
former is the index of how smoothly the solution is treated, and the latter is the distance index
between the predicted output and the real output. In deconvolution analysis, after obtaining the
unknown boundary potential in the inverse problem, we can transform the problem into a direct
problem by using the known B.C. By using the convolution process for the direct problem, we can
obtain a new potential which has been known on this boundary. By comparing the new potential
with the known boundary potential, the difference norm can be seen as the y-axis, and the value of
a is the x-axis. In this way, we can easily get a compromise between the regularization errors due
to data smoothing and perturbation errors in measurements or other noise, even though an
analytical solution is not available. According to the L-curve concept, the corner region is the
appropriate choice for the regularization parameter, i.e., the a of the Gaussian window, e,
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Fig. 11. The known and unknown boundary potentials and their Fourier spectra in the deconvolution analysis for case 2.
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S. Numerical examples, results and discussion

To illustrate application of the e~* window and the L-curve for the Laplace equation with
overspecified B.C.s, an infinite strip with finite thickness, / = 1, is chosen as a representation
example. Two kinds of problems are considered: one is the direct problem with and without noise,
and the other is the inverse problem with and without noise.

(1) Direct problem: convolution analysis. The present model of the direct problem can be de-
scribed as shown in Fig. 1(a). Suppose two functions are given in the known boundary potentials
(v = 0) of the two cases, ¢, (x), as shown in Figs. 5(a) and 6(a), and suppose the known boundary
fluxes of the two cases, ¢;,(x), on the other boundary (y = /) are zero. Their Fourier amplitudes,
&, (k), are shown in Figs. 5(b) and 6(b). By the direct process, the unknown boundary potentials
of the two cases, ¢, (x), and their Fourier spectrums, ®,,(k), can be obtained by Eq. (30) as
shown in Figs. 5(c), (d) and 6(c), (d). Comparing Fig. 5(b) with Figs. 5(d) and 6(b) with Fig. 6(d),
it can be found that the unknown boundary potentials of the two cases, @, (k), have less high
wave-number content as compared with the known boundary potentials of the two cases, ®;,(k).
By using Monte Carlo simulation, we can obtain 3% random errors contaminating the input
data, as shown in Fig. 7(a). The known boundary potentials of the two cases, ¢, (x), are
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Fig. 12. The contaminated known and unknown boundary potentials and their Fourier spectra in the deconvolution
analysis for case 1.
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contaminated by the noise errors to simulate probable errors in the measurement. The con-
taminated potentials and their Fourier spectra on the known boundary for the two cases are
shown in Fig. 8(a), (b) and Fig. 9(a), (b). The results using the direct process are shown in
Fig. 8(c), (d) and Fig. 9(c), (d), and no significant difference can be found. Therefore, the regu-
larization technique is not necessary for the direct problem even though the data is contaminated
with errors.

(2) Inverse problem: deconvolution analysis. The present model of the inverse problem can be
described as shown in Fig. 2(a). The unknown boundary potentials (y = /), ¢, (x), for the two
cases in the convolution analysis are seen as the known boundary conditions of potentials for the
two cases, ¢;,(x), in the deconvolution analysis, as shown in Fig. 10(a), (b) and Fig. 11(a), (b).
The known fluxes of the two cases, ¢,,(x), for the two cases on the same boundary (y = [) are
zero. By using the inverse process, we obtain the unknown boundary potentials, ¢, (x), as shown
in Fig. 10(c), (d) and Fig. 11(c), (d). The results are satisfactory as compared with the analytical
solution. To see the influence of high wave-number noise in the deconvolution analysis, we can
obtain 3% random errors, shown in Fig. 7(b), and superimpose them to simulate probable errors
in measurement. The contaminated potentials and their Fourier spectra on the overspecified
boundary for the two cases are shown in Fig. 12(a), (b) and Fig. 13(a), (b). It is found that, if
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Fig. 13. The contaminated known and unknown boundary potentials and their Fourier spectra in the deconvolution
analysis for case 2.
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regularization technique is not employed, the results are unreasonable as shown in Figs. 12(c), (d)
and 13(c), (d). In the inverse process, too much high wave-number content is present, and the
solution is unrealistic and divergent.

When the Gaussian window, e, is applied in the deconvolution analysis for the two cases,
we can obtain solutions with many values of «, as shown in Fig. 14(a), (b) and Fig. 15(a), (b).
Therefore, we can find the relationship between the residual norm and the value of o; i.e., the L-
curve, as shown in Figs. 16 and 17, can be constructed. As expected from the mathematical point
of view, a corner is present in the L-curve. When the value of « is at the left hand side of
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Fig. 14. The contaminated unknown boundary potentials and their Fourier spectra by using the Gaussian window, e

with different values of « in the deconvolution analysis for case 1.
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Fig. 15. The contaminated unknown boundary potentials and their Fourier spectra by using the Gaussian window, e,
with different values of « in the deconvolution analysis for case 2.

the corner, the residual norm grows very quickly and deviates very far from the analytical so-
lution. If the value of « is larger than the corner value, then the lower wave-number content will
be over-decayed, and the unknown boundary potentials will become smaller. If the corner of the
L-curve is chosen as an optimal point, the appropriate value is 0.095 for case 1 and 0.06 for case
2, respectively. The original and regularized amplitudes of the transfer functions are shown in
Fig. 18. It can be found that the amplitude of low wave-number for the original transfer function
is just slightly reduced by using the e~*’ window while the amplitude of the high wave-number
for the transfer function has been supressed very much. Therefore, the deconvolution result will
be regularized to approximate the analytical solution, as shown in Figs. 19 and 20. We can find
that the appropriate solutions obtained by using the regularization technique look more rea-
sonable in comparison with the analytical solution than do the results obtained without using
regularization. Although some differences still occur between the given curve and reconstruction
data, and they can be explained by the discontinuous potential for case 1 and discontinuity of
slope in case 2.
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Fig. 19. The contaminated unknown boundary potential and its Fourier spectrum by using the Gaussian window, e~

Amplitude of transfer funclhion

J.T. Chen, K.H. Chen | Appl. Math. Modelling 22 (1998) 703-725

-~
Sl
-

—eeeeee original
regularized

~
=]
-

~
S
-

~ -
-] o
- -

PP SRR BRRTI IRETI SRRt M)

-
-]
9

pooued 4 o

-
()
»

~
S
\

FRInT |

-

-
o
L

ST )

-
>
3

0.01 0.1
wave-number (k)

Fig. 18. The original and regularized amplitudes of the transfer function for deconvolution.
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Fig. 20. The contaminated unknown boundary potential and its Fourier spectrum by using the Gaussian window, e,
with the optimal value of « in deconvolution analysis for case 2.

6. Conclusions

The direct and inverse problems can be classified by using the bounded and unbounded
transfer functions, respectively. A comparison of the ill-posed problem among the wave equation,
Laplace equation and heat conduction equation with overspecified B.C.s is given in Table 1. The
regularization technique using the Gaussian window, e”*’, together with the L-curve, plays a role
in determining the optimal parameter « of the window which can maintain the system charac-
teristics and can make the system insensitive to contaminating noise. Therefore, the long standing
abstrusity of determining the window by engineering judgement has been solved by using a
theoretical window in conjunction with the L-curve. Two examples for the direct and inverse
problems, with and without artificial errors, have been given to demonstrate the validity of this
proposed method.
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Table 1
Comparison of the Laplace equation, wave equation and heat conduction
Wave equation (soil dynamics) Laplace equation Heat conduction
G.E. (original domain) u N *u Fu . u o alﬁ ~ _6'u
ar Jdor w2 R
Fourier domain
U U ?U .
szt EU=0 T_kZU_O 3z~ iU =0
Boundary condition u du o
u(0,0) = a(n), =(0,1) =0 u(x,0) = $(x), 3 (10 =0 u(0.0) = alt), 5 (0,)=0
Transfer function (direct problem) 1 1 1
H = — Hk) = ——— Hw) = ———r
(U)) cos o ( ) COSh(kl) ( ) cosh(@)
o/ 1428
Transfer function (inverse problem) H() — cos ( wl Hk) = cosh (ki) oo
- o/T+28 H(w) = cosh -
d i i —
Order of infinity 1 . 1 o S(VENVE)
2 2
Index of ill-posedness 1 i L‘_"_
c V2
Notations
o parameter of window function, e~k
k wave-number in the Fourier domain
N total number in the Fourier transform
k, nth wave-number in the Fourier transform
(x,») position vector
/ thickness of the strip

Td"f (k,»), Ty (k,y) transfer functions of direct problems in the & domain for model 1
T, jz (k,y), Tj(k,y) transfer functions of direct problems in the k domain for model 2
T,{”(k, »), T (k,y) transfer functions of inverse problems in the £ domain for model 1
T,f(k, y), I;7(k,y) transfer functions of inverse problems in the & domain for mode] 2

i (x) known boundary potential in the x domain
Dis (k) known boundary potential in the & domain
©Oin(x) known boundary flux in the x domain
Yin(k) known boundary flux in the & domain
W,(x) reproducing kernel
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