
Applied Mathematical Modelling 34 (2010) 4253–4266
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
A study on the method of fundamental solutions using an image concept

Jeng-Tzong Chen a,b,*, Hung-Chih Shieh a, Jhen-Jyun Tsai a, Jia-Wei Lee a

a Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
b Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 October 2009
Received in revised form 24 April 2010
Accepted 28 April 2010
Available online 9 May 2010

Keywords:
Method of fundamental solutions
Image method
Green’s function
Boundary value problem
0307-904X/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.apm.2010.04.022

* Corresponding author at: Department of Harb
24622192; fax: +886 2 24632375.

E-mail address: jtchen@mail.ntou.edu.tw (J.-T. C
In this paper, both analytical and semi-analytical solutions for Green’s functions are
obtained by using the image method which can be seen as a special case of method of fun-
damental solutions (MFS). The image method is employed to solve the Green’s function for
the annular, eccentric and half-plane Laplace problems. In addition, an analytical solution
is derived for the fixed-free annular case. For the half-plane problem with a circular hole
and an eccentric annulus, semi-analytical solutions are both obtained by using the image
concept after determining the strengths of two frozen image points and a free constant
by matching boundary conditions. It is found that two frozen images terminated at the
two focuses in the bipolar coordinates for the problems with two circular boundaries. A
boundary value problem of an eccentric annulus without sources is also considered. Error
distribution is plotted after comparing with the analytical solution derived by Lebedev
et al. using the bipolar coordinates. The optimal locations for the source distribution in
the MFS are also examined by using the image concept. It is observed that we should locate
singularities on the two focuses to obtain better results in the MFS. Besides, whether the
free constant is required or not in the MFS is also studied. The results are compared well
with the analytical solutions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Method of fundamental solutions (MFS) has been developed for more than 50 years. The method was proposed by
Kupradze and Aleksidze [1] in Russia since 1964. In the potential theory, it is well known that the MFS can solve potential
problems if fundamental solutions of the partial differential equation are given. The Green’s function has been studied and
applied in many fields by mathematicians as well as engineers [2]. The fundamental solutions are free-space Green’s func-
tions while the Green’s function is a fundamental solution with boundary conditions of a bounded domain. Both one contain
a source in the domain. For the image method, Thomson [3] proposed the concept of reciprocal radii to find the image source
to satisfy the homogeneous boundary condition. Chen and Wu [4] proposed an alternative way to determine the location of
image by employing the degenerate kernel. The Green’s function of Laplace equation was obtained by using the image meth-
od for a simple case in the Greenberg’s book [5]. The Green’s function of a circular ring has been solved using the complex
variable by Courant and Hilbert [6]. In the Milne-Thomson book [7], he also used the technique of complex variables to solve
the harmonic problems with circular boundaries. In the Chen and Wu [4] approach, we introduced the degenerate kernel to
find the location of the image point. We admitted that various approaches may result in the same solution. However, we can
extend the present approach to solve 3D problems but the method of complex variables may have difficulty. A successful
. All rights reserved.
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extension to 3D case can be found in the paper [8]. The optimal location of the MFS is also found by using the image method.
We used the image method to obtain the Green’s functions in the present paper. Mathematically speaking, we derive the
Green’s function by superimposing the fundamental solutions where singularities are located outside the domain. Therefore,
Fig. 3. An annular case composed of (a) interior and (b) exterior cases.

(a) Interior problem 

(b) Exterior problem 

2

( ,0)
a

R

( ,0)R
a

2

( ,0)
a

R

( ,0)R
a

ζ

ζ

ζ

ζ

Fig. 2. Sketch of image location: (a) interior case and (b) exterior case.

i-

i-

i-

i-

i-

i-

8 3

8 5

8 7

8 1

8 6

8 4

8 2i-

8i

a

b

2 0t =

1 0u =
2B

1B

ζ ζ ζ ζ

ζζζζζ

Fig. 1. Sketch of an annular problem.
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the image method can be seen as a special case of the MFS since all the image sources are located outside the domain. To
derive the Green’s function for problems with circular boundaries by using the image method is the main concern of this
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Fig. 4. Values of c(N), d(N) and e(N): (a) annular case [11], (b) half-plane case and (c) eccentric case.
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paper. Here, we put singularities along the radial direction in the method of images instead of angular distributions for the
annular case.

In this paper, both analytical and semi-analytical solutions for the Green’s functions of annular, eccentric and half-plane
problems are derived. The analytical solutions for the fixed-free annulus are obtained by using the image method in conjunc-
tion with the addition theorem or the so-called degenerate kernel. For the semi-analytical solution, a half-plane problem
with a circular hole and an eccentric annulus are considered to demonstrate that the image method can capture the optimal
location of MFS sources. The agreement between the semi-analytical solution and that of null-field boundary integral equa-
tion method (BIEM) is examined. Following the successful experiences on the derivation of Green’s function, we extend to
solve the boundary value problem without sources by using the MFS. Saavedra and Power [9] have discussed the role of free
constant in the MFS. As quoted by [9], ‘‘However, usually it is necessary to add a constant term in particular in two dimensions,
where it is required for completeness purposes. As can be observed a constant value is always a solution of the Laplace’s equation.”
Whether it is necessary for adding a constant in the MFS formulation is a nontrivial issue. It is interesting to find that only the
strengths at the two focuses for the eccentric annulus are required, if the rigid body term is considered in the MFS. When the
conventional MFS without adding a constant term is used, how to represent the constant field by superimposing the singu-
larities becomes an interesting issue. Error distribution is plotted after comparing with the analytical solutions of Lebedev
et al. [10]. The optimal location in the MFS highly correlates to the two focuses for the problem of eccentric annulus. Numer-
ical results of eccentric case are compared with the analytical solution using the bipolar coordinates.

2. An analytical solution for the Green’s function of annular region by using the image method

For a two-dimensional annular problem as shown in Fig. 1, the Green’s function satisfies
r2Gðx; fÞ ¼ dðx� fÞ; x 2 X; ð1Þ
where X is the domain of interest and d denotes the Dirac-delta function for the source at f. For simplicity, the Green’s func-
tion is considered to be subject to the fixed-free boundary conditions
Gðx; fÞ ¼ 0; x 2 B1; ð2Þ
@Gðx; fÞ
@nx

¼ 0; x 2 B2; ð3Þ
where B1 and B2 are the inner and outer boundaries, respectively. As mentioned in the book of Courant and Hilbert [6], the
interior and exterior Green’s functions can satisfy the fixed-free boundary conditions if the image source is correctly se-
lected. The closed-form Green’s functions for both interior and exterior problems are written to be the same form
Gðx; fÞ ¼ ln jx� fj � ln jx� f0j þ ln a� ln Rf; x 2 X; ð4Þ
where a is the radius of the circle, f = (Rf, 0), Rf is the distance from the source to the center of the circle, f
0
is the image source

and its position is at (a2/Rf, 0) as shown in Fig. 2. Fig. 1 depicts a series of images for the annular problems. We consider the
fundamental solution U(x, s) for a source singularity at s which satisfies
r2Uðx; sÞ ¼ 2pdðx� sÞ: ð5Þ
Then, we obtain the fundamental solution as follows:
Uðx; sÞ ¼ ln r; ð6Þ
Fig. 5. A half-plane problem with a circular hole and its images.
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where r is the distance between s and x (r � |x � s|). Based on the separable property of addition theorem or degenerate ker-
nel, the fundamental solution U(x, s) is expanded into a series form by separating the field point x(q, u) and source point
s(R, h) in the polar coordinates [4]:
Uðx; sÞ ¼
UIðq;/; R; hÞ ¼ ln R�

P1
m¼1

1
m

q
R

� �m cos mðh� /Þ; R � q;

UEðq;/; R; hÞ ¼ ln q�
P1

m¼1

1
m

R
q

� �m
cos mðh� /Þ; R < q;

8>><
>>: ð7Þ
where the superscripts of I and E denote the interior and exterior regions, respectively.
Now let us extend a circular case to an annular case. An annular case can be seen as a combination of an interior and an

exterior problems as shown in Fig. 3. By matching the fixed-free boundary conditions for the inner and outer boundaries, we
introduce image points f1 and f2, respectively. Since f2 results in the nonhomogeneous boundary conditions on the outer
boundary, we need to introduce an extra image point f3. Similarly, f1 results in the nonhomogeneous boundary conditions
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Fig. 6. Contour plots by using (a) image method and (b) null-field BIEM.
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on the inner boundary and an additional image point f4 is also required. By repeating the same procedure, we have a series of
image sources locating at
f8i�7 ¼
b2

Rf

b4

a4

 !i�1

; f8i�5 ¼
b2Rf

a2

b4

a4

 !i�1

; f8i�3 ¼
b4

a2Rf

b4

a4

 !i�1

; f8i�1 ¼
b4Rf

a4

b4

a4

 !i�1

; i 2 N; ð8Þ

f8i�6 ¼
a2

Rf

� �
a4

b4

� �i�1

; f8i�4 ¼
a2Rf

b2

a4

b4

� �i�1

; f8i�2 ¼
a4

b2Rf

 !
a4

b4

� �i�1

; f8i ¼
a4Rf

b4

a4

b4

� �i�1

; i 2 N: ð9Þ
Following the successive image process, it is found that the final two image locations freeze at the origin and infinity.
There are two strengths of singularities to be determined. Therefore, the total Green’s function is rewritten as
Fig. 7. Conventional MFS.

Fig. 8. Sketch of an eccentric problem subject to a concentrated load and the final two images at fc and fd .
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Gðx; fÞ ¼ 1
2p

("
ln jx� fj þ lim

N!1

"XN

i¼1

ln jx� f8i�7j � ln jx� f8i�6j � ln jx� f8i�5j � ln jx� f8i�4jð Þ

� ln jx� f8i�3j þ ln jx� f8i�2j þ ln jx� f8i�1j þ ln jx� f8ij
#
þ cðNÞ ln qþ eðNÞ

#)
; ð10Þ
where c(N) and e(N) are the unknown coefficients which may be analytically and numerically determined by matching the
inner and outer boundary conditions. To match the outer free boundary condition, the normal derivative of Eq. (10) yields
@Gðx; fÞ
@nx

¼ 1
2p

@

@nx

("
ln jx� fj þ lim

N!1

"XN

i¼1

ln jx� f8i�7j � ln jx� f8i�6j � ln jx� f8i�5j � ln jx� f8i�4jð Þ

� ln jx� f8i�3j þ ln jx� f8i�2j þ ln jx� f8i�1j þ ln jx� f8ij
#
þ cðNÞ lnqþ eðNÞ

#)
ð11Þ
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In the real computation, we only used the finite N number of sources in the summation instead of double series of the eigen-
function expansion. The efficiency and convergence of solutions is observed for the unknown coefficients versus N as shown
in Fig. 4. The Green’s function of Eq. (10) is totally different from the double summation form in the textbook. By substituting
the inner and outer boundary conditions into Eqs. (10) and (11) and using the addition theorem (degenerate kernel), the ana-
lytical forms of c(N) and e(N) are obtained as
cðNÞ
eðNÞ

� 	
¼

�1
ln a� ln Rf

� 	
: ð12Þ
Numerically speaking, the values of unknown c(N) and e(N) can be alternatively determined by matching the inner and
outer boundary conditions at two selected collocation points. The obtained numerical values of c(N) and e(N) agree well with
the analytical result of Eq. (12) as shown in Fig. 4a. The generality of the present method over the complex variable approach
for various boundary conditions can be found in [11].
3. Semi-analytical solutions for the half-plane problem with a circular hole and the eccentric ring by using the image
method

Following the success of annular case for the iterative images, we now extend to the half-plane problem with a circular
hole as shown in Fig. 5. In a similar way of finding the image for matching the inner boundary condition, an image is found.
Besides, the reflection image point is needed to match the boundary condition on the ground surface. However, the two addi-
tional images, one inside the hole and the other under the ground line, result in new images to match the boundary condition
of ground surface and inner circle, respectively. The iterative images and their locations are shown in Fig. 5. Two frozen
images are found as the number of images becomes infinity. The locations of two frozen images are governed by
Rc ¼
a2

Rd
; Rd ¼ 2b� Rc; ð13Þ
where a, b, Rc and Rd are shown in Fig. 5. Therefore, the Green’s function is represented by
Gðx; fÞ ¼ 1
2p

(
ln jx� fj � lim

N!1

XN

i¼1

ln jx� f4i�3j þ ln jx� f4i�2j � ln jx� f4i�1j � ln jx� f4ijð Þ
"

þcðNÞ ln jx� fcj þ dðNÞ ln jx� fdj þ eðNÞ
#)

; ð14Þ
where fc and fd are the location of the final two images, c(N), d(N) and e(N) need to be determined by matching the boundary
conditions. Based on the idea of MFS, we can say that not only some MFS sources are optimally located by using the image
method but also the strengths except the two frozen images are also determined. Only three unknown coefficients are re-
quired to be determined by matching the boundary condition. This is quite different from the MFS since all the strengths
need to be determined in a larger linear algebraic system. Numerical values for c(N), d(N), e(N) versus N are shown in
Fig. 4b. The contour plots by using the present method and the null-field BIEM [12] are shown in Fig. 6. It is found that good
agreement is made after comparing our result with that of the null-field BIEM.
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Fig. 11. Sketch of an eccentric annulus without sources.



J.-T. Chen et al. / Applied Mathematical Modelling 34 (2010) 4253–4266 4261
Instead of using the conventional MFS as shown in Fig. 7, this image method can be seen as a special case of MFS with
optimal locations of sources. Besides, the strengths of all the singularities are determined in advance except the singularity
strengths of the two frozen images and one free constant. Similarly, we can extend the semi-analytical approach to solve the
Green’s function of eccentric case. The final locations of two image points are governed by
Fig. 12.
right (i
Rc ¼
b2

Rd � e
þ e; Rd ¼

a2

Rc
; ð15Þ
where a, b, e, Rc and Rd are shown in Fig. 8. The two analytical frozen images (fc and fd) are shown in Fig. 8 and the numerical
experiment also supports this result.

Numerical values for c(N), d(N), e(N) versus N are shown in Fig. 4c. The analytical solution of series form in the bipolar
coordinates was derived by Heyda [13] as shown below:
(a) Including two focuses (b) Including no focuses  
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Sketch of the source distribution in the MFS (a) including two focuses (b) including no focuses (c) including the left (outer) focus (d) including the
nner) focus.
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Gðn;g; n0;g0Þ ¼

1
2p

ðg1�gÞðg0�g2Þ
g1�g2

þ 2
P1
n¼1

sinh nðg1�gÞ sinh nðg0�g2Þ
n sinh nðg1�g2Þ

cos nðn� n0Þ

 �

; g1 < g < g0;

1
2p

ðg�g2Þðg1�g0Þ
g1�g2

þ 2
P1
n¼1

sinh nðg1�g0Þ sinh nðg�g2Þ
n sinh nðg1�g2Þ

cos nðn� n0Þ

 �

; g0 < g < g2;

8>>><
>>>:

ð16Þ
where (n, g) is the bipolar coordinates, g = g1 and g = g2 denote the inner and outer circles, respectively and (n0, g0) is the
position of source point as shown in Fig. 9. The contour plots by using the present method and the analytical solution are
shown in Fig. 10. Good agreement is observed.

4. Numerical solutions for an eccentric annulus without sources by using the MFS

In the foregoing section, we have derived the Green’s function of an eccentric case. In this section, we solve a boundary
value problem without sources by using the MFS as shown in Fig. 11. The solution of MFS is written as
uðxÞ ¼
XN

j¼1

djUðx; sjÞ; ð17Þ
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where N is the number of source points, dj is the jth unknown coefficient. By matching the Dirichlet boundary conditions for
the inner and outer boundaries, we can determine the unknown coefficients of dj.

In the above cases for deriving the Green’s function, we find that there are two frozen points by using the image method
which locate on the two focuses in the bipolar coordinates. We suppose that the two frozen locations may also be very
important for problems without sources. Here, we solve a boundary value problem of eccentric annulus by using the
MFS. The pattern of source distribution is shown in Fig. 12 for (a) including two focuses, (b) including no focuses, (c) includ-
ing the left (outer) focus and (d) including the right (inner) focus, respectively. The solutions of the MFS are compared with
the analytical solution derived by Lebedev et al. [10]. The analytical solution of eccentric case obtained by using the bipolar
coordinates is given below:
uðn;gÞ ¼ Agþ B ¼ Aðln r1 � ln r2Þ þ B; ð18Þ
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where
A ¼ V1 � V2

sinh�1 c
a

� �
� sinh�1 c

b

� � ð19Þ

B ¼ V1 �
V1 � V2

sinh�1 c
a

� �
� sinh�1 c

b

� � sinh�1 c
a

� �
ð20Þ
in which
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 2a2b2 þ b4 � 2a2d2 � 2b2d2 þ d4

p
2d

: ð21Þ
Error distribution is defined by
eðxÞ ¼ kuNðxÞ � uexactðxÞk; x 2 D; ð22Þ
and is shown in Fig. 13 for the source distribution (a) including the two focuses (�2, 0), (�0.5, 0), (b) not including the two
focuses, (c) including one focus only (�2, 0) and (d) including one focus only (�0.5, 0), respectively. When the locations of
sources include two focuses in Fig. 13a, we find that the numerical result best matches the analytical solution.

In the analytical solution of Eq. (18), there exists a rigid body term, B. For the MFS, Saavedra and Power [9] have pointed
out that a free constant is needed for 2D problems in the MFS. Therefore, Eq. (17) is modified to
uðxÞ ¼
XN

j¼1

cjUðx; sjÞ þ c0; ð23Þ
where c0 is a free constant and cj is the unknown coefficient. When the source points are located along the two boundaries
including two focuses as shown in Fig. 12a, we find that only the two nonzero strengths (c1 and c16) of singularities at the two
focuses and the strength (c0) happen to be equal to the coefficient of analytical solutions of Eqs. (19) and (20) and other
weightings are all zeros, as shown in Fig. 14. The strengths of the two nonzero singularities are opposite to each other
(c1 = �c16) as predicted by Eq. (18). This result can be analytically predicted. It indicates that we can approach the exact solu-
tion if a free constant is carefully added in the solution of MFS in advance.Unfortunately, the conventional MFS always em-
ployed Eq. (17) instead of Eq. (23). The key difference is a free constant. Fig. 15 shows that all singularities strengths in the
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inner sources are zeros except the one on the inner focus. If we use Eq. (17) free of a constant term, it is interesting to find the
strengths (d1 � d15) of outer singularities are all nonzero and only one nonzero singularity (d16) on the interior focus for inner
singularities. It is interesting to find that the difference (dj � cj) of Fig. 14 (cj) and Fig. 15 (dj) can represent a constant interior
field of c0 = 2 as shown in Fig. 16. This result indicates that a constant interior field (c0) can be superimposed by using outer
instead of inner singularities when the MFS solution of Eq. (17) does not contain the constant term of interior field. In Fig. 17,
error distribution of Eq. (22) using the MFS of Eq. (23) shows more accurate result than that using Eq. (17), because Eq. (23)
approaches the analytical solution better than Eq. (17) does. Although Eq. (17) does not contain a free term, its solution is
also acceptable since superposition of outer singularities can represent a constant field. It is noted that the free constant in
the MFS is absolutely required for the exterior field containing a constant since this constant cannot be superimposed by
using inner singularities.

5. Conclusions

In this paper, the analytical and semi-analytical solutions for the Green’s functions of annulus and half-plane problems
were obtained by using the image method. The numerical solutions for boundary value problems of an eccentric annulus
were obtained by using the MFS. For the analytical solution of annular case, the image method (a special MFS) was employed
to derive the analytical Green’s function of fixed-free annulus. For the half-plane problem with a circular cavity, a semi-ana-
lytical solution was obtained by determining only one free constant and two strengths of singularities at the two frozen
images. Agreement is observed after comparing with the result of null-field BIEM. Besides, the same idea of semi-analytical
approach was successfully extended to solve the Green’s function for the eccentric annulus. The semi-analytical results also
agree well with the analytical solution by using the bipolar coordinates. The numerical solution of an eccentric annulus with-
out the source was compared with analytical solutions. The MFS with or without adding a constant were employed to solve
the eccentric annulus without a source. It is found that only two nonzero singularities at the focuses and one constant are
required to represent the analytical solution of eccentric annulus if the MFS containing an adding constant is used. This case
can be seen as the simplest MFS that has only two source points and a constant. Even though the MFS without adding a con-
stant is employed to solve the BVP of an eccentric annulus, acceptable results can be also obtained. The reason can be ex-
plained that a constant term can be superimposed by using uniform distribution of outer singularities. In the
demonstrated example, the addition of free constant is not absolutely necessary according to the numerical experiments.
However, the MFS including the free constant yields the best solution in the test example. The free constant in the MFS
may play an important role for the solution of unbounded domain problem containing a rigid body term.
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