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Introduction
In this interesting paper �1�, a concentrated load was applied to

he clamped-free annular plate. The problem domain was divided
nto two parts by the cylindrical section where a concentrated load
as applied. The author used the Trefftz method �2� to construct

he homogeneous solution

u = �
m=0

�

Rm�r�cos m� �1�

n each part. By substituting Eq. �1� into the governing equation,
he author could determine Rm�r�. Mathematically speaking, the
eries in Eq. �1� can be seen as the summation of Trefftz bases. To
imulate the concentrated force, a circularly distributed force us-
ng the Fourier series is used. Then, the author utilized two bound-
ry conditions �BCs� in each part, two continuity, and two equi-
ibrium conditions on the interface to determine the eight
nknown coefficients. Variation of deflection coefficients, radial
oment coefficients, and shear coefficients along radial positions

nd angles was presented. However, some results are misleading.
o investigate these inconsistencies, both null-field integral for-
ulation and finite element method �FEM� using the ABAQUS are

dopted to revisit this problem. In addition, two unclear issues in
ef. �1� are discussed. One is the simulation of concentrated load
nd the other is the operator of shear force.

Concentrated Load
In Adewale’s paper �1�, the author expanded the concentrated

oad to the Fourier series

Contributed by the Applied Mechanics Division of ASME for publication in the
OURNAL OF APPLIED MECHANICS. Manuscript received July 25, 2007; final manuscript
eceived March 25, 2008; published online November 12, 2008. Review conducted

y Subrata Mukherjee.

ournal of Applied Mechanics Copyright © 20

ded 12 Nov 2008 to 140.121.146.148. Redistribution subject to ASM
P � P�1

2
+ �

k=1

� 2 sin
�2k − 1��

2

�2k − 1��
cos�2k − 1���, 0 � � �

�

2

�2�
By summing up the series of Eq. �2�, the result converges to 1 as
shown in Fig. 1, which does not show the behavior of the Dirac-
delta function. The Dirac-delta function ��x� should satisfy the
identity as follows:

	
−�

�

��x�dx = 1 �3�

Equation �2� cannot satisfy Eq. �3� such that the strength of the
concentrated loading is 1. The author seems to improperly trans-
form the concentrated load to a circularly distributed one. If this
load is distributed along an angle from 0 to � /2, the results of the
deflection coefficient in Fig. 5 of Ref. �1� would be untrue.

3 Definition of Shear Force
For the clamped-free annular plate problems as shown in Fig. 2,

the shear force on the inner circle is zero for the free boundary.
Therefore, the author obtained the shear force


� �3

�r3 −
1

r2

�

�r
+

1

r

�2

�r2 −
m2

r2

�

�r
�Rm�r�


r=a

= 0 shear force free

�4�
According to the displacement of Eq. �1� and the definition of
shear force operator in Szilard’s book �3�, the shear force can be
derived as

�3Rm�r�
�r3 −

1

r2

�Rm�r�
�r

+
1

r

�2Rm�r�

�r2 +
2m2

r3 Rm�r�

−
m2

r2

�Rm�r�
�r

+ �1 − ��
m2

r3 Rm�r� −
m2

r2

�Rm�r�
�r

� for shear force

�5�

where � is the Poisson ratio. Equation �4� is unreasonable since it
does not involve the Poisson ratio. In literature, many articles had
reported the definition of shear force operator, e.g., Refs. �1–5�.
We summarized the shear force operators in Table 1. After careful
comparison, Adewale’s shear force operator differs from the oth-
ers and consequently, this difference may cause inconsistent re-
sults.

4 Alternative Derivation of the Analytical Solution Us-
ing the Null-Field Integral Formulation

The first boundary integral equations for the domain point can
be derived from the Rayleigh–Green identity as follows �5,6�:

8�u�x� = U��,x� −	
B

U�s,x�v�s�dB�s� +	
B

��s,x�m�s�dB�s�

−	
B

M�s,x���s�dB�s� +	
B

V�s,x�u�s�dB�s�, x

� 	 � B �6�

where B is the boundary of the domain 	; u�x�, ��x�, m�x�, and
v�x� are the displacement, slope, normal moment, and effective
shear force; and s and x are the source point and field point,
respectively. The kernel function U�s ,x� in Eq. �6� is the funda-
mental solution that satisfies

�4U�s,x� = 8���s − x� �7�

Therefore, the fundamental solution can be obtained as follows:
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U�s,x� = r2 ln r �8�

here r is the distance between the source point s and field point
. The relationship among u�x�, ��x�, m�x�, and v�x� is shown as
ollows:

��x� = K�,x�u�x�� =
�u�x�

�9�

ig. 1 Simulation of a concentrated force by Adewale’s †1‡
M=101….

Fig. 2 Problem statement of an annular plate
�nx
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m�x� = Km,x�u�x�� = ��x
2u�x� + �1 − ��

�2u�x�
�2nx

�10�

v�x� = Kv,x�u�x�� =
��x

2u�x�
�nx

+ �1 − ��
�

�tx

 �

�nx
� �u�x�

�tx
�� �11�

where K�,x�·�, Km,x�·�, and Kv,x�·� are the slope, moment, and shear
force operators with respect to the point x; � /�nx is the normal
derivative with respect to the field point x; � /�tx is the tangential
derivative with respect to the field point x; and �x

2 is the Laplacian
operator. The first null-field integral equations can be derived by
moving the field point x outside the domain as follows:

0 = U��,x� −	
B

U�s,x�v�s�dB�s� +	
B

��s,x�m�s�dB�s�

−	
B

M�s,x���s�dB�s� +	
B

V�s,x�u�s�dB�s�, x � 	C � B

�12�

where 	C is the complementary domain of 	. For the kernel
function U�s ,x�, it can be expanded in terms of degenerate kernel

Table 1 The definitions of the shear force „a… Szilard, „b…
Leissa, „c… the present operator, and „d… Adewale

�a� Szilard �3�

−D� �

�r
�r

2u+
1−�

r

�

�� �1

r

�2u

�r��
−

1

r2

�u

�� ��
�b� Leissa �4�

−D
�

�r
��2u�+

1

r

�

�� �−D�1−��
�

�r �1

r

�u

�� ��
�c� Present operator �5�

��x
2u

�nx
+ �1−��

�

�tx
� �

�nx
� �u

�tx
��

�d� Adewale �1�

�3Rm

�r3 −
1

r2

�Rm

�r
+

1

r

�2Rm

�r2 −
m2

r2

�Rm

�r
�2,5–7� in a series form as shown below:
U�s,x� =�
UI�R,�;
,�� = 
2�1 + ln R� + R2 ln R − 
R
�1 + 2 ln R� +

1

2


3

R
�cos�� − ��

− �
m=2

� 
 1

m�m + 1�

m+2

Rm −
1

m�m − 1�

m

Rm−2�cos�m�� − ���, R � 


UE�R,�;
,�� = R2�1 + ln 
� + 
2 ln 
 − 

R�1 + 2 ln 
� +
1

2

R3



�cos�� − ��

− �
m=2

� 
 1

m�m + 1�
Rm+2


m −
1

m�m − 1�
Rm


m−2�cos�m�� − ���, 
 
 R

� �13�
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here the superscripts I and E denote the interior and exterior
ases of U�s ,x� kernel depending on the location of s and x. For
he annular plate clamped at the outer edge and free at the inner
dge, the unknown Fourier coefficients of m, v on the outer
oundary and u, � on the inner boundary can be expanded to

v�s� = a0 + �
n=1

M

�an cos n� + bn sin n��, s � outer boundary

�14�

m�s� = ā0 + �
n=1

M

�ān cos n� + b̄n sin n��, s � outer boundary

�15�

(

(a)

Fig. 3 Contour plots of the Green’s function for the an
placement contour by using the FEM „ABAQUS…. „b… Dis
or the clamped-free boundary condition, Figs. 3�a� and 3�b�

ournal of Applied Mechanics
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��s� = p0 + �
n=1

M

�pn cos n� + qn sin n��, s � inner boundary

�16�

u�s� = p̄0 + �
n=1

M

�p̄n cos n� + q̄n sin n��, s � inner boundary

�17�

where a0, an, bn, ā0, ān, b̄n, p0, pn, qn, p̄0, p̄n, and q̄n are the
Fourier coefficients, and M is the number of Fourier series terms
in real computation. By substituting all the Fourier coefficients of
boundary densities and boundary conditions, the displacement
field can be obtained as shown below:

ar problem „a=0.4, b=1.0, R�=0.7, D=1, �=0.3…. „a… Dis-
ement contour by using the present method „M=50….
8�u�x� = U��,x� −	
B

U�s,x�
a0 + �
n=1

M

�an cos n� + bn sin n���dB�s� +	
B

��s,x�
ā0 + �
n=1

M

�ān cos n� + b̄n sin n���dB�s� −	
B

M�s,x�

�
p0 + �
n=1

M

�pn cos n� + qn sin n���dB�s� +	
B

V�s,x�
 p̄0 + �
n=1

M

�p̄n cos n� + q̄n sin n���dB�s�, x � 	 � B �18�
here an, bn, ān, b̄n, pn, qn, p̄n, and q̄n �n=0,1 ,2 , . . . � are solved
n Ref. �7�.

Results and Discussions
In order to verify the accuracy of Adewale’s results, two alter-

atives, null-field approach and FEM using ABAQUS, are em-
loyed to revisit the annular problem. A concentrated load was
pplied at the radial center of the annular plate, as shown in Fig. 2.
show the displacement contours for the Green’s function by using
FEM �ABAQUS� and the present method, respectively. Good agree-
ment is obtained between our analytical solution and FEM result
although Adewale �1� did not provide the displacement contour of
his analytical solution. For comparison with the available results
in Ref. �1�, Fig. 4 shows the variation of deflection coefficients,
moment coefficients, and shear force coefficients along radial po-
sitions or angles for different inner radii. It is also found that FEM
results match well with our solution but deviates from Adewale’s
outcome �1�.
b)

nul
plac
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Concluding Remarks
To verify the accuracy of Adewale’s results and to examine the

esponse of the clamped-free annular plate subjected to a concen-
rated load, the null-field integral formulation was employed in
olving this problem. The transverse displacement, moment, and
hear force along the radial positions and angles for different inner
adii were determined by using the present method in comparison
ith the ABAQUS data. Good agreements between our analytical

esults and those of ABAQUS were made but deviated from Ade-
ale’s data. The outcome of Adewale’s results may not be correct.
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