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1 Introduction

In this interesting paper [1], a concentrated load was applied to
the clamped-free annular plate. The problem domain was divided
into two parts by the cylindrical section where a concentrated load
was applied. The author used the Trefftz method [2] to construct
the homogeneous solution
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u= > R, (r)cos mb (1)

m=0

in each part. By substituting Eq. (1) into the governing equation,
the author could determine R,,(r). Mathematically speaking, the
series in Eq. (1) can be seen as the summation of Trefftz bases. To
simulate the concentrated force, a circularly distributed force us-
ing the Fourier series is used. Then, the author utilized two bound-
ary conditions (BCs) in each part, two continuity, and two equi-
librium conditions on the interface to determine the eight
unknown coefficients. Variation of deflection coefficients, radial
moment coefficients, and shear coefficients along radial positions
and angles was presented. However, some results are misleading.
To investigate these inconsistencies, both null-field integral for-
mulation and finite element method (FEM) using the ABAQUS are
adopted to revisit this problem. In addition, two unclear issues in
Ref. [1] are discussed. One is the simulation of concentrated load
and the other is the operator of shear force.

2 Concentrated Load

In Adewale’s paper [1], the author expanded the concentrated
load to the Fourier series
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By summing up the series of Eq. (2), the result converges to 1 as
shown in Fig. 1, which does not show the behavior of the Dirac-
delta function. The Dirac-delta function &(x) should satisfy the
identity as follows:

f Sx)dx=1 (3)

Equation (2) cannot satisfy Eq. (3) such that the strength of the
concentrated loading is 1. The author seems to improperly trans-
form the concentrated load to a circularly distributed one. If this
load is distributed along an angle from O to /2, the results of the
deflection coefficient in Fig. 5 of Ref. [1] would be untrue.

3 Definition of Shear Force

For the clamped-free annular plate problems as shown in Fig. 2,
the shear force on the inner circle is zero for the free boundary.
Therefore, the author obtained the shear force
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According to the displacement of Eq. (1) and the definition of

shear force operator in Szilard’s book [3], the shear force can be
derived as
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where v is the Poisson ratio. Equation (4) is unreasonable since it
does not involve the Poisson ratio. In literature, many articles had
reported the definition of shear force operator, e.g., Refs. [1-5].
We summarized the shear force operators in Table 1. After careful
comparison, Adewale’s shear force operator differs from the oth-
ers and consequently, this difference may cause inconsistent re-
sults.

4 Alternative Derivation of the Analytical Solution Us-
ing the Null-Field Integral Formulation

The first boundary integral equations for the domain point can
be derived from the Rayleigh-Green identity as follows [5,6]:

87ru(x) = U({,x)—f U(S,x)v(s)dB(s)+f O(s,x)m(s)dB(s)
B B

—f M(s,x)H(s)dB(s)+J V(s,x)u(s)dB(s), x
B B

e QUB (6)

where B is the boundary of the domain Q; u(x), 6(x), m(x), and
v(x) are the displacement, slope, normal moment, and effective
shear force; and s and x are the source point and field point,
respectively. The kernel function U(s,x) in Eq. (6) is the funda-
mental solution that satisfies

VAU (s,x) = 878(s — x) (7)

Therefore, the fundamental solution can be obtained as follows:
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13 Table 1 The definitions of the shear force (a) Sazilard, (b)
Leissa, (c) the present operator, and (d) Adewale

. (a) Szilard [3]
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(b) Leissa [4]

(c) Present operator [5]
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Fig. 1 Simulation of a concentrated force by Adewale’s [1]
(M=101).
e
m(x) = Ky () = 09%(x) + (1 - v) ;(x) (10)
nx
u(x) u(x)
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where Ky,(-), K, ,(-), and K, (-) are the slope, moment, and shear
force operators with respect to the point x; d/dn, is the normal
derivative with respect to the field point x; d/ ¢, is the tangential
derivative with respect to the field point x; and Vi is the Laplacian
operator. The first null-field integral equations can be derived by
moving the field point x outside the domain as follows:

Fig. 2 Problem statement of an annular plate

0=U({x) - f U(s,x)v(s)dB(s) + f O(s,x)m(s)dB(s)
B

B
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where r is the distance between the source point s and field point B B
x. The relationship among u(x), 6(x), m(x), and v(x) is shown as (12)
follows:
where Q€ is the complementary domain of (). For the kernel
(x) = K (u(x)) = Ju(x) 9) function. U (s,x)_, it can be expanded in terms of degenerate kernel
an, [2,5-7] in a series form as shown below:
f B 1 3]
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(a)

Fig. 3 Contour plots of the Green’s function for the annular problem (a=0.4, b=1.0, R;=0.7, D=1, v=0.3). (a) Dis-
placement contour by using the FEM (ABAQUS). (b) Displacement contour by using the present method (M=50).

where the superscripts / and E denote the interior and exterior
cases of U(s,x) kernel depending on the location of s and x. For
the annular plate clamped at the outer edge and free at the inner
edge, the unknown Fourier coefficients of m, v on the outer
boundary and u, € on the inner boundary can be expanded to
M
v(s)=ap+ 2 (a,cosnf+b,sinn), s e outer boundary

n=1
(14)
M

m(s) =ay+ 2 (@, cos nf+b, sinn), s e outer boundary
n=1

(15)

M

M
8u(x) = U((,x)—f U(s,x) a0+2 (a, cosnb+b, sinnb) dB(s)+f O(s,x) 50+E (@, cos nO+ b, sinnb) |dB(s) -
B B

n=1

M
X p0+2(pncosn6+qnsinn0) dB(s)+f V(s,x) ﬁ0+2(ﬁncosn0+¢7ﬂsinnﬁ) dB(s), xeQUB
B

n=1

where a,,, b,, @, by, Pp» Gn» Pn» and g, (n=0,1,2,...) are solved
in Ref. [7].

5 Results and Discussions

In order to verify the accuracy of Adewale’s results, two alter-
natives, null-field approach and FEM using ABAQUS, are em-
ployed to revisit the annular problem. A concentrated load was
applied at the radial center of the annular plate, as shown in Fig. 2.
For the clamped-free boundary condition, Figs. 3(a) and 3(b)
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M

O(s) = po + E (p,cosnb+gq,sinnf), s e inner boundary

n=1

(16)
M

u(s) =po+ 2 (P, cosnf+q,sinnh), s e inner boundary

n=1
(17)

where ap, dy, bn’ 6707 am bn’ Pos Pns 49n> [70’ ﬁm and qn are the
Fourier coefficients, and M is the number of Fourier series terms
in real computation. By substituting all the Fourier coefficients of
boundary densities and boundary conditions, the displacement
field can be obtained as shown below:

n=1 B
M

n=1

show the displacement contours for the Green’s function by using
FEM (ABAQUS) and the present method, respectively. Good agree-
ment is obtained between our analytical solution and FEM result
although Adewale [1] did not provide the displacement contour of
his analytical solution. For comparison with the available results
in Ref. [1], Fig. 4 shows the variation of deflection coefficients,
moment coefficients, and shear force coefficients along radial po-
sitions or angles for different inner radii. It is also found that FEM
results match well with our solution but deviates from Adewale’s
outcome [1].
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(a) Variation of deflection (b) Variation of moment

coefficients versus radial position

coefficients versus radial position

(d) Variation of deflection
coefficients versus radial angle

(c) Variation of shear force
coefficients versus radial position

Fig. 4 Responses (b=1.0, R;=0.7~0.85, D=1, v=0.3, k,,= WD/ P, Kp,,=M,DI P, k;=M,DIP)

6 Concluding Remarks

To verify the accuracy of Adewale’s results and to examine the
response of the clamped-free annular plate subjected to a concen-
trated load, the null-field integral formulation was employed in
solving this problem. The transverse displacement, moment, and
shear force along the radial positions and angles for different inner
radii were determined by using the present method in comparison
with the ABAQUS data. Good agreements between our analytical
results and those of ABAQUS were made but deviated from Ade-
wale’s data. The outcome of Adewale’s results may not be correct.
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