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        In the [R1], at the place before Eq. (3), the following statement was found : “ the series 

convergent to ln r since r is not zero”. In my comment, (1) “r is not zero” is true, however (2) “the 

series convergent to ln r” is questionable? 

        [R1] Journal: Journal of Mechanics Title: On the linkage between influence matrices in the 

BIEM and BEM to explain the mechanism of degenerate scale , by J. T. Chen 

 

Comment for the statement  “the series convergent to ln r” 

       In the paper [R1]. author  introduced the following notations ABz = , or γ= irez , and 

γ+== γ irln)reln{zln i  (Fig. 1). By using those notations, we can find 
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      From Eqs. (1), (2) and  (3) we have  
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       Assume Eq. (4) is still valid for the case of ρ=R , and let φ−θ=β , from Eq. (4) we have 
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 (for  R=ρ )                                                                    (5) 

      Clearly, we have (Fig.2) 
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        Substituting Eq. (6) into (5) yields 
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      We can prove that the equality shown by Eq. (8) is generally impossible. In fact, for the case 

of 02 <β<π− , h
2

sin −=β
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β=  ). Thus, we have 
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Substituting Eq. (9) into (8) yields 
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  (for  R=ρ case)                         (10) 

         Since the term i)1N2( π+  is involved in the left hand side of Eq. (10), the equality shown 

by Eq. (10) is impossible. 
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