Computational Mechanics 27 (2001) 75-87 © Springer-Verlag 2001

Analytical study and numerical experiments for true and spurious
eigensolutions of a circular cavity using an efficient mixed-part dual BEM

J. T. Chen, I. L. Chung, I. L. Chen

Abstract In this paper, we develop an efficient mixed-part
dual BEM to solve the eigensolutions of a circular cavity
analytically and numerically. The method is proposed by
choosing a fewer number of equations from the dual BEM
instead of all of the equations in the dual BEM developed
by Chen and his coworkers. To solve this problem ana-
lytically, the spurious solution can be filtered out by
adding constraints from the dual boundary integral
equations. The proposed method is superior to the com-
plex-valued BEM not only for half effort in constructing
the influence matrix, but also for its fewer size of di-
mension. Also, numerical experiments are performed to
compare with the analytical results and the true eigenso-
lutions can be easily extracted out in conjunction with the
singular value decomposition technique (SVD). The op-
timum number of collocation point and appropriate col-
locating positions for the additional constraints are
discussed.

1

Introduction

For the Helmholtz eigenproblems, it is well known that the
complex-valued boundary element method (BEM) can
determine the eigensolutions (Chen et al., 1999a). In de-
termining eigenvalues and eigenmodes for problems with
a degenerate boundary (Chen and Chen, 1998), the dual
BEM must be resort to overcome the nonunique solution.
Nevertheless, complex-valued computation is complex
arithematics. To avoid the complex-valued computation,
four alternatives, multiple reciprocity method (MRM),
real-part BEM, imaginary-part BEM and dual reciprocity
method (DRM) have been employed to solve the prob-
lems. Tai and Shaw (1974) have tried to solve the Helm-
holtz eigenproblems using real-part formulation for three-
dimensional case. For cavity and plate vibration problems,
Hutchinson also employed real-part kernel only (Hutch-
inson, 1985, 1988, 1991). A simplified method using only
real-part kernel was also reported by De Mey (1977). Since
only the first eigenvalue was studied in that paper, the
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spurious solutions were not discovered. Hutchinson found
that real-part formulation results in spurious solutions
which were filtered out by examining the mode shapes.
MRM is also one alternative to solve the problem in real-
variable domain. In solving the eigenproblems by using
the multiple reciprocity method (MRM), Chen and Wong
(1997) also found spurious solutions in a one-dimensional
case. Therefore, they pointed out that the MRM formula-
tion is very similar to the real-part BEM formulation. The
kernels between the MRM and real-part BEM are almost
the same but they can be different from a complementary
solution (Chen and Wong, 1997; Yeih et al., 1997). The
kernel of MRM is a series form instead of a closed form in
the real-part BEM. Kamiya et al. (1996) also pointed out
that MRM is no more than real-part formulation. One
approach called DRM (Katsikadelis and Nerantzaki, 2000)
use only static kernel which is free from the complex-
variable computation. According to the experience in the
real-part methods, it is expected that spurious solution
may also occur since MRM and DRM use the real fun-
damental solution once the interpolation points are not
selected carefully. To extract the true eigensolution, the
dual MRM or the real-part dual BEM was proposed to
check the residue by substituting the possible eigensolu-
tions into UT (singular) or LM (hypersingular) integral
equation (Chen and Wong, 1997; Liou et al., 1999).
However, determining boundary modes is a necessary step
to find the residue in advance before we distinguish
whether the eigenvalue is true or spurious. If the dual
formulation is utilized in conjunction with the SVD
technique, Yeih et al. (1999a) found the true eigenvalues
more efficiently. The eigenproblems of a rod (Yeih et al,,
1999a) and a beam (Yeih et al., 1999b) cases were suc-
cessfully solved. Also, two-dimensional cases were studied
(Chen et al., 1999b; Chen et al., 2000a; Kuo et al., 2000).
After spurious solutions are filtered out, the true eigen-
solution can be compared with an analytical solution if
available. This is the reason why circular and square
cavities were considered in the NTOU BEM Group’s pa-
pers (Chen and Chen, 1998; Chen et al., 1999a, b; Chen
et al., 2000a; Kuo et al., 2000). However, the analytical
derivation for spurious solution is not trivial for us to
understand why the spurious eigensolution occur. Fortu-
nately, analytical spurious solutions for one-dimensional
cases of a rod and a beam have been determined easily
(Chen and Wong, 1997; Yeih et al., 1999a, b). To deter-
mine the spurious solution for two-dimensional cases
analytically, the theory of circulant and degenerate kernel
was employed for a circular cavity (Kuo et al., 2000) of a
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discrete system. Many approaches, domain partition
technique (Chang, Yeih and Chen, 1999), generalized
singular value decomposition (GSVD) (Wu, 1999), CHEEF
method (Chen et al., 2000b) have been successfully ap-
plied to deal with the spurious solution. Although the
real-part BEM is simpler than the complex-valued for-
mulation, the singular and hypersingular integrals should
be determined. In order to avoid the singular and hy-
persingular integrals, imaginary-part BEM (Chen et al.,
1999¢) was developed. It is interesting to find that the
imaginary-part BEM also results in spurious solutions
(Chen et al., 1999). Nevertheless, we pay the price of
facing the ill-conditioned behavior. Recently, Kang et al.
(1999) employed the nondimensional dynamic influence
function (NDIF) method to solve the eigenproblem. Chen
et al. (2000b) commented that NDIF method is a special
case of imaginary-part BEM. To deal with the ill-codi-
tioned problem, Wu (1999) employed the generalized
singular value decomposition (GSVD) in conjunction with
the Tikhonov technique to regularize the ill-posed prob-
lem. Although many approaches in Table 1 have been
employed to solve the true and spurious solutions, we
may wonder which one is more efficient? From the
computational point of view for storage space, we sum-
marize the required dimensions of the available methods
in Table 2.

In this paper, we will employ an efficient method to
solve for the eigensolution by using the similar concept of
CHIEF (combined Helmholtz interior integral equation
formulation) (Schenck, 1968) or CHEEF. The main dif-
ference between the present formulation and CHIEF or
CHEEF method is that we obtain additional constraints
from the dual boundary integral equations instead of from
the equations on the complementary domain in CHIEF or
CHEEF method. The appropriate collocation position and
the optimum number of collocation points will be studied
analytically and verified numerically. After assembling the
sufficient equations, the loss information due to rank de-
ficiency can be recovered. For simplicity, only the Dirichlet
case is considered in this paper. The results will be com-
pared with those of analytical solutions, and other nu-
merical methods.

2

Review of the dual BEM for a two-dimensional interior
cavity problem

Consider a cavity problem which has the following gov-
erning equation:

V2u(x) + k*u(x) = 0,

where D is the domain of cavity, x is the domain point, k is
the wave number, which is the angular frequency over the
speed of sound, and u(x) is the acoustic potential. For
simplicity, the Dirichlet boundary condition is considered
as follows:

u(x) =0,

where B denotes the boundary enclosing D. The solution
can be described by the following singular integral equa-
tion (Chen and Chen, 1998)

xeD, (1)

X€EB, (2)
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where the complex-valued kernel, T.(s,x), is defined by

oU.(s,x
TC(S,X) = % ’ (4)

in which ng represents the outnormal direction at point s
on the boundary and U,(s, x) is the fundamental solution.
The second one of the dual boundary integral equation for
the domain point x can be derived as follows:

agn:) / M. (s, x)u(s)dB(s)
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in which 7y represents the outnormal direction at point x.
By moving the field point x in Eq. (3) to the smooth
boundary, the boundary integral equation for the bound-

ary point can be obtained as follows:

7u(x) = C.P.V. / T. (s, x)u(s)dB(s)
—R.P.V./Uc(s,x)ag—(s)dB

XEB
. (S)a )
B

(8)
where C.P.V. is the Cauchy principal value and R.P.V. is
the Riemann principal value.

By moving the field point x in Eq. (5) to a smooth
boundary, the boundary integral equations for the
boundary point can be obtained as follows:

240 _ypy, / Me(s, x)u(s)dB(s)

an

_CP.V. / Le(s, x) agi:) dB(s),

B
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where H.P.V. is the Hadamard (Mangler) principal value.
By discretizing the boundary B into boundary elements
in Egs. (8) and (9), we have the algebraic system as follows:

r{u} = [T{u} - [U{t} (10)
n{t} = [Mc[{u} — [LJ{t} , (11)



Table 1. Methods to solve the Helmholtz eigenproblem

Complex-valued Real-part Imaginary-part ~ Mixed-part Dual MRM
dual BEM dual BEM dual BEM dual BEM
1D rod (residue) Chen and Wong,
1997
1D rod (SVD) Yeih et al., 1999a
1D rod (domain partition) Chang et al.,, 1999
1D beam (SVD) Yeih et al., 1999b
2D cavity (degenerate Chen, and Chen, 1998
boundary and/or (degenerate boundary)
double roots) Chen et al., 1999a
(double roots)
2D cavity-residue Liou et al., 1999 Chen and Wong,
(degenerate boundary) 1998
2D cavity-SVD Chen et al., 1999b Chen et al., 2000a
(degenerate boundary
and/or double roots)
2D cavity-SVD Kuo et al., 2000a Present paper Kuo, Chung, Chen
(analytical derivation and Huang
for spurious solutions ) 2000b
2D cavity (analytical Chen, Kuo, Chen
derivation for ill-posed and Cheng,
problem) 1999 Kuo, Yeih
and Wu, 2000

Overview, Chen
and Hong, 1999

Each paper has its individual focus as follows:

Chang et al. (1999) The spurious eigensolutions in the real-part BEM are filtered out using the domain partition technique for rod
examples

Chen and Chen (1998) The eigenproblem for the two-dimensional Helmholtz problem with or without degenerate boundaries is
solved using the complex-valued dual formulation

Chen and Hong (1999) The App. Mech. Rev. article reviews the development of the dual formulation from 1984 to 1999

Chen and Wong (1998) The spurious eigensolutions for a two-dimensional cavity with or without degenerate boundaries are filtered
out numerically using the dual MRM in conjunction with the residue method

Chen and Wong (1997) The spurious eigensolutions in the dual MRM are found and filtered out analytically and numerically using the
residue method for rod examples. (second order O.D.E.)

Chen et al. (1999a) The degenerate modes for a square cavity are determined numerically using the complex-valued dual BEM
Chen et al. (1999b) This paper focuses on the SVD technique, which can filter out the 2D spurious eigensolutions resulting from the
real-part BEM. Also, the multiplicities for double roots are examined

Chen et al. (1999) This paper demonstrates the spurious eigensolutions and ill-posed behavior of imaginary-part BEM by using
circulants. Also, the results are compared with the nondimensional dynamic influence function method by Kang, et al

Chen et al. (2000a) This paper focuses on the SVD technique, which can filter out the 2D spurious eigensolutions resulting from the
MRM. Also, the multiplicities for double roots are examined

Kuo et al. (2000a) The paper focuses on the analytical derivation for the spurious solutions using the real-part dual BEM

Kuo et al. (2000b) The paper focuses on the analytical derivation for the spurious solutions using the dual MRM. Also, this paper
presents a more efficient method with fewer dimension (N + 2) x N instead of 2N X N in the dual MRM

Kuo et al. (2000c) This paper employed the GSVD technique to determine the true and spurious solutions. Also, the Tikhonov method
was utilized to regularized the ill-posed problem

Liou et al. (1999) The spurious eigensolutions for the two-dimensional Helmholtz problem are studied using the real-part dual BEM
in conjunction with the residue method

Yeih et al. (1999a) The spurious eigensolutions in the MRM are found and filtered out analytically and numerically using the SVD
technique for rod examples. (second order O.D.E.)

Yeih et al. (1999b) The spurious eigensolutions in the MRM are found and filtered out analytically and numerically using the SVD
technique for beam examples. (fourth order O.D.E.)

The present paper focuses on the mixed-part dual BEM for determining the eigensolutions

where [U], [T.], [Lc] and [M.] matrices are the corre- where [T.] = [T.] — n[I] and [L.] = [L.] + =[I]. For the Di-
sponding influence coefficient matrices resulting from the richlet problem, we can obtain the following equation,
U, T, L. and M. kernels, respectively. The detailed deri-

vation can be found in Chen and Chen (1998). Equations [Uc(K)]onsan{thansa = {0} - (14)
(10) and (11) can be rewritten as [I:C<k)]2N><2N{t}2N><1 ={0} , (15)
[TJ{u} = [UJ{t} , (12) where 2N is the number of boundary elements. For the

_ Neumann problem, the eigenequations obtained from the
[L{t} = [M{u} , (13)  UT and LM equations in Egs. (12) and (13) are:
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Table 2. Dimension in the methods for solving interior eigenproblems using BEM

Dimension Eigensystem Boundary
integral equation
Eigenvalue Eigen equation
Dirichlet Neumann
Complex-valued BEM 4N x 2N True [U; + 1U]{t} =0 [T, +iTil{u} =0 [U{t} = [T ]{u}
Real-part BEM 2N x 2N True and spurious  [U]{t} = [T, ]{u} = 0 [U{t} = [T:]{u}
Imaginary-part BEM 2N X 2N True and spurious [U]{ t} = [_ il{u [U{t} = [Ti]{u}
Dual MRM 4N X 2N True ]{t} o {u} -0 U{t} = [Te){u}
- L{t} = [M:}{u}
[U: [T, | -
Real-part dual-BEM 4N x 2N True i ]{t} =0 M {u} =0 U {t} = [Te){u}
- - L{t} = [M:|{u}
U [ T; | =
CHEEF BEM (2N + 2) X 2N True U }{t} =0 = |{u=0 Ul{t} = [T){u}
” 2 Unl{t} = [Te[{u}
Mixed-part dual-BEM (2N + a) x 2N True iUr } {t}=0 ];r {u}=0 U{t} = [T:){u}
" S Ll{t} = [M,]{u}
Uil{t} = [Ti]{u}
Lij{t} = [Mil{u}
U, and T,, are two matrices obtained by collocating two points of the real-part UT equations outside the domain
L., and M,, are two matrices obtained by collocating two boundary points of the real-part LM equations
[Tc(k)]ZNsz{u}Zle ={0} , (16) where i = —1, [U;] and [U}] are the real and imaginary
parts, respectively. Similarly, [L.] can be written as

[Mc(F)onsean it} on s = {0} (17)

To avoid the complex-valued computation, an efficient
method will be elaborated on later.

3

An efficient method for an interior two-dimensional
acoustic problem in conjunction with SVD technique

For exterior acoustic problems, it is well known that
singular and hypersingular complex-valued formulation
result in fictitious wave number (Chen, 1998; Chen and
Hong, 1999). CHIEF technique is a very popular method
to deal with the problem of numerical instability since it
can provide sufficient constraints. If interior eigenprob-
lem is solved by using either only real-part or imagi-
nary-part of the complex-valued formulation, spurious
solution occurs. A similar method, CHEEF, instead of
CHIEF has been applied to deal with the spurious ei-
gensolution. Both CHIEF and CHEEF methods have the
same goal to obtain independent constraints by collo-
cating the points in the complementary domain for the
integral equation. Based on the CHIEF concept for fic-
titious frequency, Chen et al. (2000c) extended to solve
the spurious eigensolution by using the CHEEF concept.
In the CHIEF method, the constraints are obtained using
the singular (UT) equation by collocating the point in
the complementary domain. However, the present
method employs the UT real-part formulation and
combines the constraints by collocating the boundary
points on either imaginary-part UT, real-part LM or
imaginary-part equations. The complex-valued matrice
[U.] can be decomposed into

[Le] = [L:] +i[L] (19)

where [L,] and [L;] are the real and imaginary parts, re-
spectively. In the MRM or real-part BEM, only [U;] in-
formation is employed to solve for the problem as follows

[Ur(k)]ZNsz{t}szl = {0} ) (20)

However, the rank deficiency of matrice [U; (k)] occurs
since the imaginary-part information is lost. To
recover the sufficient information, many approaches
can be considered by adding either one of the three
equations,

[Ui(k)]aXZN{t}Zle = {0} )
[Er(k)]ax2N{t}2le = {0} ,
[ii(k)]aXZN{t}szl = {0} ) (23

where a is the number of selected equations, [U;(k)], [L(k)]
and [L;(k)] matrices are obtained from the dual formula-
tion. To filter out spurious eigenvalues using the SVD
technique, we can combine Eq. (20) with either one of Egs.
(21)-(23) together to obtain an overdeterminate system

[G(k)](2N+a)><2N{t}2N><1 = {0} , (24)

where the [G(k)] is a assembled matrix with a dimension
(2N + a) by 2N, which can be assembled by the [U, (k)]
and any one additional matrix, of [U;(k)], [L;(k)] and
[Li(k)] matrices as shown below:

Ur (k)
[G(k)](2N+a)X2N - |:Ui(k):|(2N+a)><2N

for the Dirichlet problem. (25)



[U:(k) ]
(GO (2naon = | 7
(Nrapen _Lr(k) 4 (2N+a)x2N
for the Dirichlet problem. (26)
[Ur(k) ]
(G oy yayean = | 7
CNFEN | Li(k) | (2N+a)x2N
for the Dirichlet problem. (27)

As for the true eigenvalues, the rank of the [G(k)] matrix
with a dimension (2N + a4) by 2N must at most be
2N — 1 to have a nontrivial solution. As for the spurious
eigenvalues, the rank must be 2N to obtain a trivial so-
lution. Based on this criterion, the SVD technique can be
employed to detect the true eigenvalues by checking
whether or not the first minimum singular value, a1, is
zero. Since discretization creates errors, very small values
for o1, but not exactly zeros, will be obtained when k is
near the critical wave number. In order to avoid deter-
mining the threshold for the zero numerically, a value of
0, closer to zero must be obtained using a smaller in-
crement near the critical wave number, k. Such a value is
confirmed to be a true eigenvalue. For the true eigen-
values with a multiplicity of two, we can consider the
eigenvalues which make ¢, = 0 and ¢; = 0 at the same k
value.

Since the matrices in Eqgs. (25)-(27) are overdeter-
mined, we will consider a linear algebra problem with
more number of equations than unknowns:

(Al (X} = {BJ s

where m is the number of equations, 7 is the number of
unknowns and [A] is the leading matrix, which can be
decomposed into

m>n, (28)

(AL = (@ El [Pl (29)

where [@] is a left unitary matrix constructed by the left
singular vectors (¢, ¢,, P35, ..., d,,), [X] is a diagonal

matrix which has singular values oy, 03, ..., and g, allo-
cated in a diagonal line as
Oy . 0
El=1]o0 ... g m>n, (30)
0 --- 0
0 --- 0

in which ¢, > 6,_; > --- > 0; and [‘I’]T is the complex
conjugate transpose of a right unitary matrix constructed
by the right singular vectors (Y, ,,¥s,...,¥,). As we
can see in Eq. (30), there exists at most n nonzero sin-
gular values. This means that we can find at most » linear
independent equations in the system of equations. If we
have p zero singular values (0 < p < n), this means that
the rank of the system of equations is equal to n — p.
However, the singular value may be very close to zero
numerically, resulting in rank deficiency. For a general

eigenproblem as shown in this paper, the [G(k)] matrix
with dimension (2N + a) by 2N will have a rank of

2N — 1 for the true eigenvalue with multiplicity 1 and
01 = 0 theoretically. For the true eigenvalues with multi-
plicity Q, the rank of [G(k)] will be reduced to 2N — Q in
which 01, 0;,..., and 0 are zeros theoretically. In an-
other words, the matrix has a nullity of Q. In the case of
spurious eigenvalues, the rank for the [G(k)] matrix is 2N,
and the minimum singular value is not zero. Determining
the eigenvalues of the system of equations has now been
transformed into finding the values of k which make the
rank of the leading coefficient matrix smaller than 2N.
This means that when m = 2N + a,n = 2N and
bon+a)x1 = 0. The true case will make p > 1, such that
the minimum singular values must be zero or very close
to zero.

Since we have employed the SVD technique to filter out
the spurious eigenvalues, we can obtain the boundary
mode by extracting the right unitary vector in SVD.
According to the definition of SVD, we have

[AWP = O-P(bpa p= (31)

where ¢ and  are the left and right unitary vectors. By
choosing the gth zero singular value, ¢, and substituting
the qth right eigenvector, Wq’ into Eq. (31), we have

[Aly, = 09, =0, Q.

According to Eq. (32), the nontrivial boundary mode is
found to be the column vector of Y, in the right unitary
matrix.

When we take all the 2N + a sufficient equations into
account, which apparently causes the rank of the leading
coefficient matrix to be equal to 2N — 1 for the true ei-
genvalue with multiplicity 1. The boundary modes can be
obtained from the [¥] matrix in Eq. (29) using the SVD
technique. Another advantage for using the SVD is that it
can determine the multiplicities for the true eigenvalues by
finding the number of successive zeros in the singular
values.
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1,2,3,...,n .

q=1,2,3,... (32)

4
Analytical study of a circular cavity for choosing

the optimal points using mixed-part dual BEM

The explicit forms for the complex-valued U, and L.
kernels can be expressed as

()

U(s,) = 70 ) (33)
—1'716H(l> kr

Le(s,x) = W() (34)

where H(()1> is the first kind Hankel function of zeroth or-
der. Based on the polar coordinate, the field point and
source point can be rewritten as x = (p, ¢) and s = (R, 0)
as shown in Fig. 1. Since x and s are on the boundaries of
radius p and R. respectively, U,(s, x) can be expanded into
degenerate form as follows:



Fig. 1. The definitions of p, 0, ¢, r and R

Ur(s,x) = Real[U,(s, x)]

U(R, 0; p,0)
=32 2Y,(kR)]4(kp) cos(nd), R > p,
U(R, 0;p,0)
= 3% 5 Yulkp)Ju(kR) cos(n0), R < p,
(35)
Similarly, we have
Ui(s,x) = Imag|U.(s,x)]
U(R,0;p,0)
) =25 F In(kR)u(kp) cos(n0), R > p,
U(R, 0;p,0)
=3 FJu(kp)Ju(kR) cos(nd), R < p,
(36)
L,(s,x) = Real[L.(s, x)]
L:(R,0;p,0)
= 22§ Yu/(kR)]u(kp) cos(nf), R > p,
) L(R,0;p,0)
=2 5 Yul(kp)Ja(kR) cos(n0), R < p,
(37)
Li(s,x) = Imag[L.(s, x)]
Li(R, 6; p,0)
] =S SR ko) cos(nd), R > p,
Li(R,0; p,0)
=2 3l (kp)Jn(kR) cos(nl), R < p,
(38)

where Real and Imag denote the real and imaginary
parts, respectively. Equations (35)-(38) show that source
point s and field point x in the two-point function are
separated and J,(kp) is the nth order Bessel function of
the first kind and Y, (kp) is the nth order Bessel function
of the second kind. Equations (35)-(38) can also be de-

rived through the addition theorem for the Hankel
function. By superimposing 2N constant source distri-
bution {f} along the fictitious boundary with radius R
and collocating the 2N points on the boundary with
radius p, we have

ag a a a)N-2 d2N-1
aaN-1 ao ai a)N-3 daN-2
[Ur]{t} — | doN—2 dN-1 Qo A)N—-4 O2N-3
L a1 a as aN-1 ap |
to
t
xq bbb ={o0} (39)
fHN-1

for the Dirichlet problem, where ¢; is the boundary density
of single layer potential distributed on the boundary with
radius R, and [U;] is the influence matrix with the elements
shown below:

(m+3)A0
Uy (R, 0;p,0)Rd0 ~ U,(R,0,;p,0)RA0,
(Y0

m=0,1,2,...,2N — 1 (40)

where AO = 2n/2N and 0,, = mAQ.

The matrix [U;] in Eq. (39) is found to be circulants
since rotation symmetry for the influence coefficients are
considered. By introducing the following bases for
the circulants I, Cly, C2y, ..., C3N"!, we can expand [U;]
into

(U] = aol + a1Cypy + a2Coy + -+ + aan-1Cay

where I is a unit matrix and

(41)

0 1 0 0 0
0 0 1 0 0
Cn=|: : =+ - = (42)
o 0 0 --- 0 1
1 0 O 0 0

2Nx2N

Based on the theory of circulants (Goldberg, 1991), the
spectral properties for the influence matrices, U, can be
easily found as follows:

Ao = ap + ayoy + azai 4+ 4 112N—10€§N_17
(=0,£1,+2,...,£(N—1),N

where A, and o are the eigenvalues for [U,| and [Cyy],
respectively. It is easily found that the eigenvalues for the
circulants [C,y] are the roots for «*N = 1 as shown below:

1=0,+1,42,...,£(N—1),N or
1=0,1,2,...,2N—1 ,

(43)

__ i2nl/2N
o] =¢€ / N

(44)



and the eigenvectors are

{¢} = o« )

respectively.
Substituting Eq. (44) into Eq. (43), we have

2N-1 2N-1

/1[ _ § :amazn _ § :ame12nm15/(2N)’
m=0 m=0

(=0,41,42,...,£(N —1),N; . (46)

According to the definition for a,, in Eq. (40), we have

am = doNn_m, m=0,1,2,...,2N—1 . (47)
Substituting Eq. (47) into Eq. (46), we have
N—1
Ao =ap + (—l)ﬂaN + Z(az" + 2N ay,
m=1
2N-1
= Z cos(mlAD)a,, . (48)
m=0
Substituting Eq. (40) into Eq. (48), we have
2N-1
o~ Y cos(mlAO)Ur(R, mAO; p, 0)RAO (49)
m=0

As N approaches infinity, the Riemann sum of Eq. (49) can
be transformed to the following integral
2n

/lg:/cos(liﬂ) Z gYm(kR)]m(kp) cos mOR do

0 m=—00

= i’ RY,(kR)J;(kp) (50)

Since the wave number k is imbedded in each element of
the [U;] matrix, the eigenvalues for [U;] are also functions
of k. Finding the eigenvalues for the Helmholtz equation or
finding the zeros for the determinant of [U;] is equal to
finding the zeros for multiplication of all the eigenvalues of
[U;]. Based on the following equation:

det[Uy] = Join (A in1)(hrdia -+ Apyon)
(51)

the possible eigenvalues (true or spurious) occur at
Yi(kR)Ji(kp) =0, ¢=0,+1,42,...,£(N—1),N .
(52)
The value k satisfying Eq. (52) may be possible
eigenvalues, either spurious eigenvalues or true eigen-
values. Here we adopt the similar concept of CHIEF or
CHEEF method to filter out the spurious eigenvalues. By

collocating the boundary point on x; = (p,, ¢,) for Egs.
(21)-(23), we have

0= / Ui(s, 2)t(s)dB(s) = [T J{1} .

B

(53)

0= [ Li{s.0r(s)dB(s) = (Why) (1) (54)
0= / Li(s,x)t(s)dB(s) = [wl J{1} . (55)

B

where [wl] = (wl, w? w3, ..., w) is the row vector of the

influence matrix by collocating the boundary point x;.
Combining Eq. (39) and either one of Egs. (53)-(55), we
obtain an overdetermined system

| n-o

where {t} = {¢,} and i can be either, a, b, or c. The ad-
ditional constraints, [w] ]{t} =0, i = a,b and c provide
the discriminant, /\, to be

81
(56)

Ay = W {1} = 2piJu(kp)Ta(kp)e™ | (57)
AV = W {1} = 22, Yi(kp)Ta(kp)e™ (58)
AL = W H{e} = 2ol (kp)Ta(kp)e™ (59)

where the superscript “(1)” denotes one additional con-
straint. In case of single spurious case, we have the spu-
rious eigenvalue k such that Yy(ksp) = 0 as shown in Eq.
(52). By adding any one of Egs. (53)-(55), the spurious
eigenvalues cannot pass the zero test of Egs. (57)-(59)
since the discriminant is never zero. Thus, we can filter out
for a single spurious eigenvalue by choosing anyone of
Egs. (57)-(59).

In another words, the intersection set between Eq. (52)
and either one of Egs. (57)-(59) for the solution is true.
For double spurious eigenvalues k, ,,, we have
Yy (knm) =0, n > 1. If we adopt two boundary points, x;
and x,, on a radial distance p = p; = p,, and combine
with Eq. (39), we have

U (k)

wy (k) | {t} = {0} ,

w; (k)
where [wl] = (w}, w2, w3,..., wN) is the row vector of the
influence matrix by collocating the second point for the
boundary integral equations. When the spurious eigen-
values have a multiplicity two, we need two additional
constraints

Uggm (1) = [Zg {at, + Bts)}

| win wit { o }
W;tl Wgtz ﬁ ’
where t = at; + ft, {1} = {¢,} and its conjugate
{t,} = {¢},} are two independent boundary modes, o and

p are two arbitrary constants. The four elements in the
matrice of Eq. (61) are

wit] = 1°pJu(kp)Ja(kp)e™®
wity = 1 pla(kp)Ju(kp)e "1

(60)

(61)



82

Table 3. True and spurious systems for the Dirichlet problem using the complex, real-part and imaginary-part BEMs

Real U part Real L part Imag U part Imag L part
1D bar Eigenvalue True sin[k] sin[k] sin[k] sin[k]
Spurious sin[k] sin[k] sin[k] sin[k]
2D circular membrane  Eigenvalue True ] ] ] ]
Spurious Y Y’ ] I
witl = 72 pJn(kp)]u(kp)e™®: | (64) 2. If the two selected points with intersection angle ¢
T 5 ing makes n¢ = 7, we fail to filter out the double spurious
wyty =1 plu(kp)Ja(kp)e ™" . (65) roots for the zeros of Y,(kp) =0,n > 1.

if additional equations are obtained from U; kernel.
Eqgs. (62)-(65) changed to

wit] = Y, (kp)Tu(kp)e™ " |
wity = 2pY,,(kp)Ju(kp)e "
wit = Y, (kp)Ta(kp)e™
wyty =Y, (kp)a(kp)e ™%

if additional equations are obtained from L, kernel.
Similarly, we have

wit] = *pl,,(kp)a(kp)e™ . (70)
wity = pJ, (kp)Ju(kp)e ™, (71)
wyty =1 pJ, (kp)Ja(kp)e s, (72)
wyty =7 pJ, (kp)Ju(kp)e "% . (73)

if additional equations are obtained from L; kernel. Since
the spurious double roots make the rank less than 2, the

additional two equations for the imaginary-part [Uj]
kernels must provide independent constraints, such that

[nzﬂ]n(kp)ln(kp)ef”“bl nzp]n(kp)fn(kp)e‘?"(’“] m £0 .
nzp]n(kp)]n(kp)eln¢2 ﬂzp]n(kp)]n(kp)e_‘"‘l’z p
(74)

If they are dependent, we have the determinant
nzp],,(kp)]n (kp)ein¢1 2pln (kp)Jn (kp)e_i"d’l
72 pa(kp)Ta(kp)e™ 2 n? pJ, (kp)Ju(kp)e ™2
= u(kp)Ju(kp)Tu(kp)Ju(kp) (e 917 02) e in(d1=02))
=p*Ju(kp)]n(kp)Tu(kp)Jn(kp)2i sin(n)
:0’

A<U2i) =det

(75)

where the superscript “(2)” denotes two additional con-
straints and ¢ = ¢; — ¢, indicates the intersecting angle
between the two boundary points. Similarly, we can obtain

AY = p*Y,(kp) Y, (kp)Tu(kp)Ju(kp)2isin(nd) = 0
(76)
A = pPT (ko) (kp)Ta(kp)Ja(Kkp)2i sin(ng) = 0
(77)
The discriminant A indicates,

1. If only one additional constraint is obtained, then we

3. No more than two points are required if the collocation
points are properly chosen.

5

Numerical examples

A circular cavity with a radius (p = 1) subject to the
Dirichlet boundary condition (¥ =0,p = 1) is consid-
ered. In this case, an analytical solution is available
(Chen et al., 1999b, c). The true and spurious eigenso-
lutions are summarized in Table 3. True eigenvalues
satisfy J,,(k) =0, m=0,1,2,3,.... Forty elements are
adopted in the boundary element mesh. Since two al-
ternatives, the UT or LM equations, can be used to
collocate on the boundary, two results from the real-part
UT and real-part LM methods can be obtained. Figure 2
shows the minimum singular value versus k using real-
part UT method. The true eigenvalue contaminated by
spurious eigenvalues can be obtained as shown in Fig. 2
by considering the near zero minimum singular value if
only the real-part UT equation is chosen. The true eigen-
values occur at the positions of zeros for J,,(k) while the
spurious eigenvalues occur at the positions of zeros for
Y,u(k). J};, and Y}, in Fig. 2 denote the possible roots for k
which satisfy J,,(k) = 0 and Y,,(k) = 0, respectively.
Figure 3 shows the second minimum singular value versus
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can succeed in filtering out the single spurious roots of Fig. 2. The first minimum singular values o; versus k using the

zeros for Yy(kp).

[U] matrices of real-part dual BEM for the Dirichlet problem



1.0E4001 —= 1.0E+002 —=
= =
s K K Ky K, =
] 4 5.43 6 388 6 ;% - Tn : true eigenvalue with multiplicity n
4.53 "2 '1 '2 — ( ) : analytical solution
1.0E+000 — 1 Y 1
E £ ! S 1.0E+001 —
s (4.53) (5.43)  (6.38)(6.79) 3
] s s T s Tss T ossT 4
108001 — i o I [ P m
= { TR i i r{ 10E+000 —
1.0E-002 —= o, -
= [
F - 1.0E-001 —=]
- I [ I I E
10E-003 — . S o o 3
5 £ 2 & DA ] i I b | I
3 2.2 339 3.83 5.14 5.(;5 6.75 - g
\ . - ¢
- ¥ v novoon 10E-002 —| & £ K Ko K s
1.0E-004 —= 2.2 (3.38)(3.83) | (14 5.6 (6.75)k, = 2.42 3.85 5-116 5-§5 G‘TI 0
= 3 s N 3
3 (7 e eigenvae 7.02 - i Jj VR B
H igenval ' a
i IRy iy 7 - (2.40) &) (1) (552) (6.38) (1)
1.0E-005 : : . L 1.0E-003 T | | 1 T 1 1
l l [T
00 15 30 45 6.0 75 0.0 15 30 45 6.0 75
k

Fig. 3. The second minimum singular values ¢, versus k using

the [U] matrices of real-part dual BEM for the Dirichlet problem
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Fig. 4. The first minimum singular values g, versus k using the

g matrices of real-part dual BEM for the Dirichlet problem
k when only using real-part UT equation. It is interesting to
find that no spurious eigenvalues occur as shown in Fig. 4,
when the UT and LM equations are combined together.
After obtaining the true eigenvalues, their multiplicities can
be determined as shown in Fig. 5 from the locations where
the second minimum singular values also approach zero. It
is found that double roots are present in this case. All the
above results are obtained by considering all the equations
in the dual formulation.

Using the present approach, one additional equation
from [Uj] in conjunction with [U;],, ,y matrice can be
employed to filter out the single spurious eigenvalue of
Yo(k) = 0 as shown in Fig. 6. It is found that the single

Fig. 5. The second minimum singular values g, versus k using the

matrices of real-part dual BEM for the Dirichlet problem
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Fig. 6. The first minimum singular values g; versus k using

the {gr matrices of dual BEM for the Dirichlet problem

spurious eigenvalues (Y] (0.89), Y2(3.96) and Y;(7.09)) are
successfully filtered out. However, the double spurious ei-
genvalues (Y](2.20), Y;(3.38), Y3 (4.53), Y?(5.43), etc) still
appear as predicted. By replacing the constraint from [Uj]
to either [L;] or [L,], we have the results shown in Figs. 7
and 8, respectively. Some single spurious eigenvalues at
high wave number in Fig. 7 cannot be filtered out in the
discrete system for the limited number of boundary ele-
ments. Also, the second single spurious eigenvalue
(Y2(3.96)) was not successfully filtered out in Fig. 8. The
reason may be explained by the fewer number of elements.

By replacing the basic equations of [Uy|,x,,x t0 [Lt]y oy i
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Fig. 8. The first minimum singular values g, versus k using the

[ I:r} matrices of dual BEM for the Dirichlet problem

=)

conjunction with one additional equation from either [L;]
or [U,], the results are shown in Figs. 9 and 10. All the single
spurious eigenvalues in Figs. 9 and 10 are filtered out as
predicted analytically. The possible combination in
choosing the base (dimension 2N x 2N) and one constraint
(dimension 1 x 2N) for filtering out the single spurious
eigenvalues is summarized in Table 4. Also, the perfor-
mance grade is shown in this table according to numerical
experiment. Figures 11, 12 and 13 show that the double
spurious eigenvalues can be successfully filtered out by
choosing the combination of [[5](5)}, { EIZE)} and

i i
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Fig. 10. The first minimum singular values g, versus k using

the {5‘ ] matrices of dual BEM for the Dirichlet problem

J’ 2)}, respectively. These results match well with an-
r

alytical derivation. The possible combination in choos-
ing the base and constraints for filtering out the double
spurious eigenvalues is summarized in Table 5. Also, the
performance grade is classified. To demonstrate the
failure case in choosing the points with an intersection
angle 180 degrees, Fig. 14 shows that the spurious ei-
genvalues of Y,(k), n > 1, cannot be filtered out as
predicted analytically that sin(nn) = 0,n > 1. For
example, Y](2.20) and Y, (3.38) spurious eigenvalues
still exist.



Table 4. The possible combi-
nations for filtering out the

Additional equation

single spurious eigenvalues

Basic [Uil1 x 2n [Uh < 2n (Lil1 x 25 [L:]1 = on
equations )i Y] 17 JY’
[Ui]ZN % 2N Bad Bad Bad Bad
[Uclan x 28 Excellent Bad Good Fair
YJ (Fig. 6) (Fig. 7) (Fig. 8)
[Lilon x 28 Bad Bad Bad Bad
]y
[L]on x on Fair Excellent Excellent Bad
JY’ (Fig. 10) (Fig. 9)
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Table 5. The possible combi-
nations of the more efficient

Additional equations

method . .
Basic equations

[UI] 2N x 2N
)]

[Ur] 2N x 2N

[Ui]z X 2N [Ur]z X 2N [Li]z x 2N [Lr]Z x 2N
)] Y] 77 JY

bad bad bad bad
excellent bad good fair
(Fig. 11)

bad bad bad bad

fair excellent excellent bad

(Fig. 13) (Fig. 12)

6

Conclusions

An efficient method, termed mixed-part dual BEM, in
conjunction with the SVD technique has been applied to
determine the true and spurious eigenvalues of a circular
cavity subjected to the Dirichlet boundary conditions. In
comparing with the complex-valued BEM, not only half
effort in constructing the matrix is required, but also a
fewer size of dimension is needed. The failure cases in
choosing the collocating points for circular cavity were
designed analytically and demonstrated numerically. If the
additional points were properly chosen, no more than two
points were required. When one additional point was
chosen, then we can succeed in filtering out single spuri-
ous roots. If the two points intersect an angle ¢ which
makes n¢ # n, then we can filter out double spurious
roots of the zeros Y,(kp) analytically. Numerical experi-
ments were performed and matched well with analytical
prediction. The true eigenvalues obtained by the efficient
method agree very well with the exact solutions.

References

Chang JR, Yeih W, Chen JT (1999) Determination of the natural
frequencies and natural modes of a rod using the dual BEM in
conjunction with the superelement concept. Comput. Mech.
24: 29-40

Chen JT (1998) On ficitious frequencies using dual series repre-
sentation. Mech. Res. Commun. 25: 529-534

Chen JT, Hong H-K (1999) Review of dual integral representa-
tions with emphasis on hypersingular integrals and divergent
series. Trans. ASME Appl. Mech. Rev. 52: 17-33

Chen JT, Chen KH (1998) Dual integral formulation for deter-
mining the acoustic modes of a two-dimensional cavity with a
degenerate boundary. Engng. Anal. Boundary Elements 21:
105-116

Chen JT, Wong FC (1997) Analytical derivations for one-di-
mensional eigenproblems using dual BEM and MRM. Engng.
Anal. Boundary Elements 20: 25-33

Chen JT, Huang CX, Wong FC (2000a) Determination of spurious
eigenvalues and multiplicities of true eigenvalues in the dual
multiple reciprocity method using the singular value de-
composition technique. J. Sound Vibration 230: 230-219

Chen JT, Kuo SR, Chen KH, Cheng YC (2000b) Comments on
vibration analysis of arbitrary shaped membranes using
nondimensional dynamic influence function. J. Sound Vi-
bration 235(1): 156-170

Chen JT, Chen IL, Kuo SR, Liang MT (2000c) A new method for
true and spurious eigensolutions of arbitrary cavities using
the CHEEF method. J. Acoust. Soc. Am. Accepted

Chen JT, Chen KH, Chyuan SW (1999a) Numerical experiments
for acoustic modes of a square cavity using dual BEM. Appl.
Acoustics 57: 293-325

Chen JT, Huang CX, Chen KH (1999b) Determination of spurious
eigenvalues and multiplicities of true eigenvalues using the
real-part dual BEM. Comput. Mech. 24: 41-51

Chen JT, Kuo SR, Chen KH (1999¢) A nonsingular integral for-
mulation for the Helmholtz eigenproblems of a circular do-
main. J. Chinese Inst. Eng. 22: 729-739

De Mey G (1977) A simplified integral equation method for the
calculation of the eigenvalues of Helmholtz equation. Int. J.
Num. Meth. Engng. 11: 1340-1342

Goldberg JL (1991) Matrix Theory with Applications, McGraw-
Hill, New York

Hutchinson JR (1991) Analysis of plates and shells by boundary
collocation, in boundary elements analysis of plates and
shells. In: Beskos DE (ed.), Springer-Verlag, Berlin, pp. 314-
368

Hutchinson JR (1988) Vibration of plates, in boundary
elements X. In: Brebbia CA (ed.), Springer-Verlag, Berlin,

4: 415-430

Hutchinson JR (1985) An alternative BEM formulation applied to
membrane vibrations, in boundary elements VII. In: Brebbia
CA, Maier G (eds.), Springer-Verlag, Berlin

Kamiya N, Andoh E, Nogae K (1996) A new complex-valued
formulation and eigenvalue analysis of the Helmholtz equa-
tion by boundary element method. Adv. Engng. Software 26:
219-227

Kang SW, Lee JM, Kang Y] (1999) Vibration analysis of arbi-
trarily shaped membranes using non-dimensional dynamic
influence function. J. Sound Vibration 221: 117-132

Katsikadelis JT, Nerantzaki MS (2000) A boundary-only solution
to dynamic analysis of non-homogeneous elastic membrane.
Comput. Modeling Engng. Sci. 1(3): 1-8

Kuo SR, Chen JT, Huang CX (2000a) Analytical study and nu-
merical experiments for true and spurious eigensolutions of a
circular cavity using the real-part dual BEM. Int. J. Numer.
Meth. Engng. 48: 1401-1422

Kuo SR, Chung IL, Chen JT, Huang CX (2000b) Analytical study
and numerical experiments for true and spurious eigensolu-
tions of two-dimensional cavities using the dual multiple
reciprocity method. Submitted

Kuo SR, Yeih W, Wu YC (2000c) Applications of generalized
singular-value decomposition method on the eigenproblems
using incomplete boundary element formulation. J. Sound
Vibration 235(5): 813-845

Liou DY, Chen JT, Chen KH (1999) A new method for deter-
mining the acoustic modes of a two-dimensional sound field.
J. Chinese Inst. Civil Hydraulic Engng. 11: 299-310 (in
Chinese)

Schenck HA (1968) Improved integral formulation for acoustic
radiation problems. J. Acoust. Soc. Am. 44: 41-58



Tai GG, Shaw RP (1974) Helmholtz equation eigenvalues and
eigenmodes for arbitrary domains. J. Acoust. Soc. Am. 56:
796-804

Wu YC (1999) Applications of the generalized singular value
decomposition method to the eigenproblem of the Helmholtz
equation, Master Thesis National Taiwan Ocean University,
Taiwan

Yeih W, Chang JR, Chang CM, Chen JT (1999a) Applications of
dual MRM for determining the natural frequencies and nat-

ural modes of a rod using the singular value decomposition
method. Adv. Engng. Software 30: 459-468

Yeih W, Chen JT, Chang CM (1999b) Applications of dual MRM for
determining the natural frequencies and natural modes of an
Euler-Bernoulli beam using the singular value decomposition
method. Engng. Anal. Boundary Elements 23: 339-360

Yeih W, Chen JT, Chen KH, Wong FC (1997) A study on the
multiple reciprocity method and complex-valued formulation
for the Helmholtz equation. Adv. Engng. Software 29: 7-12

87



