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Abstract Following the success of using the null-field
integral approach to determine the torsional rigidity of a cir-
cular bar with circular inhomogeneities (Chen and Lee in
Comput Mech 44(2):221–232, 2009), an extension work to
an elliptic bar containing elliptic inhomogeneities is done in
this paper. For fully utilizing the elliptic geometry, the fun-
damental solutions are expanded into the degenerate form
by using the elliptic coordinates. The boundary densities are
also expanded by using the Fourier series. It is found that
a Jacobian term may exist in the degenerate kernel, bound-
ary density or boundary contour integral and cancel out to
each other. Null-field points can be exactly collocated on the
real boundary free of facing the principal values using the
bump contour approach. After matching the boundary con-
dition, a linear algebraic system is constructed to determine
the unknown coefficients. An example of an elliptic bar with
two inhomogeneities under the torsion is given to demon-
strate the validity of the present approach after comparing
with available results.
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1 Introduction

For solving boundary value problems (BVPs) of elasticity,
it is always difficult to find an analytical solution which sat-
isfies the partial differential equations and given boundary
conditions at the same time except for some simple cases.
In the elasticity textbooks [1–3], there are many simple and
classical problems, e.g. a torsion problem of an elliptic bar.
An exact or analytical solution is very useful as a benchmark
example for engineers and researchers while they develop
a new numerical approach. For a special case, the semi-
inverse solution may be found a priori such that it satis-
fies the governing equation and boundary condition. We can
obtain the exact solution through this way only for a lucky
case, but it is not a logical way. For example, the Saint-
Venant torsion solution [1–3] of an elliptic bar is a typical case
which was obtained by using the semi-inverse method. To
derive the analytical solution in a rational manner, Zhong and
co-workers [4] presented a new approach based on the Hamil-
tonian principle and the symplectic duality system. Here, we
focus on the approach of boundary integral equation method
(BIEM) to derive the semi-analytical solution in a logical
manner.

For a complex problem of an elliptic bar with multiple
holes or inclusions, the analytical solution is not easy to be
obtained by using the semi-inverse method. Therefore, the
numerical approaches are usually resorted. Katsikadelis and
Sapountzakis [5] used the boundary element method to solve
torsion problems of an elliptic bar with two elliptic inclu-
sions. Not only torsional rigidity but also shear stress was
obtained. Chou and Shamas-Ahmadi [6] extended the com-
plex variable boundary element method (CVBEM) devel-
oped by Hromadka and Lai [7] to solve torsion problems of
hollow shafts. In their case of an elliptic bar with two sym-
metrical elliptic holes, the discrepancy is found between their
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Table 1 Degenerate cases in mathematics and mechanics
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results and those of Katsikadelis and Sapountzakis [5]. Later,
they also used the CVBEM to deal with problems of com-
posite shafts [8]. The data are better than the previous results
[6]. Sapountzakis and Mokos [9–11] also used the boundary
element method to solve torsion problems. They concerned
on nonuniform torsion of composite bars. However, it is not
a pure boundary element method (BEM) in their formulation
since their method needed the domain discretization in the
axis of the bar to evaluate integrals.

Recently, Chen et al. [12–22] applied the null-field bound-
ary integral method in conjunction with the degenerate
kernel and Fourier series to solve many problems with circu-
lar boundaries. Basic and classical problems, e.g. two clas-
sical elasticity problems, Lamé problem and the problem
of stress concentration factor, were also revisited by using
the approach [17]. Also, torsion problems containing circu-
lar holes and/or inclusions [13,19] have been solved. They
claimed that this approach is a semi-analytical approach since
error attributes from the truncation of number of terms of
Fourier series. Furthermore, it can obtain the closed-form
solution for the simple cases, e.g. circular and annular cases.
Nevertheless, all of their examples were focused on circular
boundaries. Therefore, we will extend this idea to deal with
torsion problems with elliptic holes and/or inclusions in this
paper.

The term of “degenerate” often occurs for the special
case that two representations merge to one, e.g. degenerate

boundary, degenerate scale and degenerate eigenvalue as
shown in Table 1. In the Fredholm integral equations, the
degenerate kernel plays an important role. However, its appli-
cations in practical problems seem to have taken a back seat
to other methods. This method can be seen as one kind of
approximation methods, and the kernel function is expressed
as finite sums of products by two linearly independent func-
tions as follows:

K (x, s) =
n∑

k=1

pk(x)qk(s).

Sometimes, the degenerate kernel is called separable
kernel since the source and field points are separated. This
terminology is not coined by the authors, but follows the lit-
erature [23–25]. The concept of generating “optimal” degen-
erate kernels has been proposed by Sloan et al. [26]. They
also proved it to be equivalent to the iterated Petrov-Galerkin
approximation. Later, Kress [27,28] proved that the integral
equations of the second kind in conjunction with degener-
ate kernels have the convergence rate of exponential order
instead of the linear algebraic order. The convergence rate
is better than that of the conventional BEM. In the litera-
ture, it is observed that exact solutions for boundary value
problems are only limited for simple cases. Therefore, pro-
posing a semi-analytical approach for solving boundary value
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Fig. 1 A composite elliptic bar

problems with elliptic boundaries of arbitrary numbers,
various size and different positions is our goal here.

In this paper, we employ a systematic approach to deal
with Saint-Venant torsion problem of an elliptic bar with
elliptic inclusions. A null-field integral formulation is utilized
in conjunction with the degenerate kernel and the Fourier
series. To fully utilize the elliptic geometry, the fundamen-
tal solution is expanded to the degenerate kernel by using
the elliptic coordinates which were provided in the Morse
and Feshback’s book [29]. Also, the boundary densities are
expanded by using the Fourier series in conjunction with a
Jacobian term. The advantage of free of calculating princi-
pal value by using the bump contour is gained even though
the null-field point is exactly located on the real boundary.
Not only stress but also torsional rigidity can be obtained
by using the present method. Finally, an example with two
elliptic inhomogeneities is used to verify the validity of the
present approach after comparing with the numerical results
in the literature.

2 Problem statement

An elliptic bar containing two elliptic inclusions bounded to
the contours Bk(k = 0, 1, 2) is shown in Fig. 1. We define

B =
2⋃

k=0

Bk . (1)

The semiaxes of elliptic bar and inclusions are also shown
in Fig. 1. The elliptic bar twisted by couples applied at the
end is taken into consideration. Following the theory of Saint-
Venant torsion [3], the warping function ϕ must satisfy the
Laplace equation,

∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0 in D, (2)

where D is the domain. Since the traction-free condition is
specified on the outer boundary, we have

∂ϕ

∂n
= 0 on B0. (3)

The continuity condition for the displacement and equi-
librium condition for traction on the interface between the
matrix and inclusion are

ϕM
i = ϕ I

i on Bi , (4)

µ0
∂ϕM

i

∂n
− µi

∂ϕ I
i

∂n
= (µ0 − µi )(ynx − xny) on Bi , (5)

where the superscripts “I ” and “M” denote the inclusion and
matrix, respectively, µ0 is the shear modulus for the matrix
and µi is the shear modulus for the i th inclusion.

3 Method of solution

3.1 Dual null-field integral formulation

By introducing the degenerate kernels, the collocation point
can be located on the real boundary free of facing singular-
ity. Therefore, the representations of conventional integral
equations including the boundary point can be written as

2π ϕ(x)=
∫

B

T (s, x)ϕ(s) d B(s)−
∫

B

U (s, x)ψ(s) d B(s),

x ∈ D ∪ B, (6)

2π
∂ϕ(x)

∂nx
=

∫

B

M(s, x)ϕ(s)d B(s)−
∫

B

L(s, x)ψ(s) d B(s),

x ∈ D ∪ B, (7)

and

0 =
∫

B

T (s, x)ϕ(s)d B(s)−
∫

B

U (s, x)ψ(s)d B(s),

x ∈ Dc ∪ B, (8)

0 =
∫

B

M(s, x)ϕ(s)d B(s)−
∫

B

L(s, x)ψ(s)d B(s),

x ∈ Dc ∪ B, (9)

where s and x are the source and field points, respectively,
ψ(s) = ∂ϕ(s)

∂ns
, ns and nx denote the unit outward normal vec-

tors at the source point s and field point x, respectively, and
the kernel function U (s, x) = ln r, (r ≡ |s − x |), is the fun-
damental solution which satisfies

∇2U (s, x) = 2πδ(x − s), (10)

in which δ(x −s) denotes the Dirac-delta function. The other
kernel functions, T (s, x), L(s, x), and M(s, x), are defined
by
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T (s, x) = ∂U (s, x)

∂ns
, (11)

L(s, x) = ∂U (s, x)

∂nx
, (12)

M(s, x) = ∂2U (s, x)

∂ns∂nx
, (13)

once the kernel is expressed in term of an appropriate degen-
erate form. It is noted that x in Eqs. (6)–(9) can exactly locate
on the real boundary. The detail information can be found
in [19].

3.2 Expansions of fundamental solution and boundary
density

Based on the null-field integral formulation as previously
mentioned, it is noted that the key point of the present method
is the use of the degenerate kernel. To fully use the elliptic
geometry, we expand the fundamental solution into a degen-
erate form by using the property of an elliptic coordinates. It
is well known that the closed-form fundamental solution of
the Laplace problem is

U (s, x) = ln r. (14)

Based on the separable property, U (s, x) can be expanded
into degenerate form by separating the source points and
field points in the elliptic coordinates [29] as given below:

U (s, x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui (ξ̄ , η̄; ξ, η) = ξ̄ + ln c
2

−
∞∑

m=1

2
m e−mξ̄ cosh mξ cos mη cos mη̄

−
∞∑

m=1

2
m e−mξ̄ sinh mξ sin mη sin mη̄, ξ̄ ≥ ξ,

Ue(ξ̄ , η̄; ξ, η) = ξ + ln c
2

−
∞∑

m=1

2
m e−mξ cosh mξ̄ cos mη cos mη̄

−
∞∑

m=1

2
m e−mξ sinh mξ̄ sin mη sin mη̄, ξ̄ < ξ,

(15)

where (ξ, η) is the elliptic coordinates, s = (ξ̄ , η̄), x =
(ξ, η), the superscripts “i” and “e” denote the interior (ξ ≤ ξ̄ )

and exterior (ξ > ξ̄) cases, respectively. It is worthy of not-
ing that the larger argument is contained in the leading term
and denominator. It is also found that the form in Eq. (15)
is similar to the degenetare kernel of the polar coordinate
system. But it has a rigid body term (ln c

2 ) when the elliptic
coordinate system is used. The contour plot by using Eq. (15)
to represent 1

2π ln r is shown in Fig. 2. The normal derivative
along the boundary in the elliptic coordinates is defined by

ψ(x) = ∂ϕ(x)

∂nx
= 1

Jx

∂ϕ(x)

∂ξ
, x ∈ B, (16)

where Jx is the Jacobian term of a field point as shown below:

Jx = c
√
(sinh ξ cos η)2 + (cosh ξ sin η)2. (17)
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Fig. 2 Contour plot of the degenerate kernel in the elliptic coordinates

Then, T (s, x) can be obtained as shown below by using
Eq. (11)

T (s, x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T i (ξ̄ , η̄; ξ, η)= 1
Js

(
1 + 2

∞∑
m=1

e−mξ̄

cosh mξ cos mη cos mη̄

+2
∞∑

m=1
e−mξ̄ sinh mξ sin mη sin mη̄

)
, ξ̄ >ξ,

T e(ξ̄ , η̄; ξ, η) = 1
Js

(
−2

∞∑
m=1

e−mξ

sinh mξ̄ cos mη cos mη̄

−2
∞∑

m=1
e−mξ cosh mξ̄ sin mη sin mη̄

)
, ξ̄ <ξ.

(18)

where Js is the Jacobian term of a source point as shown
below:

Js = c
√(

sinh ξ̄ cos η̄
)2 + (

cosh ξ̄ sin η̄
)2
. (19)

It can be noted that there is a Jacobian term in the denom-
inator. The other kernels, L(s, x) and M(s, x), kernels can
be easily derived by applying the derivative operators in
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Eqs. (12) and (13) as shown below:

L(s, x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Li (ξ̄ , η̄; ξ, η) = 1
Jx

(
−2

∞∑
m=1

e−mξ̄

sinh mξ cos mη cos mη̄

−2
∞∑

m=1
e−mξ̄ cosh mξ sin mη sin mη̄

)
, ξ̄ > ξ,

Le(ξ̄ , η̄; ξ, η) = 1
Jx

(
1 + 2

∞∑
m=1

e−mξ

cosh mξ̄ cos mη cos mη̄

+2
∞∑

m=1
e−mξ sinh mξ̄ sin mη sin mη̄

)
, ξ̄ < ξ,

(20)

M(s, x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi (ξ̄ , η̄; ξ, η) = 1
Js Jx(

2
∞∑

m=1
m e−mξ̄ sinh mξ cos mη cos mη̄

+2
∞∑

m=1
m e−mξ̄ cosh mξ sin mη sin mη̄

)
, ξ̄ ≥ ξ,

Me(ξ̄ , η̄; ξ, η) = 1
Js Jx(

2
∞∑

m=1
m e−mξ sinh mξ̄ cos mη cos mη̄

+2
∞∑

m=1
m e−mξ cosh mξ̄ sin mη sin mη̄

)
, ξ̄ < ξ.

(21)

For the boundary densities, we apply the Fourier expan-
sions to approximate the potential,ϕ(s), and its normal deriv-
ative, ψ(s) = ∂ u(s)

∂ns
= 1

Js

∂ ϕ(s)
∂ξ̄

, along the boundary as

ϕ(s)= a0(ξ̄ )+
∞∑

n=1

an(ξ̄ ) cos nη̄+
∞∑

n=1

bn(ξ̄ ) sin nη̄,

(ξ̄ , η̄) ∈ B, (22)

ψ(s) = 1

Js(ξ̄ , η̄)

[
a′

0(ξ̄ )+
∞∑

n=1

a′
n(ξ̄ ) cos nη̄

+
∞∑

n=1

b′
n(ξ̄ ) sin nη̄

]
, (ξ̄ , η̄) ∈ B, (23)

respectively. It is noted that ξ̄ is a constant along the elliptic
boundary. Therefore, Eqs. (22) and (23) can be simplified to

ϕ(s) = a0 +
∞∑

n=1

an cos nη̄ +
∞∑

n=1

bn sin nη̄, (24)

ψ(s) = 1

Js

(
p0 +

∞∑

n=1

pn cos nη̄ +
∞∑

n=1

qn sin nη̄

)
, (25)

where a0, an, bn, p0, pn and qn are the coefficients of the
Fourier series, η̄ is the angle (0 ≤ η̄ < 2π). Here, it is
observed that the term of Js which may exist in the degener-
ate kernel, boundary density and boundary contour integral
(d B = Jdη̄) are cancelled out each other naturally in the
boundary integral equation. Therefore, the elliptic integral is
not required to deal with.

3.3 Adaptive observer system

After moving the point of Eq. (8) to the boundary, the bound-
ary integrals through all the elliptic contours are required.
Since the boundary integral equations are frame indifferent,
i.e. objectivity rule is satisfied. The observer system is adap-
tive to locate the origin at the center of each ellipse in the
boundary integrals. Adaptive observer system is chosen to
fully employ the property of degenerate kernels. More detail
can be found in [13–19]

3.4 Linear algebraic system

By moving the null-field point xk to exactly locate on the kth
elliptic boundary in the sense of limit for Eq. (8) in Fig. 1,
we have

0=
N∑

k=0

∫

Bk

T (s, x) ϕ(s) d Bk(s)−
N∑

k=0

∫

Bk

U (s, x) ψ(s) d Bk(s),

x ∈ Dc ∪ B, (26)

where N + 1 is the number of ellipses including the outer
boundary and the inner elliptic inclusions. In the real com-
putation, we select the collocation point on the boundary. It
is noted that the integration path is counterclockwise for the
outer ellipse. Otherwise, it is clockwise. For the integral of
the elliptic boundary, the kernels of U (s, x) and T (s, x) are
expressed in terms of degenerate kernels, and ϕ(s) and ψ(s)
are substituted by using the Fourier series. In the Bk inte-
gral, we set the origin of the observer system to collocate at
the center ck to fully utilize the degenerate kernels and Fou-
rier series. By collocating the null-field point exactly on the
boundary, a linear algebraic system is obtained

[U] {ψ} = [T] {ϕ}, (27)

where [U] and [T] are the influence matrices with a dimension
of N +1×(2L +1) by N +1×(2L +1), {ϕ} and {ψ} denote
the column vectors of Fourier coefficients with a dimension
of N +1× (2L +1) by 1 in which [U], [T], {ϕ} and {ψ} can
be defined as follows:

[Ui j ] =

⎡

⎢⎢⎢⎣

U00 U01 · · · U0N

U10 U11 · · · U1N
...

...
. . .

...

UN0 UN0 · · · UN N

⎤

⎥⎥⎥⎦ , (28)

[Ti j ] =

⎡

⎢⎢⎢⎣

T00 T01 · · · T0N

T10 TN N · · · T1N
...

...
. . .

...

TN0 TN1 · · · TN N

⎤

⎥⎥⎥⎦ , (29)
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{ϕ} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ0

ϕ1

ϕ2
...

ϕN

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (30)

{ψ} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ0
ψ1
ψ2
...

ψN

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (31)

where the vectors {ϕk} and {ψk} are in the form of
{
ak

0, ak
1 ,

bk
1 . . . a

k
L , bk

L

}T and
{

pk
0, pk

1, qk
1 . . . pk

L , qk
L

}T
, respectively;

the first subscript “ j” ( j = 0, 1, 2, . . . , N , ) in [U jk]
and [T jk] denotes the index of the j th ellipse where the col-
location point is located and the second subscript “k” (k =
0, 1, 2, . . . , N ,) denotes the index of the kth ellipse where
boundary data {ϕk} and {ψk} are specified and L indicates
the truncated terms of Fourier series. The coefficient matrix
of the linear algebraic system is partitioned into blocks, and
each off-diagonal block corresponds to the influence matri-
ces between two different elliptic inclusions. The diagonal
blocks are the influence matrices due to itself in each indi-
vidual hole. After uniformly collocating the null-field point
along the kth elliptic boundary, the submatrix can be
written as

[K jk ]

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K 0c
jk (η1) K 1c

jk (η1) K 1s
jk (η1) · · · K L c

jk (η1) K L s
jk (η1)

K 0c
jk (η2) K 1c

jk (η2) K 1s
jk (η2) · · · K L c

jk (η2) K L s
jk (η2)

K 0c
jk (η3) K 1c

jk (η3) K 1s
jk (η3) · · · K L c

jk (η3) K L s
jk (η3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

K 0c
jk (η2L ) K 1c

jk (η2L ) K 1s
jk (η2L ) · · · K L c

jk (η2L ) K L s
jk (η2L )

K 0c
jk (η2L+1) K 1c

jk (η2L+1) K 1s
jk (η2L+1) · · · K L c

jk (η2L+1) K L s
jk (η2L+1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)
where K can be substituted by U or T . Although the matrix
in Eq. (32) is not sparse, it is diagonally dominant. It is found
that the influence coefficient for the higher-order harmonics
is smaller. It is noted that the superscript “0s” in Eq. (32) dis-
appears since sin(0η) = 0. The element of [K jk] is defined,
respectively, as

K nc
jk (ηm) =

∫

Bk

K (sk, xm) cos(nη̄k)dη̄k, (33)

K ns
jk (ηm) =

∫

Bk

K (sk, xm) sin(nηk)η̄kdη̄k, (34)

where n = 0, 1, 2, . . . , L ,m = 1, 2, . . . , 2L + 1, and
ηm is the angle coordinate of the elliptical coordinates of
the collocating points xm along the boundary. The physi-
cal meaning is that the influence coefficient of U nc

jk (ηm) in
Eq. (34) denotes the response at xm due to the cos(nη̄) dis-

mη

kth elliptic 
boundary 

cos , sinn nη η

boundary distributions 

mth collocation point 
on the jth elliptic boundary 

jth elliptic boundary

Fig. 3 Physical meaning of the influence coefficient U nc
jk (ηm)

tribution as shown in Fig. 3. By rearranging the known and
unknown sets, the unknown Fourier coefficients are deter-
mined. Equation (8) can be calculated by employing the
orthogonal relations of trigonometric functions in the real
computation. Only the finite L terms are used in the summa-
tion of Eqs. (24) and (25).

By using the concept of domain decomposition, the prob-
lem in Fig. 1 can be decomposed into two parts as shown in
Fig. 4a, b. One is the torsion problem of a elliptic bar with two
elliptic holes and the other is a problem of each inclusion.
For the torsion problem with elliptic holes which satisfies the
Laplace equation, the linear algebraic system from Eq. (27)
can be obtained as

⎡

⎢⎢⎢⎢⎢⎢⎣

TM
00 TM

01 · · · TM
0N −UM

01 · · · −UM
0N

TM
10 TM

11 · · · TM
1N −UM

11 · · · −UM
1N

...
...

. . .
...

...
. . .

...

TM
N0 TM

N1 · · · TM
N N −UM

N1 · · · −UM
N N

⎤

⎥⎥⎥⎥⎥⎥⎦

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕM
0

ϕM
1

...

ϕM
N

ψM
1

...

ψM
N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0

0

...

0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (35)
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Fig. 4 a Torsion problem of an elliptic bar with elliptic holes. b Each
elliptic inclusion problem

For each inclusion, we have

⎡

⎢⎣
TI

11 0 0 −UI
11 0 0

0
. . . 0 0

. . . 0
0 0 TI

N N 0 0 −UI
N N

⎤

⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ I
1
...

ϕ I
N
ψ I

1
...

ψ I
N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

0
...

0

⎫
⎪⎬

⎪⎭
.

(36)

In order to satisfy the continuity conditions of displacement
and equilibrium condition of traction on the interface, we
have
{
ϕM

i

}
−

{
ϕ I

i

}
= {0} , (37)

µ0

{
ψM

i

}
− µi

{
ψ I

i

}
= {bi } , (38)

where {bi } is

{bi } =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(µ0 − µi )(ei
yni

x1
− ei

x ni
y1
)

(µ0 − µi )(ei
yni

x2
− ei

x ni
y2
)

...

(µ0 − µi )(ei
yni

x2M
− ei

x ni
y2M
)

(µ0 − µi )(ei
yni

x2M+1
− ei

x ni
y2M+1

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (39)

Collocating the point to boundary and 

matching boundary conditions 

BVPs containing elliptic boundaries 

Null-field integral equation 

Degenerate kernel for 

fundamental solution 

Fourier series expansion for 

boundary density 

Adaptive observer system in 

the boundary integrations 

Linear algebraic system 

Obtain the unknown Fourier coefficients 

Boundary integral equation for 

the domain point 

Potential field 

Fig. 5 Flowchart of the present approach

where

ni
x j

= sinh ξi cos η j√(
sinh ξi cos η j

)2 + (
cosh ξi sin η j

)2
, (40)

ni
y j

= cosh ξi sin η j√(
sinh ξi cos η j

)2 + (
cosh ξi sin η j

)2
. (41)

Combining with the above mentioned linear algebraic sys-
tem of Eqs. (35)–(38), the global linear algebraic equation
can be obtained by correctly arranging the Fourier coeffi-
cients. After obtaining the Fourier coefficients, the torsional
rigidity, G, can be easily determined as follows:

G = µ

∫

D

(x2 + y2) d D − µ

N∑

k=1

∫

Bk

ϕ
∂ϕ

∂n
d Bk, (42)

GT = G M + G I , (43)

where the subscripts of “T ”, “M” and “I ” denote the tor-
sion rigidity of total, matrix and inclusion, respectively. For
clarity, the flowchart of our method is shown in Fig. 5.
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Table 2 Dimensionless torsional rigidity and maximum shear stresses of the composite elliptic bar

µ1/µ0 µ2/µ0 Torsional rigidity Ḡ τ̄max

Katsikadelis and Chou and Sapountzakis and Present Katsikadelis and Chou and Sapountzakis and Present
Sapountzakis Shamas-Ahmadi Mokos Sapountzakis Shamas-Ahmadi Mokos

0.0 0.0 0.2934 0.2842 0.2857 0.2857 0.8142 0.7883 0.7922 0.7901

0.4 0.2968 0.2921 0.2948 0.2948 0.8091 0.7820 0.8042 0.8068

1.0 0.3047 0.2971 0.2992 0.2992 0.8072 0.7869 0.8116 0.8139

0.2 0.2 0.2974 0.2954 0.2980 0.2980 0.8108 0.7895 0.7596 0.7594

0.6 0.2980 0.3000 0.3033 0.3033 0.8054 0.7821 0.7738 0.7731

1.0 0.3029 0.3030 0.3058 0.3059 0.8038 0.7811 0.7802 0.7790

0.4 0.4 0.3001 0.3008 0.3046 0.3046 0.8036 0.7737 0.7770 0.7768

0.6 0.3024 0.3028 0.3067 0.3067 0.8027 0.7790 0.7824 0.7821

1.0 0.3076 0.3060 0.3093 0.3093 0.8016 0.7875 0.7887 0.7882

0.6 0.6 0.3048 0.3048 0.3088 0.3088 0.8017 0.7839 0.7876 0.7875

0.8 0.3037 0.3065 0.3103 0.3103 0.8010 0.7884 0.7914 0.7911

1.0 0.3099 0.3081 0.3114 0.3115 0.8006 0.7924 0.7940 0.7937

0.8 0.8 0.3098 0.3082 0.3118 0.3118 0.8004 0.7925 0.7949 0.7948

1.0 0.3124 0.3098 0.3130 0.3130 0.8000 0.7965 0.7976 0.7974

1.0 1.0 0.3150 0.3114 0.3141 0.3142 0.7989 0.8003 0.8001 0.8000

4 An illustrative example and discussions

An elliptic bar with two symmetrical elliptic inclusions is
considered here. The sketch of cross section is depicted in
Fig. 1. In Table 2, the dimensionless torsional rigidity and
maximum shear stresses are defined as Ḡ = G

/
µ0 L4 and

τ̄max = τmax/µ0αL versus various values of ratios µ1
/
µ0

and µ2
/
µ0. The data of Katsikadelis and Sapountzakis [5],

Shams-Ahmadi and Chou [8], and Sapountzakis and Mokos
[9] are used to compare with our results. In the numerical
implementation of the present approach, the number of Fou-
rier series is 41 and 41 nodes are uniformly distributed in
the η coordinate on each boundary. As shown in Table 2, the
torsional rigidities of present approach match well with those
of Sapountzakis and Mokos [9], but they deviate among the
results of Katsikadelis and Sapountzakis [5], Shams-Ahmadi
and Chou [8] and ours. The data are the results of torsional
rigidity. Their error is also larger than ours. For the maxi-
mum shear stress (τ̄max), our data are close to those of the
Sapountzakis and Mokos’ results and the relative error is less
than 1%. However, it is observed that the results of Katsikad-
elis and Sapountzakis are greater than others. Maybe, more
number of boundary elements is required. In this example,
high accuracy of the present approach is obtained not only
for torsion rigidity but also shear stress.

5 Conclusions

We have successfully proposed a systematic method by using
the null-field integral formulation in conjunction with degen-

erate kernels and Fourier series for solving the torsion prob-
lems of an elliptic composite bar. The fundamental solution
was expanded to a degenerate kernel by using the elliptic
coordinates in this paper. Although a Jacobian term may
appear in the degenerate kernel, boundary density and bound-
ary contour integral by using the elliptic coordinates, it can
be cancelled out in the BIE. Free of calculating principal
value of using bump contour method is our advantage than
the conventional boundary integral equation thanks to the
degenerate kernel. Besides, stress and torsional rigidity were
both obtained by using the proposed approach. Our results
matched well with those of the complex-variable method
and BEM. Although only an example of an elliptic bar with
two elliptic inclusions was given to show the validity of our
approach, the more general case with the arbitrary number,
different size and various position of elliptic inclusion can
be solved by using the developed program.
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