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Analysis of 2D Thin Walled Structures in BEM with2

High-Order Geometry Elements Using Exact Integration3

Yaoming Zhang1, Yan Gu1 and Jeng-Tzong Chen2
4

Abstract: There exist nearly singular integrals for thin walled structures in the5

boundary element method (BEM). In this paper, an efficient analytical method is6

developed to deal with the nearly singular integrals in the boundary integral equa-7

tions (BIEs) for 2-D thin walled structures. The developed method is possible for8

problems defined in high-order geometry elements when the nearly singular inte-9

grals need to be calculated. For the analysis of nearly singular integrals with high-10

order geometry elements, much fewer boundary elements can be used to achieve11

higher accuracy. More importantly, computational models of thin walled structures12

or thin shapes in structures demand a higher level of the geometry approximation13

to the original domains, and the usage of high-order geometry in computational14

models can meet this requirement. Three numerical examples are presented to test15

the developed method and very promising results are obtained when the thickness-16

to-length ratio is in the orders of 1E-01 to 1E-06, which is sufficient for modeling17

most thin structures in industrial applications.18

Keywords: BEM, elasticity problem, curved boundary, nearly singular integrals,19

thin walled structures, exact integrations.20

1 Introduction21

Thin-body structures are frequently used for the design in various industrial appli-22

cations, including solid mechanics, acoustics and electromagnetism [Chen and Liu23

(2001); Albuquerque and Aliabadi (2008);Guz et al. (2007); Karlis et al. (2008)].24

Numerical analysis of the behavior of these structures represents a great challenge25

to researchers in computational mechanics. Studies show that the conventional26

boundary element method (CBEM) using the standard Gaussian quadrature fails to27
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yield reliable results for these structures. The major reason for this failure is that28

the kernels’ integration presents various orders of near singularities, owing to the29

mesh on one side of the thin-body being too close to the mesh on the opposite side.30

Moreover, the nearly singular problem may also occur when the interior physical31

quantity need to be calculated.32

Nearly singular integrals are not singular in the sense of mathematics. However,33

from the point of view of numerical integrations, these integrals can not be calcu-34

lated accurately by using the conventional numerical quadrature since the integrand35

oscillates very fiercely within the integration interval. Other than the nearly singular36

integral, many direct and indirect algorithms for singular integral have been devel-37

oped and used successfully [Atluri (2004, 2005);Atluri et al. (2003, 2006);Okada et38

al. (1990);Han et al. (2003, 2007);Brebbia et al. (1984);Chen (2002, 2000);Davies39

et al.(2007);Li, Wu and Yu (2009);Sanz et al. (2007);Sun (1999);Tanaka, Sladek40

(1994); Guiggiani (1992);Young et al. (2007);Zhang et al. (2004)]. Therefore, the41

key point in achieving the required accuracy and efficiency of the BEM is not the42

singular integral but the nearly singular integral. Although that difficulty can be43

overcome by using very fine meshes, the process requires too much preprocessing44

and CPU time.45

Owing to the importance of the nearly singular integrals, many numerical methods46

and techniques have been developed in the past decades. These proposed methods47

can be divided on the whole into two categories: “indirect algorithms” and “direct48

algorithms”. The indirect algorithms [Okada et al. (1989, 1990); Sladek et al.49

(1993);Zhang and Sun (2000);Liu et al. (2008);Mukerjee (2000)], which benefit50

from the regularization ideas and techniques for the singular integrals, are mainly51

to calculate indirectly or avoid calculating the nearly singular integrals by establish-52

ing new regularized boundary integral equations (BIEs). The direct algorithms are53

calculating the nearly singular integrals directly. They usually include interval sub-54

division method [Jun (1985);Tanaka (1991)], special Gaussian quadrature method55

[Earlin (1992);Lifeng (2004)], and various nonlinear transformation method [Luo56

et al. (1998);Liu et al. (2000,2008) Zhang and Sun (2008)].57

Analytical integration is an alternative way to improve the calculation accuracy of58

the nearly singular integrals. Various analytical schemes have been developed over59

the past years. Yoon et al. (2000) proposed an exact expression of kernel inte-60

grals with the linear isoparametric element; Fratantonio and Rencis (2000) derived61

exact integrations for the constant, linear and quadratic elements, while the geo-62

metrical boundaries were all depicted by using linear shape functions; Zhang and63

Sun (2001) established an analytical scheme, which is both available for singular64

and nearly singular integrals, to treat the boundary integrals of two-dimensional65

potential and elastic problems. Zhang et al. (2004) derived the exact integrations66
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for 2-D elastostatic problems, in which the boundary quantities are approximated67

by using various order discontinuous interpolation functions and the boundary ge-68

ometry is also depicted by using straight line; Niu et al. (2007) and Zhou et al.69

(2008) proposed the semi-analytical or analytical integral formulas to calculate the70

nearly singular integrals for both potential and elastic problems, and suggested a71

strategy to deal with the isoparametric quadratic elements. The strategy replace the72

parabolic arcs with two or more straight line segments; By means of the symbolic73

computer program Mathematica, Padhi et al. (2001) derived an analytic formula-74

tion of the nearly singular integrals in the displacement BIE of 2-D elasticity with75

the Taylor’s series approximation to lnr, 1=r and the Jacobian.76

For most of the current numerical methods, especially for the exact integration77

method, the geometry of the boundary element is often depicted by using linear78

shape functions when nearly singular integrals need to be calculated. However,79

most engineering processes occur mostly in complex geometrical domains, and80

obviously, higher order geometry elements are expected to be more accurate to81

solve such practical problems [Atluri (2005)]. Therefore, to improve the calculation82

accuracy and efficiency of the nearly singular integrals, efficient approaches are83

available for high order geometry elements are necessary and need to be further84

investigated.85

Recently, a general transformation method suitable for calculating the nearly sin-86

gular integrals occurring on high order geometry elements was proposed by authors87

of this paper [Zhang, Gu and Chen (2009)]. Although thin-body problems are not88

considered on their research, this transformation has potential to effectively treat89

this kind of problems.90

When the geometry of the boundary element is approximated by using high-order91

elements—usually of second order, the Jacobian J(ξ ) is not a constant but a non-92

rational function which can be expressed as
p

a+bξ + cξ 2, where a; b and c are93

constants, ξ is the dimensionless coordinate; The distance r between the field points94

and the source point is a non-rational function of the type
p

p4(ξ ), where p4(ξ )95

is the fourth order polynomial. Thus, the forms of the integrands in boundary96

integrals become more complex, and for a long time, it was even thought that the97

implementation of the exact integration is impossible in this situation.98

It is well known that the domain variables can be computed by integral equations99

after all the boundary quantities have been obtained, and the accuracy of bound-100

ary quantities directly affects the validity of the interior quantities. Therefore, for101

dealing with thin- body problems, two aspects are necessary: one is the accurate102

computation of the boundary unknown quantities, which is generally carried out by103

adopting the regularized boundary integral equations (BIEs) for the calculation of104

singular integrals; the other is an efficient algorithm for calculating the nearly sin-105
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gular integrals. In addition, for thin- body problems, some boundary elements will106

be very close to each other. Thus, the singular and nearly singular integrals need to107

be evaluated simultaneously when calculating the boundary unknown variables.108

In this paper, a new exact integration method for estimating nearly singular in-109

tegrals occurring on curvilinear geometries is presented. The proposed strategy110

bases on a kind of inverse interpolation technique and uses a series of interpolation111

polynomials to approximate the regular part of the integrand such as the Jacobian,112

the shape functions and a finite sum of polynomials divided by rn. Therefore, the113

original complicated integrands can be substituted by some simple polynomials,114

and then the whole integral can be calculated straightforwardly by using analyti-115

cal integral formulations. The exact integrations derived in this paper substantially116

simplify the programming and provided a general computational method for eval-117

uating the nearly singular integrals. This paper applies the new analytical formulas118

to deal with the nearly singular integrals for 2-D elasticity problems of thin bodies,119

and very promising results are obtained when the thickness to length ratio is in the120

orders from 1.0E-1 to 1.0E-6, which is sufficient for modeling most thin structures121

in industrial applications.122

Moreover, it will be seen that the exact integration method proposed in this paper123

also provide an effective scheme for calculating those complex integrals which have124

been thought to be impossible to find an exact representation.125

2 Non-singular boundary integral equations (BIEs)126

In this paper, we always assume that Ω is a bounded domain in R2, Ωc is its open
complement, and Γ denotes the boundary. t(x) and n(x) (or t and n) are the unit
tangent and outward normal vectors of Γ to the domain Ω at the point x, respec-
tively. For 2-D elastic problems, the non-singular BIEs with indirect variables are
given in [Zhang et al. (2004)]. Without regard to the rigid body displacement and
the body forces, the non-singular BIEs on Ωc can be expressed as

ui(y) =
Z

Γ
ϕk(x)u�

ik(y;x)dΓ;y 2 Γ (1)

∇ui(y) =
Z

Γ
[ϕk(x)�ϕk(y)]∇u�

ik(y;x)dΓ�ϕk(y)
�Z

Γ
[t(x)� t(y)]

∂u�
ik(y;x)
∂ t

dΓ

+
Z

Γ
[n(x)�n(y)]

∂u�
ik(y;x)
∂n

dΓ+
k0

G
n(y)

�Z
Γ
[nk(x)�nk(y)]

∂ lnr
∂xi

dΓ

+nk(y)
Z

Γ
[ti(x)� ti(y)]

∂ lnr
∂ t

dΓ+nk(y)
Z

Γ
[ni(x)�ni(y)]

∂ lnr
∂n

dΓ
��

;y 2 Γ (2)
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For the domainΩ, the nonsingular BIEs are given as

ui(y) =
Z

Γ
ϕk(x)u�

ik(x;y)dΓ; y 2 Γ (3)

∇ui(y) = ϕk(y)n(y)
1
G
[δik� nk(y)ni(y)

2(1� v)
]+

Z
Γ
[ϕk(x)�ϕk(y)]∇u�

ik(y;x)dΓ

�ϕk(y)
�Z

Γ
[t(x)� t(y)]

∂u�
ik(y;x)
∂ t

dΓ +
Z

Γ
[n(x)�n(y)]

∂u�
ik(y;x)
∂n

dΓ

+
k0

G
n(y)

�Z
Γ
[nk(x)�nk(y)]

∂ lnr
∂xi

dΓ +nk(y)
Z

Γ
[ti(x)� ti(y)]

∂ lnr
∂ t

dΓ

+nk(y)
Z

Γ
[ni(x)�ni(y)]

∂ lnr
∂n

dΓ
��

;y 2 Γ (4)

For the internal point y, the integral equations can be written as

ui(y) =
Z

Γ
ϕk(x)u�

ik(y;x)dΓ ; y 2 Ω̂ (5)

∇ui(y) =
Z

Γ
φk(x)∇u�

ik(y;x)dΓ ; y 2 Ω̂ (6)

In Eqs. (1)�(6), i;k = 1;2; k0 = 1=4π(1� v); G is the shear modulus; φk(x) is127

the density function to be determined; u�
ik(y;x) denotes the Kelvin fundamental128

solution. In Eqs. (5) and (6) Ω̂ = Ω or Ωc.129

The Gaussian quadrature is directly used to calculate the integrals in discretized
equations in the conventional boundary element method. However, if the domain
of a considered problem is thin, some boundaries will be very close to each other.
Thus, the distance r between some boundary nodes and boundary integral elements
probably approaches zero. This causes the integrals in discretized Eqs. (1)�(4)
nearly singular, and the results of the Gaussian quadrature become invalid. There-
fore, the density functions cannot be calculated accurately, needless to say, to cal-
culate the physical quantities at interior points. Moreover, almost all the interior
points of thin bodies are very close to the integral elements. Thus, there also exist
nearly singular integrals in Eqs. (5) and (6). These nearly singular integrals can be
expressed as(

I1 =
R

Γe
ψ(x) lnr2dΓ

I2 =
R

Γe
ψ(x) 1

r2α dΓ
(7)

where α > 0, ψ(x) denotes a well-behaved function.130
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3 Nearly singular integrals over curvilinear elements131

The quintessence of the BEM is to discretize the boundary into a finite number132

of segments, not necessarily equal, which are called boundary elements. Two ap-133

proximations are made over each of these elements. One is about the geometry of134

the boundary, while the other has to do with the variation of the unknown bound-135

ary quantity over the element. The linear element is not an ideal one as it can not136

approximate with sufficient accuracy for the geometry of curvilinear boundaries.137

For this reason, it is recommended to use higher order elements, namely, elements138

that approximate geometry and boundary quantities by higher order interpolation139

polynomials—usually of second order. In this paper, the geometry segment is mod-140

eled by a continuous parabolic element, which has three knots, two of which are141

placed at the extreme ends and the third somewhere in-between, usually at the mid-142

point. Therefore the boundary geometry is approximated by a continuous piece-143

wise parabolic curve. On the other hand, the distribution of the boundary quantity144

on each of these elements is depicted by a discontinuous quadratic element, three145

nodes of which are located away from the endpoints.146

Assume x1 = (x1
1;x

1
2)and x2 = (x2

1;x
2
2) are the two extreme points of the segmentΓ j,

and x3 = (x3
1;x

3
2) is in-between one. Then the element Γ j can be expressed as

follows

xk(ξ ) = N1(ξ )x
1
k +N2(ξ )x

2
k +N3(ξ )x

3
k ;k = 1;2

where N1(ξ ) = ξ (ξ �1)=2; N2(ξ ) = ξ (ξ +1)=2; N3(ξ ) = (1�ξ )(1+ξ ) £ �1�147

ξ � 1.
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Figure 1: The minimum distance d from the field point y to the boundary element

148

Owner
矩形

Owner
文本框
   ，

Owner
线条



CMES Galley Proof Only Please Return in 48 Hours.

Pr
oo

f

Analysis of 2D Thin Walled Structures in BEM 7

As shown in Fig. 1, the minimum distance d from the field point y = (y1;y2) to
the boundary element Γ j is defined as the length of yxp, which is perpendicular to
the tangential line t and through the projection point xp. Letting η 2 (�1;1) is the
local coordinate of the projection point xp, i.e. xp = (x1(η);x2(η)). Then η is the
real root of the following equation

x0k(η)(xk(η)� yk) = 0 (8)

If the field point y sufficiently approaches the boundary, then Eq. (8) has a unique
real root. In fact, setting

F(η) = x0k(η)(xk(η)� yk)

F 0(η) = x0k(η)x0k(η)+ x00k(η)(xk(η)� yk) = J2(η)+ x00k(η)(xk(η)� yk)

where J(η) is the Jacobian of the transformation from parabolic element to the149

line interval [�1;1]. Therefore, when the field point y is sufficiently close to the150

element, we explicitly haveF 0(η)> 0.151

The unique real root of Eq. (8) can be evaluated numerically by using the Newton’s
method or computed exactly by adopting the algebraic root formulas of 3-th alge-
braic equations. In this paper, two ways are all tested, and practical applications
show that both ways can be used to obtain desired results. Furthermore, the New-
ton’s method is more simple and effective, especially if the initial approximation
is properly chosen and if we can do this, only two or three iterations are sufficient
to approximate the real root. For the root formula of 3-th algebraic equations, let’s
consider the following algebraic equation

ax3 +bx2 + cx+d = 0

if there exists only one real root, the analytical solution can be expressed as follows

x =� b
3a

+
2(
p

s2 + t2)
1
3

3 3
p

2a
cos

�
1
3

arccos
sp

s2 + t2

�

where s =�2b3 +9acb�27a2d, t =
p
�4(3ac�b2)3� (�2b3 +9acb�27a2d)2.152

Using the procedures described above, we can obtain the value of the real root η .
Thus, we have

xk� yk = xk� xp
k + xp

k � yk

=
1
2
(ξ �η)

�
(x1

k �2x3
k + x2

k)(ξ +η)+(x2
k � x1

k)
�
+ xk(η)� yk

(9)
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By using Eq. (9), the distance square r2 between the field point y and the source
point x(ξ ) can be written as

r2(ξ ) = (xk� yk)(xk� yk) = (ξ �η)2g(ξ )+d2 (10)

where d2 = (xk(η)� yk)(xk(η)� yk),

g(ξ ) =
1
4
(x1

k �2x3
k + x2

k)(x
1
k �2x3

k + x2
k)(ξ +η)2 +

1
2
(x1

k �2x3
k + x2

k)(x
2
k � x1

k)(ξ +η)

+h2 +(x1
k �2x3

k + x2
k)(xk(η)� yk); where h =

1
2

q
(x2

k � x1
k)(x

2
k � x1

k):

Apparently, there is g(ξ ) � 0. Furthermore, under some assumptions we can also
prove that g(ξ ) > 0. As shown in Fig. 1, xM is the midpoint of the line x1x2. For
simplicity, we take x3 to satisfy that xMx3 is perpendicular to x1x2, i.e. (x1

k �2x3
k +

x2
k)(x

2
k � x1

k) = 0. So

g(ξ )� h2 +(x1
k �2x3

k + x2
k)(xk(η)� yk)

Therefore, if the minimum distance d is sufficiently small, it follows that g(ξ )> 0.153

4 Exact integrations for nearly singular integrals154

With the aid of the Eq. (10), the nearly singular integrals in Eq. (7) can be rewritten
as(

I1 =
R 1
�1 jJj f (ξ ) ln

�
(ξ �η)2g(ξ )+d2

�
dξ

I2 =
R 1
�1

jJj f (ξ )
((ξ�η)2g(ξ )+d2)α dξ

(11)

where jJj =
q

(dx1
dξ

)2 +(dx2
dξ

)2represents the Jacobian; f ( �) is a regular function155

that consists of shape functions, and ones which arise from taking the derivative of156

the integral kernels.157

Introduce the following coordinate transformation

t = Φ(ξ ) = (ξ �η)
p

g(ξ ) (12)

We can easily prove that Φ0(ξ ) 6= 0. In fact

Φ0(ξ ) =
2g(ξ )+(ξ �η)g0(ξ )

2
p

g(ξ )
; r0 =

(ξ �η)[2g(ξ )+(ξ �η)g0(ξ )]

2
p

(ξ �η)2g(ξ )+d2
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Φ0(ξ ) 6= 0 is equivalent to the fact that the equation r0(ξ ) = 0 has only one root ξ =158

η within the interval [�1;1]. Actually, if the field point ysufficiently approaches159

the boundary element, the assertion must hold.160

Substituting (12) into (11), we obtain the following equations

(
I1 =

R t2
t1

jJj f (ξ )
Φ0(ξ ) ln

�
t2 +d2

�
dt =

R t2
t1 F(ξ ) ln

�
t2 +d2

�
dt

I2 =
R t2

t1
jJj f (ξ )
Φ0(ξ )

1
(t2+d2)α dt =

R t2
t1 F(ξ ) 1

(t2+d2)α dt
(13)

where t1 =�(1+η)
p

g(�1) ; t2 = (1�η)
p

g(1), F (ξ ) = jJj f (ξ )=Φ0(ξ ).161

Generally, it is impossible to obtain the exact expression of ξ from t = Φ(ξ ). In162

other words, F(ξ ) can not be easily expressed with respect to the variable t. In order163

to find an approximate expression of F(ξ ), we adopt a kind of inverse interpolation164

idea and technique, using a series of interpolation polynomials to approximate the165

regular part F(ξ ). In order to make this point clear, we select seven interpolation166

nodes, as shown in Fig. 2, since a sextic interpolation polynomial has been found167

satisfactory in practice.

 
 

1ξ  
4ξ 5ξ 6ξ 2ξ

1− 0 1

3ξ
7ξ

Figure 2: inverse interpolation nodes

168

Then the sextic interpolation function for F(ξ ) can be written as

F(ξ )�
7

∑
i=1

7

∏
j = 1
j 6= i

(t� t j)

(ti� t j)
F(ξi)

where ti = (ξi�η)
p

g(ξi) ; i = 1� 7.169

Using the procedure described above, Eq. (13) can be expressed as a series of
elementary integrals, as shown in (14), which can now be calculated exactly by
using completely analytical integral formulas.

I1 =
Z t2

t1
t i ln

�
t2 +d2�dt; I2 =

Z t2

t1

t i

(t2 +d2)α dt; i = 1; � � � ;6 (14)
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5 Numerical examples170

To begin with, an example of boundary layer effect is considered to testify the171

feasibility of the proposed method, which the physical quantities at interior point172

very close to the boundary are calculated. Whereafter, two thin walled structures173

with various thickness-to-length ratios are considered.

 

p  

p  
Figure 3: An infinite plate with a circular hole subjected to the uniform tensile
forces

174

Example 1 This example is given to test the feasibility of the proposed method.175

As shown in Fig. 3, an infinite plate with a circular hole subjected to the uniform176

tensile forces p = 10 at infinity is considered. The radius of the circle is r = 2. In177

this example, the elastic shear modulus is G = 807692:3N=cm2, and the Poisson’s178

ratio is v = 0:3. There are 30 uniform quadratic boundary elements divided along179

the circular boundary.180

The results of the tangential and radial stresses σθ ; σr at interior points on the line181

x2 = 0 are listed in Tab. 1 and Fig. 4, respectively. The convergence rate of the182

computed σθ at the point (1E-09, 0) is shown in Fig. 5.183

It can be seen from Tab. 1 that the results calculated by the CBEM are not in a184

good agreement with the analytic solutions as the computed points locate increas-185

ingly close to the boundary, i.e., when the distance between the interior point and186

the boundary is equal to or less than 0.01. However, the results calculated by the187

proposed method are very consistent with the exact solutions even when the dis-188
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tance between the interior point and the outer boundary approaches 1E-10. The189

percentage errors are also listed in Tab. 1, from which we can see that the accu-190

racy of the results calculated by using the present method are satisfactory with the191

largest relative error less than 0:02%.192

We can observe from Fig. 4 that the results of radial stresses σr yields excellent193

accuracy even when the distance between the interior point and the inner surface194

reaches 1E-10. In addition, the convergence plot in Fig. 5 shows that the con-195

vergence rates of the present method are fast even when the distance between the196

computed point and the boundary approaches 1E-09.197

Table 1: Tangential stresses sq at interior points on the line x2 = 0

x1 Exact CBEM Present Relative error (%)
2.1 0.2687568E+02 0.268777E+02 0.2687775E+02 -0.7669777E-02
2.01 0.2965409E+02 0.293976E+02 0.2965912E+02 -0.1696342E-01
2.001 0.2996504E+02 0.305789E+02 0.2997061E+02 -0.1859621E-01

2.0001 0.2999650E+02 0.307377E+02 0.3000213E+02 -0.1876807E-01
2.00001 0.2999965E+02 0.307535E+02 0.3000529E+02 -0.1878534E-01
2.000001 0.2999997E+02 0.307551E+02 0.3000560E+02 -0.1878707E-01
2.0000001 0.3000000E+02 0.307552E+02 0.3000563E+02 -0.1878724E-01

2.00000001 0.3000000E+02 0.307552E+02 0.3000564E+02 -0.1878718E-01
2.000000001 0.3000000E+02 0.307552E+02 0.3000564E+02 -0.1878649E-01
2.0000000001 0.3000000E+02 0.307552E+02 0.3000563E+02 -0.1877948E-01
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Figure 4: Radial stresses rσ at interior 
points on the line 2 0x =  
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Figure 5: Convergence curve of the 
computed θσ at the point (1E-09, 0) 
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Example 2 As shown in Fig. 6, a thin-walled cylinder subjected to a uniform198

internal pressure p = 1 is considered. The outer and inner radii of the cylinder are a199

and b, respectively, witha = 10. The elastic shear modulus is G = 807692:3N=cm2,200

and the Poisson’s ratio is v = 0:3.201

There are 48 discontinuous isoparametric quadratic elements divided along the202

outer and inner surfaces. In this example, (a� b)=a is defined as the thickness-203

to-length ratio [Zhou et al. (2008)]. As a is fixed as 10, the ratio reduces as b204

decreases.205

For different thickness-to-length ratios, the results of the unknown stresses at the206

boundary node A(10; 0) are shown in Fig. 7. The results at interior point B((a+207

b)=2; 0) are listed in Tab. 2 and Tab. 3. Both the CBEM and the proposed method208

are employed for the purpose of comparison. For(a�b)=a = 1:0E�6, the stresses209

at interior points on the line x2 = 0 are listed in Tab. 4; the convergence curves of210

computed stresses at the interior point B are shown in Fig. 8.211

We can see from Fig. 7 that the calculated results of stresses at the boundary node212

A calculated by using the proposed method are very consistent with the exact so-213

lutions, with the largest relative error less than 0:5%, even when the thickness-to-214

length ratio as small as 1:0E�6.215

Tab. 2 and Tab. 3 show that the CBEM can only be available to calculate the216

acceptable radial and tangential stresses at the interior point B for the thickness-to-217

length ratio down to 1E-01, and the results are out of true with further decrease of218

the thickness-to-length ratio. Nevertheless, the results obtained by using the pre-219

sented schemes are excellently consistent with the analytical solutions even when220

the thickness-to-length ratio equals 1E-06.221

Tab. 4 presents the results of radial and tangential stresses at eight different interior222

points on the line x2 = 0 with the thickness-to-length ratio equals 1E-06, which223

further demonstrate the effectiveness of the present method.224

Table 2: Radial stresses at the interior point B

(a�b)=a Exact CBEM Present Relative error (%)
2.0E-1 -0.4170096E+00 -0.4168510E+00 -0.4169653E+00 0.1062267E-01
1.0E-1 -0.4605628E+00 -0.4594888E+00 -0.4604442E+00 0.2574519E-01
1.0E-2 -0.4962312E+00 0.3504272E+01 -0.4963201E+00 -0.1790878E-01
1.0E-3 -0.4996248E+00 -0.4890038E+02 -0.4996364E+00 -0.2316737E-02
1.0E-4 -0.4999625E+00 0.4163399E+02 -0.4999636E+00 -0.2268517E-03
1.0E-5 -0.4999962E+00 0.3506209E+02 -0.4999907E+00 0.1117456E-02
1.0E-6 -0.4999996E+00 0.3453840E+02 -0.4993287E+00 0.1341773E+00
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Figure 8: Convergence curves of σθ

and σr at the interior point B with (a�
b)=a = 1:0E�6

Convergence curves of computed stresses at interior points B by using the presented225

method are shown in Fig. 8 from which we can observe that the convergence speeds226

are still fast even when the thickness-to-length ratio reached 1E-06. In Fig. 8,227

only the errors of the present method are given since the errors of the CBEM are228
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Table 3: Tangential stresses sq at the interior point B

(a�b)=a Exact CBEM Present Relative error (%)
2.0E-1 0.3972565E+01 0.3972922E+01 0.3972661E+01 -0.2417346E-02
1.0E-1 0.8986879E+01 0.8990797E+01 0.8988732E+01 -0.2062619E-01
1.0E-2 0.9899874E+02 0.1008786E+03 0.9892158E+02 0.7794239E-01
1.0E-3 0.9989999E+03 0.1327530E+04 0.9982280E+03 0.7726567E-01
1.0E-4 0.9999000E+04 -0.1133652E+04 0.9991276E+04 0.7725178E-01
1.0E-5 0.9999900E+05 -0.9566364E+03 0.9992151E+05 0.7749157E-01
1.0E-6 0.9999990E+06 -0.9423957E+03 0.9985437E+06 0.1455262E+00

Table 4: Radial and tangential stresses at interior points on the line x2 = 0

x1
Radial stressesσr Tangential stresses σθ

Exact Present Exact Present
9.999991 -0.8999999E+00 -0.8975619E+00 0.9999994E+06 0.9985442E+06
9.999992 -0.7999998E+00 -0.7976682E+00 0.9999993E+06 0.9985441E+06
9.999993 -0.6999997E+00 -0.6973147E+00 0.9999992E+06 0.9985440E+06
9.999994 -0.5999996E+00 -0.5979686E+00 0.9999991E+06 0.9985440E+06
9.999996 -0.3999996E+00 -0.4001979E+00 0.9999989E+06 0.9985438E+06
9.999997 -0.2999997E+00 -0.3007079E+00 0.9999988E+06 0.9985437E+06
9.999998 -0.1999998E+00 -0.2007479E+00 0.9999987E+06 0.9985436E+06
9.999999 -0.9999986E-01 -0.1009180E+00 0.9999986E+06 0.9985436E+06

relatively too large.229

Example 3 As shown in Fig. 9, a thin coating with nonuniform thickness on a shaft230

is considered. Both the shaft and coating profiles remain circular, but their centers231

are misaligned (b) compared to the uniform thickness case (a), producing some232

normalized eccentricity δ = xc=ra� rb, where xc is the center offset. The coating233

and shaft have outer radii ra and rbrespectively, with their centre of curvature lo-234

cated at the point o(0;0). In this example, the coated system is loaded by a uniform235

pressure p, and the shaft is considered to be rigid when compared to the coating,236

so the boundary conditions are ux = uy = 0for all nodes at the shaft/coating inter-237

face. There are totally 16 discontinuous isoparametric quadratic elements divided238

along the shaft and coating surfaces, regardless of the thickness of the structure.239

The elastic shear modulus is G = 8:0�1010Pa, Poisson’s ratio is v = 0:2.240

While no analytical solution exists for δ 6= 0case, the asymptotic behavior of the241

solution as δ ! 0can be checked to verify the formulation. In this example, shaft242

radius is held constant at 0:1 and coating outer radius is also constant at 0:11; the243

eccentricity has been systematically varied over the entire range 0� δ < 1.244
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Figure 9: A thin coating with nonuniform thickness on a shaft.
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In 1998, Luo et al. [Luo, Liu and Berger (1998)] have handled this coating system,245

and the radial stress σrat boundary node A has been obtained by using the BEM.246

However, in their work only boundary unknown radial stresses σr are computed.247

The boundary unknown tangential stresses σθ and physical quantities at interior248

points need further investigation. In this paper, both boundary unknowns and phys-249

ical quantities at interior points over different δ are given.250

Fig. 10 shows the tangential stress prediction σθ at boundary node A (Note that251

the highest normalized eccentricity solved is δ = 0:999999). Fig. 11 shows the252

normalized radial stress σr at boundary node A, and the results obtained by using253

Ref. [Luo, Liu and Berger (1998)] and the FEM are also given to make comparison.254

In addition, for different angular coordinates, the radial and tangential stress pre-255
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Table 5: Radial and tangential stress prediction for d = 0:999999

θ
Stresses at boundary nodes Stresses at interior points

σr σθ σr σθ

0 -0.100000E+01 -0.250495E+00 -0.100000E+01 -0.250475E+00
π=6 -0.100000E+01 -0.250136E+00 -0.100498E+01 -0.254946E+00
π=4 -0.100000E+01 -0.250865E+00 -0.101078E+01 -0.261156E+00
π=3 -0.100000E+01 -0.252741E+00 -0.101807E+01 -0.271124E+00
π=2 -0.100000E+01 -0.261014E+00 -0.103417E+01 -0.301052E+00
2π=3 -0.100000E+01 -0.272464E+00 -0.104775E+01 -0.335890E+00
5π=6 -0.100000E+01 -0.281213E+00 -0.105608E+01 -0.362189E+00

π -0.100000E+01 -0.284356E+00 -0.105881E+01 -0.371727E+00

diction for δ = 0:999999 at the boundary nodes (ra;θ) and at the interior points256

((ra + rb)=2;θ) are given in Tab. 5.
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Figure 11: adial stress prediction at the boundary node A.

257

6 Conclusions258

In this paper, a new exact integration method for curvilinear geometries is pre-259

sented and applied to deal with 2-D elastic problems of thin bodies. The con-260

ventional Gaussian quadrature can be replaced by the newly developed analytical261

integral formulas to deal with the nearly singular integrals. The strategy proposed262

in this paper adopted isoparametric quadratic elements to describe the integral ker-263

nel functions and the Jacobian. Owing to the employment of the parabolic arc, only264

a small number of elements need to be divided along the boundary, and high accu-265

racy can be achieved without increasing more computational efforts. For thin-body266
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problems with thickness-to-length ratios ranging from 1E-1 to 1E-6, the stresses267

both on the boundary nodes and at interior points are all accurately calculated by268

using the presented strategy. In conclusion, the thin-body problem has been over-269

come successfully by using the proposed strategy, which indicates that the BEM is270

especially accurate and efficient for numerical analysis of thin boy problems.271
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