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Scattering of flexural wave in thin plate with multiple holes
by using the null-field integral equation approach

Wei-Ming Lee1, Jeng-Tzong Chen2,3

Abstract: In this paper, a semi-analytical approach is proposed to solve the scat-
tering problem of flexural waves and to determine dynamic moment concentration
factors (DMCFs) in an infinite thin plate with multiple circular holes. The null-field
integral formulation is employed in conjunction with degenerate kernels, tensor
transformation and Fourier series. In the proposed direct formulation, all dynamic
kernels of plate are expanded into degenerate forms and further the rotated degen-
erate kernels have been derived for the general exterior problem. By uniformly
collocating points on the real boundary, a linear algebraic system is constructed.
The results of dynamic moment concentration factors for the plate with one hole
are compared with the analytical solution to verify the validity of the proposed
method. For the cases of small wave number, the quasi-static results of a plate with
one or multiple circular holes are compared with the static data of finite element
method (FEM) using ABAQUS. Numerical results indicate that the DMCF of two
holes is apparently larger than that of one hole when two holes are close to each
other. Fictitious frequency appeared in the external problem can be suppressed by
using the more number of Fourier series terms. The effect of distance between the
centers of holes on dynamic moment concentration factors is also investigated by
using the proposed method.

Keyword: scattering, flexural wave, dynamic moment concentration, biHelmholtz
equation, null-field boundary integral equation, degenerate kernel, Fourier series

1 Introduction

Thin plates with multiple circular holes are widely used in engineering structures,
e.g. missiles, aircraft, etc., either to reduce the weight of the whole structure or
to increase the range of inspection. Geometric discontinuities due to these holes
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result in the stress concentration, which reduce the load carrying capacity. The
deformation and corresponding stresses produced by the dynamic force are prop-
agated through the structure in the way of waves. At the irregular interface of
different media, stress wave reflects in all directions; this phenomenon is the scat-
tering. It turns out that the scattering of the stress wave results in the dynamic stress
concentration [Pao and Chao (1972)].

Nishimura and Jimbo [Nishimura and Jimbo (1955)] were two of the early inves-
tigators for the analytical study of the dynamic stress concentration and they de-
termined the stresses in the vicinity of a spherical inclusion in the elastic solid
under a harmonic force. Pao [Pao (1962)] studied the scattering of flexural waves
and dynamic stress concentrations around a circular hole, and proposed an ana-
lytical solution. Since then, most research work has focused on the scattering of
elastic wave and the resulted dynamic stress concentration and has led to a rapid
development of analytical or numerical approach such as the method of wave func-
tion expansion, complex variable method, boundary integral equation method and
boundary element method [Pao and Chao (1972)].

Kung [Kung (1964)] studied dynamic stress concentrations resulting from the scat-
tering of flexural waves on the thin plate with one circular hole and gave the calcu-
lations of moment and shear forces as a function of frequency. Liu et al. [Lin, Ga
and Tao (1982)] extended the complex variable function approach for statics to the
case of dynamic loading. The dynamic stress concentration factors were given for
circular and elliptical cavities in an infinite plane by incident plane compressional
waves. By using the flux conservation relation and optical theorem, Norris and
Vemula [Norris and Vemula (1995)] considered the scattering of flexural waves by
circular inclusions with different plate properties and obtained numerical results.
The complex variable function approach and conformal mapping technique were
employed to solve diffraction problem of flexural waves by two cutouts [Hu, Ma
and Huang (1998)] and dynamic concentration factors of plates with two circular
holes were presented under various boundary conditions. Squire and Dixon [Squire
and Dixon (2000)] applied the wave function expansion method to study the scat-
tering properties of a single coated cylindrical anomaly located in a thin plate on
which flexural waves propagate. Gao et al. [Gao, Wang and Ma (2001)] dealt
with theoretical and numerical analysis of scattering of elastic wave and dynamic
stress concentrations in an infinite plate with a circular hole using the boundary
element method. Hayir and Bakirtas [Hayir and Bakirtas (2004)] applied the im-
age method to analyze the scattering and dynamic stress concentrations of elastic
waves in plates with a circular hole subject to the plane harmonic SH wave. Gao
et al. [Gao, Wang, Zhang and Ma (2005)] studied the scattering of flexural waves
and calculated the dynamic stress concentration in the thin plate with the cutout
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by using the dual reciprocity boundary element method. Hu et al. [Hu, Fang and
Huang (2007)] applied the image method and the wave function expansion method
to study the multiple scattering of flexural waves in semi-infinite plates with a circu-
lar cutout. Recently, one monograph is devoted to discussing the multiple scattering
in acoustics, electromagnetism, seismology and hydrodynamics [Martin (2006)].

From literature reviews stated previously, few papers except Hu et al. [Hu, Ma and
Huang (1998)] have been published to date reporting the scattering of flexural wave
in plate with more than one cutout. Furthermore, as Kobayashi and Nishimura
[Kobayashi and Nishimura (1981)] pointed out that the integral equation method
seems to be most effective for two-dimensional steady-state flexural wave [Chen,
Fu and Zhang (2007); Chandrasekhar, Rao (2007); Chandrasekhar (2008)]. In the
paper, the boundary integral method is devoted to solving the multiple scattering
of flexural wave and dynamic stress concentrations in plate with multiple circular
holes.

It is noted that improper integrals on the boundary should be handled particularly
when the BEM or BIEM is used. In the past, many researchers proposed several
regularization techniques to deal with the singularity and hypersingularity. The de-
termination of the Cauchy principal value (CPV) and the Hadamard principal value
(HPV) in the singular and hypersingular integrals are critical issues in BEM/BIEM
[Chen and Hong (1999); Tanaka, Sladek and Sladek (1994)]. For the plate problem,
it is more difficult to calculate the principal values since the kernels are involved
with transcendental functions and their higher-order gradients. Readers can consult
with the review article by Beskos [Beskos (1997)]. In this paper, instead of using
the previous concepts, the kernel function is recast into the degenerate kernel which
is expanded into a series form on each side (interior and exterior) of the boundary
by employing the addition theorem since the double layer potential is discontinu-
ous across the boundary. In reality, addition theorems are expansion formulae for
the special functions (e.g. Bessel function, spherical harmonics, etc.) in a selected
coordinate system [Gradshteyn and Ryzhik (1996)]. Therefore, degenerate kernel,
namely separable kernel, is a vital tool to study the perforated plate. Based on the
direct boundary integral formulation, Chen et al. [Chen, Shen and Chen (2006a);
Chen, Hsiao and Leu (2006b)] recently proposed null-field integral equations in
conjunction with degenerate kernels and Fourier series to solve boundary value
problems with circular boundaries. By introducing the degenerate (separable) ker-
nel, BIE involves nothing more than the linear algebra. Some applications were
done in the plate problems [Chen, Hsiao and Leu (2006b)] and the derivation of
anti-plane dynamic Green’s function [Chen and Ke (2008)]. The introduction of
degenerate kernel in companion with Fourier series was proved to yield the expo-
nential convergence [Kress (1989)] instead of the linear algebraic convergence in
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BEM.

This paper presents a semi-analytical approach to solve scattering of flexural waves
and dynamic moment concentration factors in a thin plate with multiple circu-
lar holes. A linear algebraic system will be constructed by taking finite terms of
Fourier series after uniformly collocating points on the boundary. After determin-
ing the Fourier coefficients of unknown boundary densities, the displacement and
corresponding section force produced by the incident flexural wave are determined
by using the boundary integral equations for the domain point. For the plate prob-
lem, the slope (bending angle) and moment in the normal and tangential directions
for the multiply-connected domain problem are determined with care under the
adaptive observer system. Therefore, the operator of transformation matrix for the
slope and moment is adopted to deal with this problem. Finally, the obtained result
for an infinite plate with one circular hole is compared with the analytical solu-
tion [Kung (1964)] to verify the validity of the present method. For the cases of
small wave number, the results for more than one hole will be compared with those
of FEM using ABAQUS to demonstrate the generality of the proposed method.
Finally, the effect of central distance between holes on dynamic moment concen-
tration factors is also investigated by the proposed method.

2 Problem statement and boundary integral formulation

2.1 Problem statement

The governing equation of the flexural wave for a uniform infinite thin plate with
randomly distributed circular holes as shown in Figure 1 is written as follows:

∇4u(x) = k4u(x), x ∈ Ω (1)

where ∇4 is the biharmonic operator, u is the out-of-plane elastic displacement,
k4 = ω2ρ0h/D, k (2π /wave length) is the wave number of elastic wave, ω is the
circular frequency, ρ0 is the volume density, D = Eh3/12(1− μ2) is the flexural
rigidity, E denotes the Young’s modulus, μ is the Poisson ratio, h is the plate thick-
ness and Ω is the domain of the thin plate..
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Figure 1: Problem statement for an infinite plate with multiple circular holes subject
to an incident flexural wave

2.2 Boundary integral equation for the collocation point in the domain

The integral representation for the plate problem can be derived from the Rayleigh-
Green identity [Kitahara (1985)] as follows:

u(x) =
∫
B

U(s,x)v(s)dB(s)−
∫
B

Θ(s,x)m(s)dB(s)+
∫
B

M(s,x)θ (s)dB(s)

−
∫
B

V (s,x)u(s)dB(s), x ∈ Ω (2)

θ (x) =
∫
B

Uθ(s,x)v(s)dB(s)−
∫
B

Θθ (s,x)m(s)dB(s)+
∫
B

Mθ (s,x)θ (s)dB(s)

−
∫
B

Vθ (s,x)u(s)dB(s), x ∈ Ω (3)

m(x) =
∫
B

Um(s,x)v(s)dB(s)−
∫
B

Θm(s,x)m(s)dB(s)+
∫
B

Mm(s,x)θ (s)dB(s)

−
∫
B

Vm(s,x)u(s)dB(s), x ∈ Ω (4)
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v(x) =
∫
B

Uv(s,x)v(s)dB(s)−
∫
B

Θv(s,x)m(s)dB(s)+
∫
B

Mv(s,x)θ (s)dB(s)

−
∫
B

Vv(s,x)u(s)dB(s), x ∈ Ω (5)

where B is the boundary of the domain Ω; u(x), θ (x), m(x) and v(x) are the
displacement, slope, moment and shear force; U(s,x), Θ(s,x), M(s,x), V (s,x),
Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ(s,x), Um(s,x), Θm(s,x), Mm(s,x), Vm(s,x), Uv(s,x),
Θv(s,x), Mv(s,x) and Vv(s,x) are kernel functions; s and x mean the source and field
points, respectively. It is noted that the null field points do not include the boundary
in the conventional BIEM. But it can be done when the kernel functions in Eqs.(2)-
(5) are expanded to degenerate kernels, which will be described in section 2.4. The
kernel function U(s,x) in Eq.(2) is the fundamental solution which satisfies

∇4U(s,x) −k4U(s,x) = δ (s−x) (6)

where δ (s− x) is the Dirac-delta function, respectively. Considering the two sin-
gular solutions (Y0(kr) and K0(kr), which are the zeroth-order of the second-kind
Bessel and modified Bessel functions, respectively) [Hutchinson (1991)] and one
regular solution (J0(kr) is the zeroth-order of the first-kind Bessel) in the funda-
mental solution, we have the complex-valued kernel,

U(s,x) =
1

8k2D

[
Y0(kr)− iJ0(kr)+

2
π

K0(kr)
]
, (7)

where r ≡ |s−x| and i2 = −1, which ensures the outgoing wave in companion
with e−iωt . The other three kernels, Θ(s,x), M(s,x) and V(s,x), in Eq.(2) can be
obtained by applying the following slope, moment and effective shear operators
defined by

KΘ =
∂ (·)
∂n

(8)

KM = −D

[
ν∇2 (·)+(1−ν)

∂ 2 (·)
∂ n2

]
(9)

KV = −D

[
∂

∂ n
∇2 (·)+(1−ν)

∂
∂ t

(
∂

∂ n

(
∂
∂ t

(·)
))]

(10)

to the kernel U(s,x) with respect to the source point, where ∂/∂n and ∂/∂ t are the
normal and tangential derivatives, respectively; ∇2 means the Laplacian operator.
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In the polar coordinate of (R,θ ), the normal and tangential derivatives can be ex-
pressed by ∂/∂R and (1/R)∂/∂θ , respectively, and then the three kernel functions
can be expressed as:

Θ(s,x) = KΘ,s(U(s,x)) =
∂ U(s,x)

∂R
(11)

M(s,x) = KM,s(U(s,x)) = −D

[
ν∇2

sU(s,x)+(1−ν)
∂ 2U(s,x)

∂R2

]
(12)

V(s,x) = KV,s(U(s,x))

= −D

[
∂

∂R

(
∇2

sU(s,x)
)
+(1−ν)

(
1
R

)
∂

∂θ

(
∂

∂R

(
1
R

∂U(s,x)
∂θ

))]
(13)

The expressions for θ (x), m(x) and v(x) in Eqs.(3)-(5), which can be obtained by
applying the operators in Eqs.(8)-(10) to u(x) in Eq. (2) with respect to the field
point x(ρ ,φ ), are

θ (x) = KΘ,x(u(x)) =
∂ u(x)

∂ρ
(14)

m(x) = KM,x(u(x)) = −D

[
ν∇2u(x)+(1−ν)

∂ 2u(x)
∂ρ2

]
(15)

v(x) = KV,x(u(x))

= −D

[
∂

∂ρ
(
∇2

s u(x)
)
+(1−ν)

(
1
ρ

)
∂

∂φ

[
∂

∂ρ

(
1
ρ

∂u(x)
∂φ

)]]
. (16)

By this way, the kernel functions Uθ(s,x), Θθ (s,x), Mθ(s,x), Vθ (s,x), Um(s,x),
Θms,x), Mm(s,x), Vm(s,x), Uv(s,x), Θv(s,x), Mv(s,x) and Vv(s,x) can be obtained
by applying the operators in Eqs.(8)-(10) to U(s,x), Θ(s,x), M(s,x) and V(s,x)
with respect to the field point x(ρ ,φ ).

2.3 Null-field integral equations

The null-field integral equations derived by collocating the field point outside the
domain (including the boundary point if exterior degenerate kernels are properly
adopted) are shown as follows:

0 =
∫
B

U(s,x)v(s)dB(s)−
∫
B

Θ(s,x)m(s)dB(s)+
∫
B

M(s,x)θ (s)dB(s)

−
∫
B

V(s,x)u(s)dB(s), x ∈ ΩC ∪B, (17)
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0 =
∫
B

Uθ (s,x)v(s)dB(s)−
∫
B

Θθ (s,x)m(s)dB(s)+
∫
B

Mθ (s,x)θ (s)dB(s)

−
∫
B

Vθ (s,x)u(s)dB(s), x ∈ ΩC ∪B, (18)

0 =
∫
B

Um(s,x)v(s)dB(s)−
∫
B

Θm(s,x)m(s)dB(s)+
∫
B

Mm(s,x)θ (s)dB(s)

−
∫
B

Vm(s,x)u(s)dB(s), x ∈ ΩC ∪B, (19)

0 =
∫
B

Uv(s,x)v(s)dB(s)−
∫
B

Θv(s,x)m(s)dB(s)+
∫
B

Mv(s,x)θ (s)dB(s)

−
∫
B

Vv(s,x)u(s)dB(s), x ∈ ΩC ∪B, (20)

where ΩC is the complementary domain of Ω. Once kernel functions are expressed
in proper degenerate forms, which will be described in the next subsection, the
collocation points can be exactly located on the real boundary, that is x ∈ ΩC ∪B.
Since the four equations of Eqs.(17)-(20) in the plate formulation are provided,
there are 6 (C4

2) options for choosing any two equations to solve the problems.

2.4 Degenerate kernels and Fourier series for boundary densities

In the plane polar coordinate, the field point and source point can be expressed as
(ρ ,φ ) and (R,θ ), respectively. By applying the addition theorem [Gradshteyn and
Ryzhik (1996)] to Eq. (7), the degenerate form for the kernel function U(s,x) can
be expressed in the series form as follows

U :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

UI(s,x) = 1
8k2D

∞
∑

m=0
εm{Jm(kρ)[Ym(kR)− iJm(kR)]

+ 2
π Im(kρ)Km(kR)}cos[m(θ −φ )] , ρ < R

UE(s,x) = 1
8k2D

∞
∑

m=0
εm{Jm(kR)[Ym(kρ)− iJm(kρ)]

+ 2
π Im(kR)Km(kρ)}cos[m(θ −φ )] , ρ ≥ R

(21)

where εm is the Neumann factor (εm=1, m=0; εm=2, m=1,2,· · · ,∞) and the super-
scripts “I” and “E” denote the interior and exterior cases for U(s,x) degenerate
kernels to distinguish ρ < R and ρ > R, respectively as shown in Figure 2. The
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degenerate kernels Θ(s,x), M(s,x) and V (s,x) in the null-field boundary integral
equations can be obtained by applying the operators of Eqs.(8)-(10) to the degen-
erate kernel U(s,x), given by Eq.(21), with respect to the source point s. The
other degenerate kernels Uθ(s,x), Θθ (s,x), Mθ (s,x), Vθ(s,x), Um(s,x), Θm(s,x),
Mm(s,x), Vm(s,x), Uv(s,x), Θv(s,x), Mv(s,x) and Vv(s,x) can be obtained by apply-
ing the operators of Eqs.(8)-(10) to the degenerate kernel U(s,x), Θ(s,x), M(s,x)
and V(s,x) with respect to the field point x. The expressions of these degenerate
kernels are listed in the Appendix I.

In order to fully utilize the geometry of circular boundary, the displacement u(s),
slope θ (s), moment m(s) and shear force v(s) along the circular boundaries in
the null-field integral equations are represented by using Fourier series expansion,
respectively, as shown below:

u(s) = uc0 +
M

∑
n=1

(ucn cosnθ +usn sinnθ ), s ∈ B, (22)

θ (s) = θc0 +
M

∑
n=1

(θcn cosnθ +θsn sinnθ ), s ∈ B, (23)

m(s) = mc0 +
M

∑
n=1

(mcn cosnθ +msn sinnθ ), s ∈ B, (24)

v(s) = vc0 +
M

∑
n=1

(vcn cosnθ +vsn sinnθ ), s ∈ B, (25)

where uc0, ucn, usn, θc0, θcn, θsn, mc0, mcn, msn, vc0, vcn and vsn are the Fourier
coefficients and M is the truncated number of Fourier series terms. The number of
terms M in the Fourier series for circular boundaries can be, in general, different for
each boundary circle. For simplicity, we used the same number of Fourier terms for
each circular boundary. By using degenerate kernels, Fourier series and orthogonal
property, all the improper integrals in Eqs.(17)-(20) can be transformed to series
sum and then be calculated easily, since the potential across the boundary can be
described by using the degenerate kernel with a series form in each side. Successful
experiences on Laplace problems [Chen, Shen and Chen (2006a)], Helmholtz prob-
lems [Chen ×4 (2007)] and biharmonic problems [Chen, Hsiao and Leu (2006b)]
can be found.

3 Adaptive observer system and transformation of tensor components

3.1 Adaptive observer system

For the direct boundary integral equations being frame indifferent (i.e. rule of ob-
jectivity), the origin of the observer system can be adaptively located on the center
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Figure 2: Degenerate kernel for U(s,x)

of the corresponding boundary contour under integration. Adaptive observer sys-
tem is chosen to fully employ the circular property, which takes the full advantage
of both Fourier series to represent boundary variables and degenerate-kernel ex-
pressions in the polar coordinate. Figure 3 shows the boundary integration for the
circular boundaries in the adaptive observer system. The dummy variable in the
circular contour integration is only the angle θ . By using the adaptive system, all
the boundary integrals can be determined analytically free of calculating principal
value.

3.2 Transformation of tensor components

For the slope, moment and effective shear force being calculated in the plate prob-
lem, special treatment for the potential gradient or higher-order gradient should be
taken care as the source and field points locate on different circular boundaries. As
shown in Figure 4, the angle φi is polar coordinate of the collocation point xi cen-
tered at oi which locates the center of the circle under integration and the angle φc

is that centered at o j being the center of the circle on which the collocation point
is located. According to the transformation law for the components of tensor, we
have

[
(·)n

(·)t

]
=

[
cos(δ ) sin(δ )
−sin(δ ) cos(δ )

] [
(·)r

(·)θ

]
(26)
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Figure 3: Collocation point and boundary contour integration in the boundary inte-
gral equation by using the adaptive observer system

⎡⎣(·)nn

(·)tt

(·)nt

⎤⎦ =

⎡⎣ cos2(δ ) sin2(δ ) 2sin(δ )cos(δ )
sin2(δ ) cos2(δ ) −2sin(δ )cos(δ )

−sin(δ )cos(δ ) sin(δ )cos(δ ) cos2(δ )− sin2(δ )

⎤⎦ ⎡⎣ (·)rr

(·)θθ
(·)rθ

⎤⎦ . (27)

Based on Eqs. (26) and (27), the general rotated slope, normal bending and tangen-
tial bending moment kernels can be obtained by using following operators:

KR
Θ = cos (δ )

∂ (·)
∂n

+ sin(δ )
∂ (·)
∂ t

(28)

KR
N = −D

{[
v+(1−ν) sin2(δ )

]
∇2 (·)

+cos(2δ )(1−ν)
∂ 2 (·)
∂ n2 + sin(2δ )(1−ν)

∂
∂ n

(
∂ (·)
∂ t

)}
(29)

KR
T = −D

{[
v+(1−ν)cos2(δ )

]
∇2 (·)

+cos(2δ )(v−1)
∂ 2 (·)
∂ n2 − sin(2δ )(1−ν)

∂
∂ n

(
∂ (·)
∂ t

)}
(30)
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where δ = φc − φi. When the angle φc equals to the angle φi or two circles co-
incide, the angle difference δ equals to zero and Eqs.(28) and (29) are simplified
to Eqs.(8) and (9), respectively. The expressions of rotated degenerate kernels,
Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ s,x), Um(s,x), Θm(s,x), Mm(s,x), Vm(s,x), Ut(s,x),
Θt(s,x), Mt(s,x) and Vt(s,x), can be obtained by applying the operators of Eqs.(28),
(29) and (30) to the degenerate kernel U(s,x), Θ(s,x), M(s,x) and V(s,x) with re-
spect to the field point x and are listed in the Appendix II.

Figure 4: Transformation of tensor components

4 Linear algebraic systems

Consider an infinite plate containing H nonoverlapping circular holes centered at
the position vector o j ( j=1, 2, · · · , H), as shown in Fig. 3 in which R j denotes
the radius of the jth circular region, x˜j is the collocation point on the jth circular
boundary and B j is the boundary of the jth circular hole. Kernels of Eqs. (19) and
(20) involve higher-order derivatives, which may decrease both the convergence
rate and computational efficiency. For the purpose of computational efficiency,
Eqs. (17) and (18) are used to analyze the plate problem. By uniformly collocating
N (=2M+1) points on each circular boundary in Eqs. (17) and (18), we have

0 =
H

∑
j=1

∫
B j

{U(s,x)v(s)−Θ(s,x)m(s) +M(s,x)θ (s)−V(s,x)u(s)}dB j(s),

x ∈ ΩC, (31)
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0 =
H

∑
j=1

∫
B j

{Uθ (s,x)v(s)−Θθ(s,x)m(s) +Mθ (s,x)θ (s)−Vθ(s,x)u(s)}dB j(s),

x ∈ ΩC. (32)

For the B j circular boundary integrals, the degenerate kernels of U(s,x), Θ(s,x),
M(s,x), V(s,x), Uθ (s,x), Θθ (s,x), Mθ (s,x) and Vθ(s,x) are utilized and boundary
densities u(s), θ (s), m(s) and v(s) along the circular boundary are represented by
using the Fourier series of Eqs.(22)-(25), respectively. By using the conventional
boundary integral equations to solve a problem, the determination of the Cauchy
principal value (CPV) and the Hadamard principal value (HPV) for boundary in-
tegrals of various kernel functions are inevitable. By using the addition theorem,
the kernel functions in our method are expanded in the series form and the bound-
ary integrals can be easily calculated using the series sum free of facing principal
values. The selection of interior or exterior degenerate kernel depends on ρ < R or
ρ > R, respectively, according to the observer system. In the B j integration, the ori-
gin of the observer system is adaptively set to collocate at the center o j from which
the degenerate kernels and Fourier series are described. By using the orthogonal
property, a linear algebraic system can be written as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11 −Θ11 U12 −Θ12 · · · U1H −Θ1H

U11
θ −Θ11

θ U12
θ −Θ12

θ · · · U1H
θ −Θ1H

θ
U21 −Θ21 U22 −Θ22 · · · U2H −Θ2H

U21
θ −Θ21

θ U22
θ −Θ22

θ · · · U2H
θ −Θ2H

θ
...

...
...

...
. . .

...
...

UH1 −ΘH1 UH2
θ −ΘH2 · · · UHH −ΘHH

UH1
θ −ΘH1

θ UH2
θ −ΘH2

θ · · · UHH
θ −ΘHH

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

m1

v2

m2

...
vH

mH

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−M11 V 11 −M12 V 12 · · · −M1H V 1H

−M11
θ V 11

θ −M12
θ V 12

θ · · · −M1H
θ V 1H

θ
−M21 V 21 −M22 V 22 · · · −M2H V 2H

−M21
θ V 21

θ −M22
θ V 22

θ · · · −M2H
θ V 2H

θ
...

...
...

...
. . .

...
...

−MH1 V H1 −MH2
θ V H2 · · · −MHH V HH

−MH1
θ V H1

θ −MH2
θ V H2

θ · · · −MHH
θ V HH

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ 1

u1

θ 2

u2

...
θ H

uH

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(33)

where H denotes the number of circular boundaries. For brevity, a unified form
[Ui j] (i = 1,2,3, · · · ,H and j = 1,2,3, · · · ,H) denote the response of U(s,x) kernel
at the ith circle point due to the source at the jth circle. Otherwise, the same
definition is for [Θi j], [Mi j], [V i j], [Ui j

θ ], [Θi j
θ ], [Mi j

θ ] and [V i j
θ ] kernels. The explicit
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expressions for sub-vectors [ui], [θ i], [mi] and [vi] can be described as follows:

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ui
c0

ui
c1

ui
s1
...

ui
cM

ui
sM

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, θ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ i
c0

θ i
c1

θ i
s1
...

θ i
cM

θ i
sM

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mi
c0

mi
c1

mi
s1
...

mi
cM

mi
sM

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vi
c0

vi
c1

vi
s1
...

vi
cM

vi
sM

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (34)

The explicit expressions for the sub-matrices of [Ui j], [Θi j], [Mi j], [V i j], [Ui j
θ ],

[Θi j
θ ], [Mi j

θ ] and [V i j
θ ] can be written as shown below

Ki j =

⎡⎢⎢⎢⎢⎢⎢⎣

Ki j
0C(ρ1,φ1) Ki j

1C(ρ1,φ1) Ki j
1S(ρ1,φ1) · · · Ki j

MS(ρ1,φ1)
Ki j

0C(ρ2,φ2) Ki j
1C(ρ2,φ2) Ki j

1S(ρ2,φ2) · · · Ki j
MS(ρ2,φ2)

...
...

...
...

...
...

...
...

Ki j
0C(ρN ,φN) Ki j

1C(ρN,φN) Ki j
1S(ρN ,φN) · · · Ki j

MS(ρN ,φN)

⎤⎥⎥⎥⎥⎥⎥⎦
N×N

(35)

where K can be either one of U(s,x), Θ(s,x), M(s,x), V (s,x), Uθ (s,x), Θθ (s,x),
Mθ (s,x) and Vθ(s,x). The notations φk and ρk (k = 1,2,3, · · · ,N) shown in Fig. 3
are the angle and radius of the k-th collocation point on the i-th circular boundary
with respect to the center of the j-th circular boundary (the origin of the observer
system) and the element of the sub-matrices can be determined by

Ki j
nC(ρk,φk) =

∫ 2π

0
K(R j,θ j;ρk,φk) cos(nθ j) (R jdθ j), n = 0,1,2, · · · ,M, (36)

Ki j
nS(ρk,φk) =

∫ 2π

0
K(R j,θ j;ρk,φk) sin(nθ j) (R jdθ j), n = 1,2, · · · ,M (37)

in which the selection of interior or exterior degenerate kernel depends on the po-
sition of collocation point with respective to the center of circle under integration
as shown in Fig. 3.

5 Dynamic moment concentration factor and techniques for solving scatter-
ing problems

Considering an infinite thin plate with multiple holes subject to the incident flexural
wave, the boundary conditions of the hole are free. For this scattering problem, it
can be decomposed into two parts, (a) incident wave field and (b) radiation field,
as shown in Fig. 5. For matching the boundary conditions, the radiation boundary
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condition in part (b) is obtained as the minus quantity of incident wave function,
e.g. mR = −mI ;vR = −vI for the free edge where the superscripts R and I denote
radiation and incidence, respectively. By substituting the known radiation boundary
conditions,−mI and −vI , into the left hand side of Eq. (33), the unknown boundary
data, u and θ , can be solved. After calculating the displacement, slope, moment
and effective shear force along the boundary, the radiation field can be solved by
employing the boundary integral equation for the domain point of Eqs. (2)-(5). The
scattering field is determined by superimposing radiation field and incident field.
The tangential bending moment Mt(x) can be determined by applying the operator
in Eq.(30) to Eq.(2) with respective to the field point.

m(i)

ν (i)

Figure 5: The decompositon of scattering problem into (a) incident wave field and
(b) radition field

An incident flexural wave is represented by

u(i)
0 eik(x cos(φ0)+y sin(φ0)) (38)

where u(i)
0 is the amplitude of incident wave, k is the wave number and φ0 is the

incident angle. Under the polar coordinate, the bending moment and effective shear
force induced by the incident wave can be determined by substituting Eq. (38) into
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Eqs.(15) and (16). By setting the amplitude of incident wave u(i)
0 = 1, the amplitude

of moment produced by the incident wave is

M0 = Dk2 (39)

The dynamic moment concentration factor (DMCF) at any field point x can be
determined as

DMCF(x) = Mt(x)/M0 (40)

6 Numerical results and discussions

Scattering problems of flexural wave in thin plate with multiple holes are solved
and dynamic moment concentration factors (DMCFs) around the circular holes are
determined by using the present method. For the cases of small wave number, the
same plate problem is independently solved by using FEM (the ABAQUS software)
for comparison. In all cases, the inner boundary is subject to the free boundary
condition and the thickness of plate is 0.002m. The triangular general-purpose
shell element, S3, of ABAQUS was used to model the plate problem. Although the
thickness of the plate is 0.002 m, these elements do not suffer from transverse shear
locking according to the theoretical manual of ABAQUS.

Case 1: An infinite plate with one hole [Pao and Mow (1972); Kung (1964); Norris
and Vemula (1995); Gao, Wang and Ma (2001); Gao, Wang, Zhang and Ma (2005)]

An infinite plate with one hole (radius a = 1m) subject to the incident flexural
wave with φ0 = 0 is considered as shown in Figure 6. Since the analytical solution
of this problem is available, convergence analysis is firstly conducted. Figure 7
shows the DMCF on the circular boundary, at π/2, versus the dimensionless wave
number by using different number of terms of Fourier series. From the convergence
analysis, the required number of terms to approach the analytical solution increase
as the incident wave number becomes larger. Results of the present method match
well with those of analytical solution when the number of terms of Fourier series
amounts to M = 10. The convergence analysis indicates that results using Fourier
series with M = 2 match well with the analytical solution when the wave number is
0.005. For the case of the higher wave number k = 3.0, more number of terms are
required to the same extent of convergence, which shows the consistency with the
results presented by Figure 7.

In the limit of zero wave number [Pao and Mow (1972); Kung (1964)] like k
= 0.005, the excitation of incident wave is equivalent to the loading with static
moment Mxx = M0 and Myy = vM0 at the four sides of a plate. Accordingly, a
16m×16m plate with one hole subject to static bending moments, Mxx = 1.0 and
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Myy = 0.3 at the four sides was considered. For this equivalent static case, 25567
triangle elements were used to generate the FEM model and Figure 8(a) shows the
corresponding result of the normalized tangential bending moment around the hole.
By using the present method, the unknown boundary densities of the plate are ex-
pressed in terms of Fourier series and the numerical result of DMCF around the
hole using Fourier series terms (M = 10) is shown in Figure 8(b). The analytical
solution [Pao and Mow (1972); Kung (1964)] is also shown in Figure 8(c) and good
agreements are made after comparing with three different approaches stated above.

Figure 9 shows that the real and imaginary parts of DMCF on the circular bound-
ary at π/2 versus the dimensionless wave number for various Poisson ratios by
using the present method and the analytical solution [Pao and Mow (1972); Kung
(1964)]. It indicates that both results match well and DMCF depends on the Pois-
son ratio of the plate as well as the incident wave number. For the dimensionless
wave number ka=3.0, the real and imaginary parts of DMCF along the circular
boundary is shown in Figures 10, which agrees with the result reported in Gao et
al. [Gao, Wang, Zhang and Ma (2005)]. The value of DMCF is symmetrical to
x-axis due to the incident wave with φ0 = 0. Table 1 lists dynamic moment concen-
tration factors on the circular boundary (θ = π/2) by using four approaches, dual
reciprocity boundary element method [Gao, Wang, Zhang and Ma (2005)], bound-
ary element method based on the dynamic fundamental solution [Gao, Wang and
Ma (2001)], the present method and the analytical solution [Pao and Mow (1972);
Kung (1964)], respectively. In addition to the required number of Fourier series
terms to convergence, results of the present method are the same as the analytical
solutions up to four digits. The present method is obviously superior to the BEM
thanks to the semi-analytical procedure.

For the most part of scattering applications, it is interesting to measure the scattered
field far away from the scatter. On the other hand, the asymptotic behavior or
uniqueness of fundamental solutions or kernel functions is an important issue for
the numerical computation. Therefore, we examine the behavior of the scattered
response in the far field. The scattered far field amplitude f (θ ) [Norris and Vemula
(1995)] in our approach is defined as

f (θ ) = lim
ρ→∞

√
2ρ ·u(r)(ρ) (41)

where u(r) is the out-of-plane elastic displacement of radiation field and ρ is the
radius of the field point. In the computation, the radius of the field point is taken
90m because f (θ ) converges a steady value when this radius is more than about
90m. Figure 11 shows a polar plot of the far field scattering amplitude for a circular
hole in a 0.025m steel plate, solid line for ka = 1.0, dash line for ka = 0.5. Figure
12 presents the far field backscattered amplitude versus the dimensionless wave



260 Copyright © 2008 Tech Science Press CMES, vol.37, no.3, pp.243-273, 2008

number for an incident wave of unit amplitude, solid line for the hole, dash line
for the rigid inclusion. The rigid inclusion means the clamped boundary condition
around the circular boundary. As the dimensionless wave number becomes large,
results of both cases approach the same value of one. The results for the hole
show a local maximum near the small wave number and then increase with the
wave number, which consists with with the results shown in Figure 11. The results
match well with those of Norris and Vemula [Norris and Vemula (1995)]. It can be
found that the amplitude for the radiation (or scattering) response in the far field is
O(ρ−1/2), which satisfy the radiation condition.

Figure 6: An infinite plate with one hole subject to an incident flexural wave

Table 1: Dynamic moment concentration factor on the circular boundary (θ = π/2)

k f = 1+ r∗ f = 1− r− r∗ Ref ∗∗ Present Analytical
method solution

0.1 1.8285 1.8301 1.8360 1.8353(4) 1.8353(4)
0.5 1.6681 1.6692 1.6710 1.6616(6) 1.6616(6)
1.0 1.6452 1.6437 1.6420 1.5109(6) 1.5109(6)
2.0 1.6439 1.6458 1.6550 1.5894(8) 1.5894(8)
3.0 1.6475 1.6483 1.6500 1.5868(12) 1.5868(12)
5.0 1.6503 1.6509 1.6520 1.6305(14) 1.6305(14)

( ) denotes the required number of terms to converge to the steady
result within four digits.
* refer to the results [Gao, Wang, Zhang and Ma (2005)]
** refer to the results [Gao, Wang and Ma (2001)]

Case 2: An infinite plate with two holes [Hu, Ma and Huang (1998)]
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Figure 7: Dynamic moment concentration factor on the circular boundary (θ =
π/2) versus the dimensionless wave number by using different number of terms of
Fourier series
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Figure 8: Distribution of dynamic moment concentration factors on the circular
boundary by using different methods, the present method, analytical solution and
FEM

An infinite plate with two holes (radius a = 1m) subject to the incident flexural wave
with φ0 = 0 is considered as shown in Figure 13, where L is the central distance
of two holes. For the case of L = 2.1m, Figure 14 shows the DMCF on the upper
circular boundary, at −π/2, versus the dimensionless wave number by using dif-
ferent number of Fourier series terms. From this convergence analysis, the results
using fewer Fourier series terms show some peaks at ka=3.2, 4.6. Even so, the con-
vergence is fast achieved when the number of Fourier series terms M amounts to
twenty. Values of wave number corresponding to those peaks are found to be equal
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Figure 9: The real and imaginary parts of DMCF on the circular boundary (θ =
π/2) versus the dimensionless wave number for different Poisson ratios
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Figure 10: Distribution of DMCF (MT /M0) on the circular boundary, solid line
(real part) for t = 0 for, dash line (imaginary part) for t = T /4 (ka = 3.0)

to the true eigenvalues of the clamped circular plate with a radius equaling to that of
the hole, i.e. 3.196, 4.610 [Leissa (1969)]. Actually they are the so-called fictitious
frequencies of the external problem. It demonstrates that the increasing number of
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Figure 11: A polar plot of the far field scattering amplitude for a circular hole in a
0.025m steel plate, solid line for ka = 1.0, dash line for ka = 0.5
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Figure 12: The magnitude of the backscattered far field flexural response for an
incident wave of unit amplitude. The surrounding plate is steel of thickness 0.025m,
solid line for hole, dash line for rigid inclusion

Fourier series terms can suppress the appearance of fictitious frequencies.

For comparison with the proposed method, we consider a 16m× 22m plate with
two holes (L = 2.1m) subject to static bending moments, Mxx = 1.0 and Myy = 0.3
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at the four sides. For this case, 49024 triangle elements were used to generate
the FEM model and the corresponding result of the normalized tangential bending
moment around the hole is shown in Figure 15(a). The result of the present method
for k = 0.005 is also shown in Figure 15(b) and good agreements are made after
comparison. It indicates that the maximum DMCF is larger than that of one hole
shown in Figure (8) due to two close holes in this case.

For the case of L = 4.0m, Figure 16 shows the DMCF on the upper circular bound-
ary, at −π/2, versus the dimensionless wave number by using different number of
terms of Fourier series. Instead of peak appeared in Figure 14, the result of con-
vergence is similar to that of the case with one hole shown in Figure 7 due to two
holes separated apparently.

For the dimensionless incident wave number ka=0.2 with the central distance be-
tween two holes L=2.1a, Figure 17 shows the distribution of the amplitude of
DMCF on the circular boundary, solid line for one hole and dash line for the upper
one of two holes. The DMCF of two holes is apparently larger than that of one hole
when two holes are close each other.

Figure 18 shows the DMCF at the upper circular edge (−π/2) versus the dimen-
sionless central distance under different incident wave number, where the dot line
denotes the corresponding results for one hole case. It indicates that when the cen-
tral distance between two holes gradually increases, the results for the case of two
holes approach that of the case with one hole. For the case of k= 2.0, oscillation
behavior of DMCF is observed as the central distance of two holes varies. It is
not found for the cases with the small wave number such as ka=0.1, 0.2 and 0.5.
Furthermore, we zoom in the data of ka=0.1 at upper right corner (in the range of
1.834 to 1.838 for |MT /M0|). Then, it is refound that the oscillation behavior of
DMCF with a period 2π/k versus L/a for all wave numbers appears, which was
not found in Hu et al. [Hu, Ma and Huang (1998)]

7 Conclusions

A semi-analytical approach to solve the scattering problem of flexural waves and
to determine dynamic moment concentration factors in an infinite thin plate with
multiple circular holes was proposed. The radiation field was determined by em-
ploying the null-field integral formulation in conjunction with degenerate kernels,
tensor transformation and Fourier series. All the improper integrals in the null-
field integral formulation were avoided by using the degenerate kernels and were
easily calculated through the series sum. For the general exterior case, the rotated
degenerate kernels have been derived in the adaptive observer system. Once the
Fourier coefficients of boundary densities have been determined, the flexural wave
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Figure 13: An infinite plate with two holes subject to an incident flexural wave with
an incident angle φ0
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Figure 14: DMCF on the upper circular boundary (θ = −π/2) versus the dimen-
sionless wave number by using different number of terms of Fourier series ( L/a=
2.1)

scattering field and dynamic moment concentrations can be obtained by using the
boundary integral equations for domain points in conjunction with general rotated
degenerate kernels. For an infinite plate with one hole, good agreement between
the results of the present method and those of analytical solution is observed. For
the cases of small wave number, the present results for a plate with one or multi-
ple circular holes are well compared with the static case of finite element method
(FEM) using ABAQUS. Convergence rate depends on two parameters of the inci-
dent wave number and the central distance between two holes. Numerical results
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Figure 16: DMCF on the upper circular boundary (θ = −π/2) versus the dimen-
sionless wave number by using different number of terms of Fourier series ( L/a=
4.0)

indicate that the DMCF of two holes is apparently larger than that of one hole when
two holes are close to each other. Fictitious frequency of external problem can be
suppressed by using the more number of Fourier series terms. The effect of the cen-
tral distance on DMCF has been studied by using the present method and indicates
a regular variation of DMCF as the central distance of two holes increases. As can
be seen from the numerical results, the present method provides a semi-analytical
solution for dynamic moment concentration factors in infinite thin plates with mul-
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Figure 17: Distribution of DMCF |MT /M0| on the circular boundary, solid line for
one hole and dash line for the upper one of two holes (L = 2.1a, ka = 0.2)

Figure 18: DMSF |MT /M0| on the circular boundary (θ =−π/2) versus the dimen-
sionless central distance of two holes for different wave number under the incident
wave with φ0 = 0

tiple circular holes subject to the incident flexural wave, since its analytical solution
is not yet available.
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Appendix I: Degenerate kernels

U j(x, s) =
∞

∑
m=0

f jcos(m(θ −φi)), j = 1,2

where

f1 =
1

8k2D
εm{Jm(kρ)[Ym(kR)− iJm(kR)]+

2
π

Im(kρ)Km(kR)}

f2 =
1

8k2D
εm{Jm(kR)[Ym(kρ)− iJm(kρ)]+

2
π

Im(kR)Km(kρ)}

Θ j(x, s) =
∂U j(x, s)

∂R
=

∞

∑
m=0

g jcos(m(θ −φ )), j = 1,2

where

g1 =
1

8kD
εm{Jm(kρ)[Y ′

m(kR)− iJ′m(kR)]+
2
π

Im(kρ)K′
m(kR)}

g2 =
1

8kD
εm{J′m(kR)[Ym(kρ)− iJm(kρ)]+

2
π

I′m(kR)Km(kρ)}
where

εm =

{
1 m = 0

2 m �= 0
,

the superscript j (1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior
domain (i.e. ρ > R, j =2), respectively.

M j(x, s) =
∞

∑
m=0

p j cos(m(θ −φi)), j = 1,2

where

p1 = − 1
8k2 εm{Jm(kρ)[αY

m(kR)− iαJ
m(kR)]+

2
π

Im(kρ)αK
m(kR)}
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p2 = − 1
8k2 εm{αJ

m(kR)[Ym(kρ)− iJm(kρ)]+
2
π

α I
m(kR)Km(kρ)}

αY
m(kR) = k2Y ′′

m(kR)+ν
[

k
R

Y ′
m(kR)− m2

R2 Ym(kR)
]

αJ
m(kR) = k2J′′m(kR)+ν

[
k
R

J′m(kR)− m2

R2 Jm(kR)
]

αK
m (kR) = k2K′′

m(kR)+ν
[

k
R

K′
m(kR)− m2

R2 Km(kR)
]

α I
m(kR) = k2I′′m(kR)+ν

[
k
R

I′m(kR)− m2

R2 Im(kR)
]

V j(x, s) =
∞

∑
m=0

q jcos(m(θ −φi)), j = 1,2

where

q1 = − 1
8k2 εm{Jm(kρ)[βY

m(kR)− iβ J
m(kR)]+

2
π

Im(kρ)β K
m (kR)}

q2 = − 1
8k2 εm{β J

m(kR)[Ym(kρ)− iJm(kρ)]+
2
π

β I
m(kR)Km(kρ)}

βY
m(kR) = k3Y ′′′

m (kR)+
k2

R
Y ′′

m(kR)

− k
R2

[
1+(2−ν)m2]Y ′

m(kR)+
[
(3−ν)m2

R3

]
Ym(kR)

β J
m(kR) = k3J′′′m (kR)+

k2

R
J′′m(kR)

− k
R2

[
1+(2−ν )m2]J′m(kR)+

[
(3−ν)m2

R3

]
Jm(kR)

β K
m (kR) = k3K′′′

m (kR)+
k2

R
K′′

m(kR)

− k
R2

[
1+(2−ν)m2]K′

m(kR)+
[
(3−ν)m2

R3

]
Km(kR)
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β I
m(kR) = k3I′′′m (kR)+

k2

R
I′′m(kR)

− k
R2

[
1+(2−ν)m2] I′m(kR)+

[
(3−ν)m2

R3

]
Im(kR)

where

εm =

{
1 m = 0

2 m �= 0
,

the superscript j (1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior
domain (i.e. ρ > R, j =2), respectively.

Appendix II: Degenerate kernels with respect to the adaptive observer system

The expressions for Uθ , Θθ , Mθ and Vθ can be obtained by replacing L in Eq.(A1)
by U , Θ, M and V , and replacing h in Eq.(A1) by f , g, p and q, respectively. The
definition of U , Θ, M, V , f , g, p and q can be seen in the Appendix I.

Lj
θ (x, s) =

∞

∑
m=0

c1h′j cos(m(θ −φi))+ s0h jsin(m(θ −φi)), j = 1,2 (A1)

where c1 = cos(δi), s0 =
(

m
ρi

)
sin(δi) and δi = φc − φi. The expressions for Um,

Θm, Mm and Vm can be obtained by replacing L in Eq.(A2) by U , Θ, M and V , and
replacing h in Eq.(A2) by f ,g, p and q, respectively

Lj
m(x, s) =

∞

∑
m=0

[mc0h j +mc1h′j +mc2h′′j ]cos(m(θ −φi))

+ [ms0h j + ms1h′j] sin(m(θ −φi)), j = 1,2 (A2)

where

mc0 = −
(

m2

2ρ2
i

)
(1+ν +(−1+ν)cos(2δi)) ,

mc1 =
(

1
2ρi

)
(1+ν +(−1+ν)cos(2δi)) ,

mc2 =
(

1
2

)
(1+ν +(1−ν)cos(2δi)) ,

ms0 =
(

m

ρ2
i

)
(−1+ν)sin(2δi),
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ms1 =
(

m
ρi

)
(1−ν)sin(2δi),

the superscript j (1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior
domain (i.e. ρ > R, j =2), respectively.


