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SUMMARY7

In this paper, the eigenanalysis for the multiply-connected domain problem is studied by using the
dual boundary element method. The occurrence and treatment of the spurious eigenvalues for multiply-9
connected domain problem are reviewed when the complex-valued BEM in used. Three approaches,
Burton and Miller method, CHIEF concept and SVD updating techniques, are adopted to suppress the11
occurrence of spurious eigensolutions. Instead of using the singular and hypersingular formulations, the
singularity-free methods, the null-�eld equation approach and the �ctitious BEM, are also utilized to13
deal with the eigenproblem. Both the eigenvalues and eigenmodes are compared with the analytical
solutions and those of FEM for the illustrative examples. Good agreement is made. Copyright ? 200415
John Wiley & Sons, Ltd.

KEY WORDS: boundary element method; multiply-connected domain; singular value decomposition;17
Fredholm alternative theorem; CHIEF concept
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1. INTRODUCTION

Boundary element method (BEM) has been accepted as an alternative for solving the acoustic21
eigenproblem. For simply-connected domain problems, the dual reciprocity method (DRM) [1]
and the multiple reciprocity method (MRM) [2] have been widely used. Both the23
aforementioned methods belong to real-valued formulations. One advantage of the MRM,
which uses the Laplace-type fundamental solution, is that only real-valued computation is25
needed [3]. Therefore, the MRM is indeed no more than the real part of the complex-valued
formulation [4]. Tai and Shaw [5] and De Mey [6, 7] employed a simpli�ed method of us-27
ing either the real- or the imaginary-part kernels. Hutchinson [8] also employed the real-part29
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kernels to solve membrane vibration problems. However, both real-part singular and hyper-1
singular equations, yield spurious eigenvalues. The occurrence of spurious eigenvalue is the
major drawback of the real-part BEM for solving the acoustic eigenproblem. To deal with the3
problem of spurious eigenvalue, the dual MRM [9], the real-part dual BEM [10], the singular
value decomposition (SVD) updating terms and updating documents [11, 12] and the gener-5
alized singular value decomposition (GSVD) [13] have been constructed. In addition, Chen
et al. [14] extended the CHIEF concept [15, 16] to the combined Helmholtz exterior integral7
equation formulation (CHEEF) method for �ltering out the spurious eigenvalues. In fact, there
are no spurious eigenvalues if the complex-valued BEM is employed for a simply-connected9
problem as Tai and Shaw [5] pointed out. However, spurious eigensolutions also appear for
multiply-connected problems even when the complex-valued BEM is employed [17, 18]. In11
Chen et al. [17], the problem of spurious eigensolutions encountered in the singular and hy-
persingular BEMs was studied by using circulants for an annular case and was treated by13
using the Burton and Miller approach [19]. The continuous formulation was also studied by
Chen et al. [20].15
Rigorously speaking, the aforementioned domain of interest [17, 20] is doubly connected

instead of multiply connected. However, the research conducted prior to this investigation17
did not address both the occurring mechanism of spurious eigenvalues and the detection of
the spurious eigenvalues for the truly multiply-connected problem. To solve the multiply-19
connected eigenproblem, Lin [21] employed the transformation technique of cylindrical wave
functions to satisfy the boundary condition for �nding the eigenvalues of an eccentric annular21
domain and a circular domain with seven equal holes. Nagaya and Poltorak [22] used the
point-matching approach to �nd the eigenvalues of a circular domain with eccentric circular23
inner boundaries. Nagaya and Yamaguchi [23] used both the Fourier expansion collocation
method and point-matching approach to �nd the eigenvalues of the elliptical or polygonal outer25
boundary with eccentric inner boundaries. However, all those approaches were not compared
with other numerical approaches, e.g. FEM or BEM, even though the exact solutions were27
not available.
In this paper, we will employ the boundary element method to determine the eigenvalue29

and eigenmode for the multiply-connected eigenproblem. The methods of �ltering out the
spurious eigenvalue by using either the CHIEF method or the SVD updating techniques31
will be discussed for the direct and indirect BEMs. Also, the Burton and Miller approach
is considered for comparison. In addition, the techniques of detecting the true eigenvalue33
will be addressed. Numerical experiments will be performed to verify the present formu-
lation. The relations between the spurious eigenvalue and the associated formulation will35
be examined. For the multiply-connected problem, the mode shapes will be plotted by us-
ing the BEM and will be compared with the other available results, e.g. exact solution and37
FEM data.

2. BOUNDARY INTEGRAL EQUATIONS FOR MULTIPLY-CONNECTED PROBLEM39

The governing equation of the acoustic problem is the Helmholtz equation

(∇2 + k2)u(x)=0; x∈D (1)41

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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where �2, k and D are the Laplacian operator, the wave number, and the domain of interest,1
respectively. On the basis of the dual boundary integral formulation [24, 25], we have

�u(x) = CPV
∫
B
T (s;x)u(s) dB(s)− RPV

∫
B
U (s;x)t(s) dB(s); x∈B (2)

�t(x) =HPV
∫
B
M (s;x)u(s) dB(s)− CPV

∫
B
L(s;x)t(s) dB(s); x∈B (3)

where x is the boundary point, s is the source point, B is the boundary, RPV denotes the3
Reimann principal value, CPV denotes the Cauchy principal value, HPV denotes the Hadamard
principal value, t(s) is the directional derivative of u(s) along the outer normal direction at5
s, and � is the interior angle of the boundary at x. The U (s;x), T (s;x), L(s;x) and M (s;x)
represent the four kernel functions [23]. Equation (2) is referred to as the singular BIE and7
Equation (3) the hypersingular BIE. The combined use of both is termed the dual BIEs.
Corresponding to Equations (2) and (3), the null-�eld BIEs [26] based on the direct method9
are

0 =
∫
B
T (s;x)u(s) dB(s)−

∫
B
U (s;x)t(s) dB(s); x∈De (4)

0 =
∫
B
M (s;x)u(s) dB(s)−

∫
B
L(s;x)t(s) dB(s); x∈De (5)

where De is the complementary domain and the kernels are the same as listed in Reference11
[24]. Note that the null-�eld BIEs are not singular. The kernel functions in the null-�eld
BIEs can be expanded into the degenerate kernels [20]. In order to avoid singularity, the13
�ctitious boundary formulation is another choice as well as the null-�eld formulations. Here,
we present the �ctitious BIEs adopting the single- and double-layer potential approaches of15
indirect method. For the single-layer potential approach, the single-layer density � is dis-
tributed on the �ctitious boundary B′ and the �eld solutions are represented in terms of the17
single-layer potential,

u(x) =
∫
B′
U (s;x)�(s) dB(s) (6)

t(x) =
∫
B′
L(s;x)�(s) dB(s) (7)

For the double-layer potential approach of the indirect method,
19

u(x) =
∫
B′
T (s;x) (s) dB(s) (8)

t(x) =
∫
B′
M (s;x) (s) dB(s) (9)

where the double-layer density  is distributed on the �ctitious boundary B′.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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3. TREATMENTS OF SPURIOUS EIGENVALUES1

Following the developed techniques [17, 20], the true and spurious eigensolutions will be de-
tected and distinguished. Two concepts are addressed here. The spurious eigensolution depends3
on the formulation instead of the types of boundary conditions for real problems. On the other
hand, the true eigensolutions (eigenvalue and eigenmode) are embedded in the formulation5
and are di�erent for the Dirichlet and Neumann problems.

3.1. Detection of spurious eigenvalues in the direct BEMs by using SVD updating7
documents

According to the Fredholm alternative theorem and the concept of spurious resonance [20]9
in the non-homogeneous boundary condition, we �nd that the spurious modes (�s) for the
Dirichlet and Neumann problems can be identical and that11 

UH(ks)

TH(ks)


 {�s}= {0} (10)

where ks is the spurious wavenumber, and the superscript H denotes the Hermitian conjugate.13
Taking the Hermitian conjugate with respect to Equation (10), we have

{�s}H[U (ks) T (ks)]= {0}H (11)15

From the preceding argument, the two matrices [U ] and [T ] have the same spurious mode
{�s} corresponding to the common spurious eigenvalue ks.17
Similarly, the LM method has the same spurious mode ( ��s) corresponding to each spurious

eigenvalue �ks for the Dirichlet and Neumann problems as shown below:19


 LH(�ks)

MH(�ks)


 { ��s}= {0}

(12)
{ ��s}H[L(�ks) M (�ks)] = {0}H

By the same token as in the UT method, the [L] and [M ] matrices have the same spurious
eigenvalues. In other words, the spurious eigenvalues are related to whether formulated by21
the UT method or by the LM method rather than related to whether the boundary condition
is of the Dirichlet type or the Neumann type.23
To detect the spurious eigenvalues, we merge the [U ] and [T ] matrices to form the so-called

updating document25

[B(k)]= [U (k) T (k)] (13)

By applying SVD technique for [B(k)], the minimum singular value of [B(k)] as a (numerical)27
function of k can be utilized to �nd the spurious eigenvalues ks and the spurious modes {�s}
at the same time.29

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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3.2. Detection of true eigenvalues in the direct BEMs by using SVD updating terms1

Consider that the true eigensolution must be embedded in

[U (kt)]{t}= {0}
(14)

[L(kt)]{t}= {0}

for the homogeneous Dirichlet problem, where kt denotes the true wavenumber. Equation (14)3
indicates that both the [U ] and [T ] matrices have the same zero singular value corresponding
to the right unitary vector {t}. This �nding guides us to merge the two equations together,5

[D(kt)]{t}= {0} (15)

where7

[D(kt)]=

[
U (kt)

L(kt)

]
(16)

By plotting the minimum singular value of [D(k)] versus k, one has a curve which drops at9
the positions of true eigenvalues.
The technique of SVD updating term can also be applied to the Neumann problem,11

[N (k)]{u}= {0} (17)

where13

[N (k)]=

[
T (k)

M (k)

]
(18)

To detect true eigenvalues, a similar procedure for the minimum singular value of matrix15
[N (k)] versus k can be developed.

3.3. Detection of true eigenvalues in the indirect BEMs by using SVD updating documents17

According to the Fredholm alternative theorem for the non-homogeneous Dirichlet problem
(u= �u on B) in indirect BEMs [20], we obtain19 

UH(kt)

TH(kt)


 {�}= {0} (19)

where � is the true eigenmode. To detect the true eigenvalues, we plot the minimum singular21

value of the assembled matrix
[
UH(k)

TH(k)

]
versus k, and the curve drops indicate the positions of

the true eigenvalues.23
The technique of SVD updating document can be extended to the Neumann problem. The

minimum singular value for the assembled matrix
[

LH(k)

MH(k)

]
versus k is plotted, and the drops

25
in the curve are also found at the positions of true eigenvalues.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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3.4. Detection of spurious eigenvalues in the indirect BEMs by using SVD updating terms1

For the homogeneous Dirichlet and Neumann eigenproblem, we have

[U (ks)]{’}= {0} (20)

[L(ks)]{’}= {0} (21)

Combining Equations (20) and (21), we have3 [
U (ks)

L(ks)

]
{’}= {0} (22)

The minimum singular value of the assembled matrix
[
U (k)

L(k)

]
versus k is then plotted, the local

5
minima of the resulted curve revealing the spurious eigenvalues ks. Next let us consider[

T (ks)

M (ks)

]
{ }= {0} (23)

7

for detecting the spurious eigenvalues occurring in the double-layer potential approach. The

minimum singular value of the assembled matrix
[

T (k)

M (k)

]
versus k can be similarly examined

9
to �nd the spurious eigenvalues ks.

3.5. Extraction of true eigenvalues using CHIEF point and the Burton and Miller method11

In order to overcome the problem of the spurious eigenvalue, the CHIEF points are chosen
and the overdetermined system of Dirichlet problem can be obtained [17]. Another treatment13
is the Burton and Miller method [19].

4. NUMERICAL EXPERIMENTS FOR MULTIPLY-CONNECTED PROBLEMS15

In order to verify not only the occurring mechanism of spurious eigensolution but also
the suppression of the spurious eigenvalues for the multiply-connected problem, numerical17
experiments for four examples were performed. In the literature, the inner boundaries of
multiply-connected domain were designed with identical geometry. In order to understand19
how geometry of inner boundaries in�uence spurious eigenvalue; hence, we designed a case
of a circular domain with two unequal inner holes. The other problems, the cases of a circular21
domain with two, four and seven equal holes were performed to compare with other available
solutions.23

4.1. A circular domain with two unequal holes

The circular domain with a radius R=1 m and two circular inner boundaries where the ec-25
centricity e is 0:5 m with radii of c1 = 0:3 m and c2 = 0:4 m, respectively, are considered in

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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Table I. The former �ve eigenvalues for a multiply-connected problem with two unequal
holes using di�erent approaches.

R=1

c2c1

e=0.5 

ki

Method k1 k2 k3 k4 k5

Burton and Miller method 4.82 4.82 6.72 6.72 7.82
Direct BEM
+ SVD Updating 4.81 4.81 6.73 6.73 7.81
Null-�eld BEM
+ SVD Updating 4.81 4.81 6.73 6.73 7.82
Fictitious BEM
+ SVD Updating 4.80 4.80 6.72 6.72 7.79
Direct BEM
+ CHIEF method 4.81 4.81 6.73 6.73 7.82
Null-�eld BEM
+ CHIEF method 4.83 4.83 6.74 6.74 7.84
Fictitious BEM
+ CHIEF method 4.77 4.77 6.68 6.68 7.88
FEM (ABAQUS) 4.790 4.801 6.619 6.634 7.797

Table I. All the boundary conditions are the Dirichlet types (u=0). By using the eight ap-1
proaches [17, 20] in Table I, the former �ve eigenvalues (ki; i=1; 2; : : : ; 5) are obtained as
shown in Table I. The former two eigenvalues (k1; k2) and the subsequent two (k3; k4) are3
roots of multiplicity two which can be distinguished by using the BEMs+SVD updating
techniques. However, FEM calculations cannot distinguish the multiplicity as shown in Ta-5
ble I since k1 �= k2 and k3 �= k4. Good agreement for the �ve eigenmodes corresponding to the
former �ve eigenvalues by using the BEM and FEM is obtained in Figure 1 where a plus7
sign and a minus sign denote the convex and concave sides, respectively. Although the mode
shapes corresponding to the eigenvalues k3 and k4 seem di�erent between the results of BEM9
and FEM, each mode shape of BEM for k3 and k4 can be obtained by linearly superimpos-
ing the two independent mode shapes of FEM, and vice versa. Similarly, the mode shape11

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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Figure 1. The former �ve modes for a multiply-connected problem with two unequal holes.
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Figure 1. (continued)

corresponding to the eigenvalue k5 is di�erent by a factor −1 between the results of BEM1
and FEM. Comparing the data of BEM with that of FEM, the root of multiplicity two can be
detected by using BEM instead of FEM. To sort out spurious eigenvalues, the direct BEM3
and the SVD updating document are employed. Figure 2 shows that the spurious eigenvalues
appear in the location of the ks = 6:16 (J 10 =c2 = 6:012) or 8:20 (J

1
0 =c1 = 8:016) in the range5

of 0¡k69, where the exact values are shown in the parentheses. It is a clear evidence to
demonstrate that the spurious eigensolution depends on the radii of inner circles (c1 and c2)7
as predicted by Chen et al. [17, 20] for the annular case.
By using 15 elements for each inner boundary and 60 elements for the outer boundary, the9

spurious boundary mode �1 from the left unitary matrix of SVD corresponding to the zero
singular value for the spurious eigenvalue is shown in Figure 3(a)–3(d) for the four cases.11
To demonstrate how spurious mode relates to the spurious eigenvalue, the former four spuri-
ous eigenvalues of the ks = 6:16 (J 10 =c2 = 6:012), 8:20 (J

1
0 =c1 = 8:016), 9.65 (J

1
1 =c2 = 9:579) and13

13.00 (J 11 =c1 = 12:772) are considered where the theoretical predictions are shown in the paren-
theses. It is found that the spurious boundary mode �1 is zero except on the inner boundary15
ci (where i=1; 2) for the corresponding spurious eigenvalue ks = J 1n =ci (where i=1; 2, n∈N),

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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Figure 2. Detection of spurious eigenvalues using the SVD updating document.

respectively. In addition, the former two spurious eigenvalues satisfying J0(ksci)=0 (where1
i=1; 2) have the same spurious mode of constants (ei0�) as shown in Figure 3(a) and 3(b)
while the subsequent two spurious eigenvalues satisfying J1(ksci)=0 (where i=1; 2) have the3
same spurious mode of sin � or cos � (ei1�) as shown in Figure 3(c) and 3(d). It is theoret-
ically predicted that the spurious eigenvalues ks satisfying Jn(ksci)=0 (where i=1; 2) have5
the same spurious mode of sin(n�) or cos(n�) (ein�). Hence, the singularity pattern resulting
in a null-�eld solution is found in the numerical demonstration [17, 20, 27]. In addition, only7
two CHIEF points (0:5; 0), and (−0:5; 0) inside each circle are required to sort out the spu-
rious eigenvalues ks = 6:16 (J 10 =c2 = 6:012) and ks = 8:20 (J 10 =c1 = 8:016) of multiplicity one,9
respectively.

4.2. A circular domain with two equal holes11

For the problem of a circular domain with two equal holes, Nagaya and Poltorak [22] used
the point-matching (PM) approach for �nding the eigenvalues. The radius R=1m of the outer13
boundary and the radii c=0:3 m of the inner boundaries with the eccentricity e=0:5 m are
considered in Table II. The boundary conditions along the inner and outer boundaries are the15
Dirichlet types (u=0). Numerical data of the three approaches, point-matching method [22],
BEM and FEM, are listed in the Table II. For the root of multiplicity two, the former two17
eigenvalues (k1; k2) and the subsequent two (k3; k4) are obtained in the BEM results while
FEM cannot distinguish the multiplicity. Following the data of point-matching approach in19
the parentheses, the symmetry and antisymmetry of the mode shape are noted by Nagaya

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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and Poltorak where the (S) and (A) symbols denote the symmetric and antisymmetric with1
respect to the x- and y-axis, respectively. The same symbols are used in the BEM results.
It is easy to �nd that the symmetry of mode shape of BEM and point-matching approach3
matched well. For the plots of the former �ve modes using the BEM and the FEM as shown1
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Figure 3. The spurious boundary mode �1 along the boundary (1–15, inner left circle; 16–30, in-
ner right circle; 31–90, outer boundary): (a) k =6:16 (J 10 =c2 = 6:012); (b) k =8:20 (J 10 =c3 = 8:016);

(c) k =9:65 (J 11 =c2 = 9:579); and (d) k =13:00 (J 11 c3 = 12:772).
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Figure 3. (continued)

in Figure 4, good agreement is obtained. Although the mode shapes corresponding to the
eigenvalues k3 and k4 seem di�erent between the results of BEM and FEM, each mode shape3
of BEM can be linearly superimposed by using the two independent mode shapes obtained by
using the FEM, and vice versa. Similarly, the mode shapes corresponding to the eigenvalue5
k1 are di�erent by a factor −1 between the BEM and the FEM. In this case, the �rst spurious
eigenvalue ks = 8:196 (J 10 =c=8:016) is out of the range of 0¡k68; hence, there is no spurious7
eigenvalue appearing in the range of the former �ve eigenvalues (k1¡k¡k5). For the sake of1

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000
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Table II. The former �ve eigenvalues for a multiply-connected problem with two, four and seven
equal holes using di�erent approaches.

c=0.3

R=1

c c

e=0.5 

c=0.1

R=1

c

e=0.5 

c

c 

c

G

R=1

c

G/c=1.36

PM BEM FEM PM BEM FEM Lin [21] BEM FEM

k1 4.548 (SS) 4.50 (SS) 4.453 4.655 (SS) 4.47 (SS) 4.443 0.3141 7.68 7.533
k2 4.588 (AS) 4.50 (AS) 4.512 NO 5.37 (AS) 5.316 1.4487 8.01 7.821
k3 6.457 (AA) 6.37 (AA) 6.267 NO 5.37 (SA) 5.320 1.8141 8.01 7.828
k4 6.472 (SA) 6.37 (SA) 6.269 5.561 (SA) 5.54 (AA) 5.486 2.3654 8.34 8.100
k5 7.083 (SS) 7.16 (SS) 6.930 5.868 (SS) 5.95 (SS) 5.884 3.2939 8.34 8.106

demonstrating the singularity pattern resulting in a null-�eld solution, we plotted the boundary
vectors �1 and �2 from the left unitary matrix of SVD corresponding to the zero singular3
values for the spurious eigenvalues 8:196 (J 10 =c=8:016) and 13:06 (J

1
1 =c=12:772) as shown

in Figure 5(a) and 5(b), respectively, where 15 elements for each inner boundary and 605
elements for the outer boundary are used. Since the radii of inner boundaries are identical to
each other, the spurious eigenvalue ks = 8:196 (J 10 =c=8:016) has multiplicity of two and the7
boundary denisties, �1 and �2, are zero except on the inner boundaries. This is the reason
why Figure 5(a) and 5(b) have two boundary modes. From the plot of another spurious9
eigenvalue ks = 13:06 (J 11 =c=12:772), it is similar that the non-zero boundary densities �1
and �2 appear only in the inner boundaries. In addition, the curve shapes of non-zero boundary11
densities �1 and �2 depend on the spurious eigenvalue ks = J 10 =c or ks = J 11 =c with e

i0� and
ei1�, respectively.13

4.3. A circular domain with four equal holes

The outer boundary with a radius R=1m and four equal circular inner boundaries with radii15
c=0:1 m are considered and the former �ve eigenvalues are shown in Table II. The four
centers of the circular inner boundary locate on the positions of (0:5; 0), (0; 0:5), (−0:5; 0)17
and (0;−0:5), respectively. Only the Dirichlet boundary condition is considered here. For this
problem, Nagaya and Poltorak [22] also used the point-matching approach for �nding the19
eigenvalues. The former �ve eigenvalues by using the BEM and the FEM are obtained. All
the results are listed in Table II including the data of the point-matching method [22]. It21
is found that the method of point-matching missed the eigenvalues of k2 and k3 while the
BEM and the FEM obtained. For the eigenvalues of k2 and k3 or k4 and k5, the BEM in1
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Figure 4. The former �ve modes for a multiply-connected problem with two equal holes.
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Figure 4. (continued)

conjunction with SVD indicated that they are both roots of multiplicity two by �nding the
second successive zero singular value in SVD; however, the FEM obtained the two eigenvalues3
but they are not the same value. Besides, the symmetry of the mode shape predicted by the
point-matching method is quite di�erent from that of BEM in k4 while the results of FEM5
match the BEM’s data well where the mode shapes are shown in Figure 6. Although the
mode shapes corresponding to the eigenvalues k2 and k3 seem di�erent between the results7
of BEM and FEM, each mode shape of BEM can be linearly superimposed by using the two
independent mode shapes of FEM, and vice versa. Similarly, the mode shapes corresponding9
to the eigenvalues k4 and k5 are di�erent by a factor −1 between the BEM and the FEM.
Since the minimum spurious eigenvalue ks = 24:048 satisfying J0(0:1ks)= 0 occurs out of11
the range of 0¡k66, it is consistent that no spurious eigenvalues occurred in the range
of k¡k5.1
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4.4. A circular domain with seven equal holes

A circular domain of a radius R=1 m with seven equal holes of radii c=0:156m is con-3
sidered and the former �ve eigenvalues are shown in Table II. Lin [21] used the technique
of transformation of cylindrical wave functions to deal with the eigenproblem. The results5
of Lin’s, the BEM and the FEM are shown in Table II. The di�erence between the BEM’s
data and the FEM’s data is less than 3%; however, Lin’s results for eigenvalues seem to1
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Figure 5. The spurious boundary modes �1 and �2 along the boundary (1–15, inner left circle; 16–30,
inner right circle; 31–90, outer boundary)—k =8:196 (J 10 =c=8:016); and (b) k =13:06 (J 11 =c=12:772).
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Figure 5. (continued)

deviate the results of BEM and FEM. Similarly, FEM cannot identify the root of multiplicity3
two while the BEM can distinguish by using the SVD technique. Although the mode shapes
corresponding to eigenvalues k2 and k3 or k4 and k5 seem di�erent between the results of5
BEM and FEM, each mode shape of BEM can be linearly superimposed by using the two
independent mode shapes of FEM as shown in Figure 7, and vice versa. Because the radii1
of inner boundaries are 0:156 m, the minimum spurious eigenvalue ks = 15:415 satisfying

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:000–000



UNCORRECTED P
ROOF

18 J. T. CHEN, L. W. LIU AND S. W. CHYUAN

CNM679

BEM FEM

mode 1

mode 2

mode 3

-

+

+

-

+

-

-

+

+

+ +

- -

+

k=4.47

k=5.37

k=5.37

k=4.443

k=5.316

k=5.320

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 6. The former �ve modes of a multiply-connected problem with four equal holes.
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Figure 6. (continued)

J0(0:156ks)= 0 occurs out of the range of 0¡k69. No spurious eigenvalues occurred in the3
range of k¡k5.

5. CONCLUSIONS5

In this paper, the SVD updating techniques and the Fredholm’s alternative theorem were
employed to deal with the problem of spurious eigenvalue occurring in the truly mutiply-7
connected problems. For the direct BEM, the SVD updating documents in conjunction with
the Fredholm’s alternative theorem were ulitized to detect spurious eigenvalues while the SVD9
updating terms were employed to �lter out the true eigenvalues. For the indirect BEM, the
spurious eigenvalues were detected by using the SVD updating terms and the true eigenvalues11
were sorted out by using the SVD updating documents in conjunction with the Fredholm’s
alternative theorem. Spurious eigensolutions are found to be dependent on the formulation1
while true eigensolutions depend on the types of boundary condition. The numerical experi-
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Figure 7. The former �ve modes of a multiply-connected problem with seven equal holes.
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Figure 7. (continued)

ments of the multiply-connected problems were performed to demonstrate the validity of the3
arguments which we have proposed above. It was found that the occurring mechanism of
spurious eigenvalue depended on inner boundaries. Good agreement between the results of5
BEM and FEM were made. In addition, the ability of detecting the root of multiplicity two
can be achieved in the BEM by using the SVD techniques.7
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