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SUMMARY

- An efficient method, called the modal reaction method, for calculating the modal participation factors for
support motion preblems is proposed. 1t is found that modal reactions at supports proportionally describe
the magnitudes of the modal participation factors. Thus, the modal participation factor for suppert motion
problems can be calculated very efficiently, saving more than 99 per cent, for the given example with 640
degreces of freedom, of the CPU time compared with using the popular quasistatic decomposition
method.
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1. INTRODUCTION

In solving dynamic problems, either direct transient analysis or modal analysis can be ultilized.
For the case of modal analysis, the total response is obtained by superimposing the
contributions of natural modes, and each of the generalized co-ordinates represents the weight
of the contribution made by the corresponding mode. While the modal co-ordinate and the
modal equivalent mass ratio for base shear play the roles of modal outputs for displacement
and base shear, respectively, the modal participation factor plays the role of modal input by
distributing external excitations to the corresponding mode. The derivations of these factors
due to body force, boundary force and support excitations are well known in the literature.’
When the excitation is body force or boundary force, the modal displacement at the
application point of the body force or the boundary force governs the magnitude of the modal
participation factor. Figure 1(a) illustrates this for a single-degree-of-freedom system.
Therefore, if a concentrated load is applied at the node of a certain mode shape, then the
modal participation factor of the mode is zero,

The modal participation factor due to support motion excitations is usually determined
from the quasistatic solution as Mindlin and Goodman® proposed, even though the resulting
calculation is very time-consuming and with little physical meaning.! On the contrary, even
though the quasistatic part is difficult to find, Eringen and Suhubi’ managed to obtain, free
from the calculation of the quasistatic part, the general dynamic solution of the total
response for a continuous system. Motivated by the significance of the support motion
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Figure 1. SDOF model subjected to (a) force excitation, (b) single support excitation and (c) multiple support
excitations

problems in earthquake engineering, we synthesize and extend their ideas® to discrete multi-
degrees-of-freedom structural systems, and find that the modal participation factor is
proportional to the modal reaction, thus revealing a clear physical meaning and facilitating
calculation.

MODAL FORMULATION FOR SUPPORT MOTION IN DISCRETE SYSTEMS
Consider the discrete system with the governing equation:
MI{U} +[CI{U} + [KHU} = (P(2)} (1

where [M] is mass, [C] is damping and [K] is stiffness, all being matrices of order N, the total
number of degrees of freedom, {U} is displacement and {P} is force, all being column
matrices. We decompose the degrees of freedom into two sets, the supported and the
unsupported, denoted by the subscripts r and /. Thus, equation (1} can be rewritten as

M, M, t-714_(:11 Cr U1+Ku K JUil _ [P Q)
Mrl Mrr {Ir Crl Crr Ur Krl Krr Ur Pr
where {U,} prescribes ¥, support motions, {P,} prescribes N, loads, {P,} contains the resulting
N, reaction forces, and {U,} contains the resulting N, displacements, where N, + N,=N. Since
we are focusing on multisupport motion problems in earthquake engineering, the N, entries of
{U.,} are prescribed time histories at N, supports and it is assumed that {P;} =0.
The solution can be decomposed into two parts, the quasistatic part with the superscript s and

the inertia—~dynamic part with the superscript d:
+ u €Y
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where, by definition, the quasistatic solution satisfies
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and, for the inertia—dynamic part,
(Pl}={0} (5)
{U) =10} 6)
The eigen equaticn corresponding to equation (2) is

M M8 [ KJe]_[o] .
mi[Mﬂ Mn][ol+ Kq K,,”O}_'R,-}’ =125 Y]

where { ¢,} denotes the ith mode shape with N, entries and {R;} is the jth modal reaction forces
with N, entries. The modal matrix [®,] is the collection of all the &, mode shapes, and the
modal damping ratio &, and the ith modal (or natural) frequency w, satisfy the Rayleigh
damping model with coefficients a and 8 with

2§,Q,=2a+ﬁw,2, I‘=1,2,...,N] (8)

that is
[C1=2a[M] + BK] 9

Denote as {Q°} the column matrix of the modal (or generalized) co-ordinates of the
inertia—dynamic part. Then, the inertia—dynamic displacements have mode superposition

{U'} = 1@,1{QY) (U%) = [@n1{Q%) (10}
where we have defined the augmented matrnix of order ¥ x N,
(@] = {‘f}“] an

Substituting first equation (3) and then (10) into (1) and premultiplying by [®,,]7 yield

[@] M1[®,]{Q (1)} + [ [CI{@Q QY (1)) + [@0] K] ](Q* (1))
= —[@,]"M){U*} - [B]"[CHU*}  (12)

Note that, in the present formulation, there is no difficulty in retaining the [®,,1T[C){U"} term
in equation (12), in contrast to the paper in which the term was always neglected.* The modal
co-ordinate, 07, satisfies

0! + 280,00 + 010 = —[‘g"IT M) - |‘g] (cHO) (13)
for the modal co-ordinate of the inertia—dynamic part Q.

APPLICATION OF BETTI’S LAW FOR DISCRETE SYSTEM
Since {P,} =P’} = {0} , we obtain, from equation (4},
(U} =-[Ky ] K J{U}) (14)
We now apply Betti’s law for discrete systems’ to prove

.
~w;{¢,} My M){U*} =-wf{‘f’;} MU'} = (R} {U}} (15)

Based on the eigen-equation (7), we obtain the ith modal reaction as follows:
[R;}=-o/Myl{ ¢} + [Ksl{ ¢} (16)
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Then, inserting equation (16) into the right-hand side of equation (15), we obtain
(RITU ) = (-0l M, 1{ ¢} + K, ¢}}7(U}
= [~ ¢} M, +{ 97K, JHU}} (17)
Substitution of equation (14) into the left-hand side of equation (15) yields
-0 ¢.) ™M, M, (U} = 0l{{¢;]"IM1K,] ' [K,]- {9} M, 1}HU:} (18)
After comparing equation {17) with (18), to derive (15) is equivalent to finding

o ¢ My]Ky) ™ [K U = { 0.} T (K J{U}) (19)
From the eigensystem of equation (7), we have
-0l Myl{ ¢} + K ]l ¢;} = {0} (20)
Taking the transpose of equation (20) and postmultiplying with [K,]'[K,]{U:}, we have
-0 ¢} MK, ] K J{U} + { 9.7 IK, K] K 1{U3 ) = 0 (21)

Therefore, we have derived equation (19) and hence equation (15).

TRANSIENT RESPONSE USING MODAL REACTION METHOD

Now considering equations (3}, (6) and (13), we can express the quasistatic part as

(U} = [_K‘TIK‘f}{UJ

I
Url(r)
U, (0) 22)
< 16 (G:) - (6) -~ (Gul
U0

where U (¢) is the jth support history of the r set and {G;} denotes the quasistatic influence
vector for {U’} when only the jth entry of {U,} is 1; otherwise it is zero. Equation (22) can be
rewritten as

=S iGm (23)
=1

Substituting equation (23) into (13), we have

M

13 - d 42 ! - T " - T -
0! + 260,07 + wiQ} = Z(—[ﬂ'] M]{G;)U, £ - m [C]{G;}U,,{t))

= -3 U - 20 Y T Uy 24)
= i=1
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after using equations (4) and (9), where I'} is the ith modal participation factor for the
inertia—dynamic part Q subjected to the jth support motion U;(¢), defined as

T
njalqgfl MI{(G)}, i=1,2..N, Jj=12..N, (25)
By substituting the particular selection,

{U'}={Gy} (26)

o] [o

o | |o
(U1 =10 =t =1 @n

o lo

intc equation (15), we obtain the general equality
T
"w?[f;l M]{GJ} =Rjju l.: 1s2s ---;le j= 132:'-'3Nr (28)

where R is the jth entry of the ith modal reaction, i.e., the jth support reaction of the ith mode.
From equations (25) and (28), we have
T =R—'f2, i=1,2,..,N, Jj=12,.,N (29)
(i)
which expresses that the modal participation factor for the inertia—dynamic part is the modal
reaction divided by the negative of the modal frequency squared.

Nevertheless, on the other hand, the quasistatic part is still present in the total response of
equation (3), and it seems that the calculation of the quasistatic solution could not be omitted in
deriving the total response, although we can determine the modal participation factor without
the quasistatic solution by using equation (29). However, if we define

(Q*} = [®n] MHU} = —diag(1/ef, 1}, ..., o})R, ... R..R}T{U}  (30)

owing to equation (9), the quasistatic solution can be expanded in terms of natural modes as
follows:

(U} = [@01{Q°) = —[®y]diag(t/w], 1w, ..., Hol MR, ... Ry RTU) (31
After merging the quasistatic part into the modal (or generalized) co-ordinates of the guasistatic

part {QQ*} by equation (30), the solution can be wrilien in terms of a more generalized one, the
modal co-ordinates {Q} as follows:

(U} = {0} + [2,1{Q°} = [®4){Q"} + [2,H{Q"} = [®,1{Q} 32)

where {Q} ={Q"} +{Q’}. Substituting equations (32) and (9) into (13), for the ith modal co-
ordinate ; (i=1,2, ..., N}), we have

Nr
O+ 28 w,0; + Q= zRf;(—ﬁUrj(f) - U, (1)

i=1

==B ) U - Y GU, ) (33)
i=1 =1
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where the ith modal participation factor I';; subjected to jth support motion U (1) is defined
as

I';=R

which simply expresses that the modal participation factor is just the modal reaction,

For the types of the time history records of support motions {;’,j(t), U,,-(r) and U (r), the
corresponding modal participation factors T'§ and I';; with respect to Q' and Q,, respectively,
are shown in Table L.

Using the Duhamel integral for equations (24) and (33), we have

i=1,2,..,N,  j=1,2, N, (34)

ijs

d 1 ¢ ~m-T . g i Ry . ,
Q)= —7—| ¢ sin(w; (7 — 1)) ) | — (U,() + 2al,(2))|dz (35)
w1 - & ! jzl: w}
NI
0.0 = #Jl_—g? [ singwits - r));: R{(BU(1) + Uy(m))) dr (36)

respectively. The displacement response can be derived according to equation (32} by applying
equations (35) and (36).

In earthquake resistant design, the partial sum of the series of modal equivalent mass ratios
for base shear plays the role of determining the modes needed, since

r M
m;=M, 37)

4

j=li=l
where M, is normalized quasi-static mass® and the ith modal equivalent mass ratio subjected to
the jth support motion can be calculated by the modal reaction as follows:

(R,

2’
i

m,= () = i=1,2,..N, Jj=12.,N (38)

Table 1. Comparison of modal participation factor by quasistatic decomposition and
modal reaction methods

Modal participation . .
factor T, U0 UAD U,
s|" 0"
of domain l T MGl 2a[ MG} 0
0 0
boundary R 2a Ry 0
) )
ol |
o) domain 0 —ﬁwfl 0‘] M]{G;} —w?l 0'] MG}

boundary 0 BR; R;
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NUMERICAL EXAMPLES

Example 1. A single-degree-of-freedom system subjected to single and multiple support
excitations

As shown in Figure 1(b), the new point of view for the modal participation factor is checked
by a single-degree-of-freedom system. By the definition of equation (29), the modal
participation factor is:
single support excitation:

d Ry f"-’lz
= = =1 (3%
YT ed) o
multiple support excitations:
R k
== (40)
(i) ki + k2
k
g =—tu___2 (41)
(—wlz) kl + kz

which just match the modal participation factors in structural dynamics.5

Example 2. Cantilever beam

Consider a multi-degrees-of-freedom system with 20 beam clements subjected to base
excitation. The modal participation factor determined by the quasistatic decomposition method
and the modal reaction method are summarized in Table II. It is found that using the modal
reaction method CPU time consumed in VAX 8600 is only one-sixth of that using the
quasistatic decomposition method as shown in Table II. The partial sum of the series of the
modal equivalent mass ratios for base shear against the mode number is shown in Figure 2.

Example 3. Flexural beam

Extending the single input to multiple support excitations, the long bridge model is discretized
into 20 beam elements. The modal participation factors of the quasistatic decomposition method

Table II. Comparison for cantilever beam subjected to base excitation

Discrete system (20 elements)

Conitinnous system Quasistatic decomposition Modal reaction method

T
Exact solution [ﬂi‘l M]{G;} B 5
0 (~wi)
T, 1-566 1-569 1568
Ty -0-867 -0-868 -0-868
Ty, 0-509 0-509 0-509
T, -0-364 -0-364 -0-364

CPU time, s 0-06 0-01
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Figure 2. Partial sum of modal mass ratios against mode number included

and the modal reaction method agree satisfactorily, as shown in Table III. The increasing rate of
the CPU time for the quasistatic decomposition method is higher than the modal reaction
method as shown in Table IIT. It is shown that only 1 per cent CPU time is needed for the
example with 640 degrees of freedom using the present method in comparison with the
quasistatic decomposition method. In Figure 3, the transient responses at the middle point to the
in-phase motions a(#)=5(:})=0-01 e ®"sin(1-2 #r) at both ends using the quasistatic
decomposition method and the modal reaction method are shown and compared with other
solutions.” The results are very satisfactory.

Example 4. Frame with a rigid slab
The last example shows the frame structure with a rigid slab subjected to in-phase and out-of-phase
support motions as shown in Figure 4, The modal participation factors are shown in Table IV and are

Table III. Comparison for flexural beam subjected to multisupport motions

Discrete system (20 elements)

Continuous system Quasistatic decompaosition Modal reaction method

. ¢ T R,
Exact solution [ '] MG,

0 (~w})

| 170-82 170-82 170-82
| 85.41 8541 85.41
Iy, —-56-94 —56.95 -56.95
Ty -42.71 -42.71 -42-71
N=40 0-06 0-01

CPU N=80 0-42 0-04
time, N=160 3.62 0:16
s N=640 240 2-56

N = number of degrees of freedom
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Figure 3. Displacement response at middle point for beam of Example 3
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Figure 4. Frame with a rigid slab subjected to in-phase and out-of -phase support motions
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Table IV. Modal participation factors calculated for frame
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Figure 5. Displacement response of rigid slab for frame of Example 4 subjected to in-phase motions
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Figure 6. Displacement response of rigid slab for frame of Example 4 subjected to out-of-phasc motions

the same for both methods. The transient responses of the rigid slab subjected to in-phase motions
a(t)=b(r)=0-01 ¢*¥sin(1-2 nr) and out-of-phase motions a(t)=-b(t)=0-01 e sin(1-2 1)
using the quasistatic decomposition method and the modal reaction method are shown in Figures 5 and
6. Good agreement is achieved for the two methods.

CONCLUSIONS

The modal reactions have been found to be proportional to the modal participation factors for
support motions. Without including the computational time of the modal basis, it is shown that
only 1 per cent is needed to calculate the modal participation factor when the number of degree
of freedoms exceeds 640.
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